Ch2: Statics of Particles

Contents:

Vector Operations Adding Forces in a Plane Equilibrium in a Plane Adding Forces in Space Equilibrium in Space

Vector Operations

Scalars and Vectors

A **Scalar** is any positive or negative physical quantity that can be completely specified by its **magnitude** (e.g., time, length, area, volume, speed, mass, density, pressure, temperature, energy, work, or power).

A **Vector** is any physical quantity that requires both a **magnitude** and a **direction** for its complete description (e.g., force, displacement, velocity, acceleration, or momentum).

0000000

<u>UUUAAUAUA</u>

Multiplication of a Vector by a Scalar

The product $k\mathbf{P}$ of a scalar k and a vector \mathbf{P} is defined as a vector having the same direction as P (if k is positive) or a direction opposite to that of P (if k is negative) and a magnitude equal to the product of P and the absolute value of k , i.e., $|k|P$.

Addition of Two Vectors

By definition, vectors add according to the **Parallelogram Law**.

[Vector Operations](#page-1-0) [Adding Forces in a Plane](#page-10-0) [Equilibrium in a Plane](#page-20-0) [Adding Forces in Space](#page-28-0) [Equilibrium in Space](#page-35-0)

Make them **Concurrent** by join the tails.

Construct a **Parallelogram**. The diagonal that passes through *A* represents the sum of the vectors.

This single equivalent vector is called the **Resultant** of the original vectors.

 $*$ The magnitude of the vector $\mathbf{R} = \mathbf{P} + \mathbf{Q}$ is not, in general, equal to $P + Q$.

Addition of Two Vectors (Alternative Method)

Triangle Rule: An alternative method for determining the sum of two vectors.

[Vector Operations](#page-1-0) [Adding Forces in a Plane](#page-10-0) [Equilibrium in a Plane](#page-20-0) [Adding Forces in Space](#page-28-0) [Equilibrium in Space](#page-35-0)

<u>UUUAAUAUA</u>

(half of the parallelogram)

OV

Vector addition is **Commutative**:

$$
\mathbf{P} + \mathbf{Q} = \mathbf{Q} + \mathbf{P}
$$

Arrange **P** and **Q** in tip-to-tail fashion and then connect the tail of P (or Q) with the tip of Q (or P).

Special Case: If the two vectors **P** and **Q** are **Collinear** (i.e., both have the same line of action):

$$
R = P + Q
$$

P Q R = P + Q

 Ω

[Vector Operations](#page-1-0) [Adding Forces in a Plane](#page-10-0) [Equilibrium in a Plane](#page-20-0) [Adding Forces in Space](#page-28-0) [Equilibrium in Space](#page-35-0)

The triangle rule (or parallelogram law) is applied **repeatedly** to successive pairs of vectors until all of the given vectors are replaced by a single vector.

Polygon Rule: By arranging the given vectors in tip-to-tail fashion and connecting the tail of the first vector with the tip of the last one.

∩OOO●OOC

<u>UUUAAUAUA</u>

Subtraction of Vectors

[Vector Operations](#page-1-0) [Adding Forces in a Plane](#page-10-0) [Equilibrium in a Plane](#page-20-0) [Adding Forces in Space](#page-28-0) [Equilibrium in Space](#page-35-0)

Subtraction is defined as **a special case of addition**. Therefore, the rules of vector addition also apply to vector subtraction:

$$
P-Q=P+(-Q)
$$

Resolution of a Vector into Components

OV

Vector $\bf F$ can be resolved into an infinite number of possible sets of vectors (called **Components** of \bf{F}), such that the resultant of all the components is \bf{F} .

[Vector Operations](#page-1-0) [Adding Forces in a Plane](#page-10-0) [Equilibrium in a Plane](#page-20-0) [Adding Forces in Space](#page-28-0) [Equilibrium in Space](#page-35-0)

Sets of **two components** are the most common sets in mechanics (and they form a parallelogram).

For Example,

റററററ∙െ

000770707

Four (among infinite) possible two-component sets for a given vector \mathbf{F} : $\mathbf{F} = \mathbf{P} + \mathbf{Q}$

Rectangular **Components**

Resolution of a Vector into Components (cont.)

We can resolve a vector into **two unique components** by having some information about the components. It is done graphically by drawing the appropriate **parallelogram** or **triangle** that satisfies the given conditions.

Ex. 1: One of the two components (say P) of vector $\bf F$ is known.

Ex. 2: Lines of action of the components (say u , v) of vector **F** are known.

Adding Forces in a Plane

Force on a Particle

A **force** represents the **action** of one body on another. It can be exerted by actual contact, (like a push or a pull) or at a distance (like gravitational or magnetic forces).

Experimental evidence has shown that **a force is a vector quantity** since it is characterized by its **magnitude**, its **direction**, and its **point of application**, and it adds according to the parallelogram law.

```
Newton (N) [SI], Pound (lb) [USCS]
```
- **Fixed Vector** (cannot be moved), e.g., forces acting on a particle.
- **Sliding Vectors** (can be moved along their lines of action), e.g., forces acting on a rigid body.
- **Free Vectors** (can freely move in space), e.g., couple.

In this chapter, we assume all forces acting on a given body ("particle") act at the same point, i.e., forces are **fixed vectors** and **concurrent**.

Addition of Concurrent Forces

Two methods to solve the problems concerning the **resultant of forces**:

(1) Trigonometric Method:

- It is more convenient when only two forces are involved.
- In this method, we use Triangle Rule (Parallelogram Law) + Sine/Cosine laws.

(2) Analytic Method:

- It is more convenient when more than two forces are involved.
- In this method, we use rectangular components of the forces.
- It is a general solution and the most common approach.

(1) Trigonometric Method

When only two forces are involved, the Triangle Rule (or Parallelogram Law), and Sine/Cosine laws can be used.

(I) Oblique Triangles:

 $\mathcal{C}_{\mathcal{L}}$

Law of Sines:

 α

(II) Parallel lines cut by a transversal:

 $\overline{\alpha}$

 α

 $\overline{\alpha}$

 $\pmb{\beta}$

 $\pmb{\beta}$

 \overline{B}

 \overline{A}

 γ

 β

sin α

=

 \overline{A}

 \boldsymbol{B}

sin β

=

[Vector Operations](#page-1-0) [Adding Forces in a Plane](#page-10-0) [Equilibrium in a Plane](#page-20-0) [Adding Forces in Space](#page-28-0) [Equilibrium in Space](#page-35-0)

 $\mathcal{C}_{0}^{(n)}$

sin γ

 α

 β

 β

[Vector Operations](#page-1-0) [Adding Forces in a Plane](#page-10-0) [Equilibrium in a Plane](#page-20-0) [Adding Forces in Space](#page-28-0) [Equilibrium in Space](#page-35-0)

Sample Problem 2.1

Two forces **P** and **Q** act on a bolt A . Determine their resultant (magnitude and direction). Use trigonometric method.

OV

Sample Problem 2.2

Two tugboats are pulling a barge. If the resultant of the forces exerted by the tugboats is a 5000-lb force directed along the axis of the barge, determine

(a) the tension in each of the ropes, given that $\alpha = 45^{\circ}$,

(b) the value of α for which the tension in rope 2 is a minimum.

Use trigonometric method.

Rectangular Components of a Force in a Plane

UUUUAA

OΔ

[Vector Operations](#page-1-0) [Adding Forces in a Plane](#page-10-0) [Equilibrium in a Plane](#page-20-0) [Adding Forces in Space](#page-28-0) [Equilibrium in Space](#page-35-0)

When a force is resolved into two components along two perpendicular axes (e.g., x and), the components are called **rectangular components**.

 \mathbf{F}_x , \mathbf{F}_y : Vector Components of F

i, **j**: Unit Vectors along the $+x$ and $+y$ axes, $\|\mathbf{i}\| = \|\mathbf{i}\| = 1$

 F_x , F_y : Scalar Components of **F** (can be positive or negative, depending upon the sense of \mathbf{F}_x and of \mathbf{F}_y)

 $\theta = \tan^{-1}$ F_{y} F_{χ} - When \mathbf{F}_x and \mathbf{F}_y are given, direction and magnitude of \mathbf{F} : $\theta = \tan^{-1} \frac{|f(y)|}{|E|}$, $F = \sqrt{F_x^2 + F_y^2}$ (inverse tangent)

20000000

Concept Application 2.2

[Vector Operations](#page-1-0) [Adding Forces in a Plane](#page-10-0) [Equilibrium in a Plane](#page-20-0) [Adding Forces in Space](#page-28-0) [Equilibrium in Space](#page-35-0)

A man pulls with a force of 300 N on a rope attached to the top of a building. What are the horizontal and vertical components of the force exerted by the rope at point A ?

Stony Brool

[Vector Operations](#page-1-0) [Adding Forces in a Plane](#page-10-0) [Equilibrium in a Plane](#page-20-0) [Adding Forces in Space](#page-28-0) [Equilibrium in Space](#page-35-0)00000000 000770707

(2) Analytic Method

Consider three forces P , Q , and S acting on a particle A *:*

The resultant **R** is obtained by adding algebraically the x and y scalar components of the given forces. When three or more forces are involved, this general method is used.

Four forces act on bolt A as shown. Determine the resultant of the forces on the bolt.

Equilibrium in a Plane

Equilibrium of a Particle

OV

[Vector Operations](#page-1-0) [Adding Forces in a Plane](#page-10-0) [Equilibrium in a Plane](#page-20-0) [Adding Forces in Space](#page-28-0) [Equilibrium in Space](#page-35-0)

When the resultant of all the forces acting on a particle is **zero**, the particle is in **Equilibrium**.

From Newton's First Law of Motion, we can conclude that a particle in equilibrium is either at rest (static equilibrium) or moving in a straight line with constant speed.

[Vector Operations](#page-1-0) [Adding Forces in a Plane](#page-10-0) [Equilibrium in a Plane](#page-20-0) [Adding Forces in Space](#page-28-0) [Equilibrium in Space](#page-35-0)

Free-Body Diagram

A drawing that shows the abject with all the **forces** that act on it is called a **Free-Body Diagram** (**FBD**). Drawing an accurate FBD is a must in the solution of problems in mechanics.

In FBD, you should indicate the magnitudes and directions (angles or dimensions) of known and unknown forces.

 $\mathcal{I}_{\mathcal{I}}$

 l_0

 $Δx$

OV

Free-Body Diagram

Three common types of supports encountered in particle equilibrium problems:

Linearly Elastic Springs:

Smooth Contact:

When an object rests on a smooth surface, the surface will exert a force on the object that is normal to the surface at the point of contact.

Cables and Pulleys:

F

If the cable is unstretchable and its weight is negligible, and pulley is frictionless, the cable is subjected $_T$ to a constant tension T throughout its length.

(forces are concurrent at the center)

OV

 \mathbf{T}_{AC}

 \mathbf{T}_{AB}

 50°

 \mathbf{T}_{AB}

Equilibrium of a Particle

Methods to solve the problems concerning the equilibrium of a particle:

(1) Trigonometric Method:

- It is more convenient when a particle is in equilibrium under only three forces.
- In this method, we use Triangle Rule (or Parallelogram Law) + Sine/Cosine laws.

(2) Analytic Method:

- It is more convenient when a particle is in equilibrium under more than three forces.
- In this method, we use rectangular components of the forces.
- It is a general solution and the most common approach.

Regardless of the method used to solve a planar equilibrium problem, we can determine at most two unknowns.

In a ship-unloading operation, a 3500-lb automobile is supported by a cable. What are the tensions in the rope AC and cable AB ? Use trigonometric method.

Determine the magnitude and direction of the smallest force **that maintains the 30-kg** package shown in equilibrium. Note that the force exerted by the rollers on the package is perpendicular to the incline. Use trigonometric method.

For a new sailboat, a designer wants to determine the drag force that may be expected at a given speed. To do so, she places a model of the proposed hull in a test channel and uses three cables to keep its bow on the centerline of the channel. Dynamometer readings indicate that for a given speed, the tension is 40 lb in cable AB and 60 lb in cable AE . Determine the drag force exerted on the hull and the tension in cable AC .

Adding Forces in Space

Rectangular Components of a Force in Space

OV

We use a Right-Handed Coordinate System.

000770707

$$
\mathbf{F} = \mathbf{F}_y + \mathbf{F}_h
$$
\n
$$
\mathbf{F}_h = \mathbf{F}_x + \mathbf{F}_z
$$
\n
$$
\left(\mathbf{F} = \mathbf{F}_x + \mathbf{F}_y + \mathbf{F}_z = F_x \mathbf{i} + F_y \mathbf{j} + F_z \mathbf{k}\right)
$$

[Vector Operations](#page-1-0) [Adding Forces in a Plane](#page-10-0) [Equilibrium in a Plane](#page-20-0) [Adding Forces in Space](#page-28-0) [Equilibrium in Space](#page-35-0)

i, j, k: Unit Vectors along the $+x$, $+y$, and $+z$ axes. $F_\chi, \, F_\mathrm{y}, \, F_\mathrm{z} \colon$ Scalar Components of $\mathbf F$ (can be positive or negative) \mathbf{F}_x , \mathbf{F}_y , \mathbf{F}_z : Vector Components of **F**.

$$
\text{Magnitude of } \mathbf{F}: \quad F = \sqrt{F_x^2 + F_y^2 + F_z^2}
$$

Direction of **F**: It can be determined by (1) three angles θ_x , θ_y , θ_z called as **Coordinate Direction Angles**, or (**2**) two points on the line of action of the force.

00000000

(1) Coordinate Direction Angles

 θ_x , θ_y , θ_z are the angles of the force **F** with the $+x$, $+y$, $+z$ axes ($0 \le \theta_x$, θ_y , $\theta_z \le 180^\circ$).

 $F_x = F \cos \theta_x$, $F_y = F \cos \theta_y$, $F_z = F \cos \theta_z$

 $\cos \theta_x$, $\cos \theta_y$, $\cos \theta_z$ are called <u>Direction Cosines</u> of **F**.

$$
\mathbf{F} = \mathbf{F}_x + \mathbf{F}_y + \mathbf{F}_z = F_x \mathbf{i} + F_y \mathbf{j} + F_z \mathbf{k}
$$

= $F(\cos \theta_x \mathbf{i} + \cos \theta_y \mathbf{j} + \cos \theta_z \mathbf{k}) = F\lambda$
 $\lambda = \lambda_x \mathbf{i} + \lambda_y \mathbf{j} + \lambda_z \mathbf{k}$

 $\|\mathbf{F}\| = F \|\mathbf{\lambda}\| \rightarrow \|\mathbf{\lambda}\| = 1 \rightarrow \lambda$: Unit Vector along the line of action of F

• **Note**: Since $\|\lambda\| = 1$, θ_x , θ_y , θ_z are not independent: $\cos^2\theta_x + \cos^2\theta_y + \cos^2\theta_z = 1$

(Relationship among direction cosines)

(If only two of the coordinate angles are known, the third angle can be found.)

(2) Force Directed along a Line

The line of action of \bf{F} is determined by the two points M and N.

000770707

Addition of Concurrent Forces

The resultant **R** of two or more forces in space can be determine using **Analytic Method**. **Trigonometric Method** is generally not practical in the case of forces in space.

$$
\mathbf{R} = \Sigma \mathbf{F} = (\Sigma F_x)\mathbf{i} + (\Sigma F_y)\mathbf{j} + (\Sigma F_z)\mathbf{k} = R_x\mathbf{i} + R_y\mathbf{j} + R_z\mathbf{k}
$$

Magnitude:
$$
R = \sqrt{R_x^2 + R_y^2 + R_z^2}
$$

\nRecall the resultant **R** of forces in plane:

\n
$$
\begin{cases}\n\theta_x = \cos^{-1} \frac{R_x}{R} \\
\theta_y = \cos^{-1} \frac{R_y}{R} \\
\theta_z = \cos^{-1} \frac{R_z}{R}\n\end{cases}
$$
\nDirection: $\begin{cases}\n\theta_x = \cos^{-1} \frac{R_y}{R} \\
\theta_y = \tan^{-1} \frac{|R_y|}{|R_x|}, \\
\theta_z = \cos^{-1} \frac{R_z}{R}\n\end{cases}$

\nFunction: $\theta_y = \cos^{-1} \frac{R_y}{R_x}$

A tower guy wire is anchored by means of a bolt at A . The tension in the wire is 2500 N. Determine

- (a) the components F_x , F_y , and F_z of the force acting on the bolt at A,
- (b) the angles θ_x , θ_y , and θ_z defining the direction of the force.

[Vector Operations](#page-1-0) [Adding Forces in a Plane](#page-10-0) [Equilibrium in a Plane](#page-20-0) [Adding Forces in Space](#page-28-0) [Equilibrium in Space](#page-35-0) Coocover Cooc

A wall section of precast concrete is temporarily held in place by the cables shown. If the tension is 840 lb in cable AB and 1200 lb in cable AC , determine the magnitude and direction of the resultant of the forces exerted by cables AB and AC on stake A .

Stony Broc

Equilibrium in Space

Equilibrium of a Particle

[Vector Operations](#page-1-0) [Adding Forces in a Plane](#page-10-0) [Equilibrium in a Plane](#page-20-0) [Adding Forces in Space](#page-28-0) [Equilibrium in Space](#page-35-0)

When the resultant of all the forces acting on a particle is **zero**, the particle is in **Equilibrium**.

 $R = \Sigma F = 0$ (equation of equilibrium) ΣF_x)**i** + (ΣF_y) **j** + (ΣF_z) **k** = **0** \longrightarrow $\Sigma F_x = 0$, $\Sigma F_y = 0$, $\Sigma F_z = 0$ ${\bf F}_3$ The first step in solving three-dimensional equilibrium problems is to draw a **free-body diagram** showing the particle in equilibrium and all of the forces acting on it.

Note that using these equations, we can determine at most three unknowns.

00000000

<u>UUUAAUAUA</u>

A 200-kg cylinder is hung by means of two cables AB and AC that are attached to the top of a vertical wall. A horizontal force P perpendicular to the wall holds the cylinder in the position shown. Determine the magnitude of P and the tension in each cable.

