Ch2: Statics of Particles

Contents:

Vector Operations Adding Forces in a Plane Equilibrium in a Plane Adding Forces in Space Equilibrium in Space

Vector Operations	Adding Forces in a Plane	Equilib
0000000	00000000	0000

quilibrium in a Plane $OOO\nabla\nabla\nabla$

Vector Operations

Scalars and Vectors

 $0000\Delta\Delta$

Equilibrium in a Plane

0000777

A **Scalar** is any positive or negative physical quantity that can be completely specified by its **magnitude** (e.g., time, length, area, volume, speed, mass, density, pressure, temperature, energy, work, or power).

A **Vector** is any physical quantity that requires both a **magnitude** and a **direction** for its complete description (e.g., force, displacement, velocity, acceleration, or momentum).

Adding Forces in a Plane

000000000

Vector Operations

0000000

Multiplication of a Vector by a Scalar

The product $k\mathbf{P}$ of a scalar k and a vector \mathbf{P} is defined as a vector having the same direction as \mathbf{P} (if k is positive) or a direction opposite to that of \mathbf{P} (if k is negative) and a magnitude equal to the product of P and the absolute value of k, i.e., |k|P.

Addition of Two Vectors

 $0000\Delta\Delta$

Adding Forces in Space

By definition, vectors add according to the **Parallelogram Law**.

Equilibrium in a Plane

0000777

Adding Forces in a Plane

 $000\Delta \Delta 0\Delta 0\Delta$

Vector Operations

00000000

Make them **Concurrent** by join the tails.

Equilibrium in Space

 $\nabla \nabla$

Construct a **Parallelogram**. The diagonal that passes through *A* represents the sum of the vectors.

This single equivalent vector is called the **Resultant** of the original vectors.

***** The magnitude of the vector $\mathbf{R} = \mathbf{P} + \mathbf{Q}$ is not, in general, equal to P + Q.

Addition of Two Vectors (Alternative Method)

Adding Forces in Space

Triangle Rule: An alternative method for determining the sum of two vectors.

Equilibrium in a Plane

(half of the parallelogram)

Equilibrium in Space

 \Rightarrow Vector addition is **Commutative**:

$$\mathbf{P} + \mathbf{Q} = \mathbf{Q} + \mathbf{P}$$

Arrange **P** and **Q** in tip-to-tail fashion and then connect the tail of **P** (or **Q**) with the tip of **Q** (or **P**).

Special Case: If the two vectors **P** and **Q** are Collinear (i.e., both have the same line of action): $\mathbf{P} = \mathbf{P} + \mathbf{O}$

$$\mathbf{R} = \mathbf{P} + \mathbf{Q}$$

$$\mathbf{P} \qquad \mathbf{Q}$$

$$R = P + Q$$

Vector Operations

Adding Forces in a Plane

Equilibrium in a Plane

0000222

Adding Forces in a Plane

 $000\Delta \Delta 0\Delta 0\Delta$

Vector Operations

200000000

The triangle rule (or parallelogram law) is applied **repeatedly** to successive pairs of vectors until all of the given vectors are replaced by a single vector.

Adding Forces in Space

P + Q + S = (P + Q) + S

 $0000\Delta\Delta$

Equilibrium in Space

 $\nabla \nabla$

(Coplanar Concurrent Vectors) P = Q A = S A = S P = Q + S (repeated application of the triangle rule) P + Q + S = (P + Q) + S = P + (Q + S)Vector addition is Associative. P = Q + SP + Q + S = (P + Q) + S = P + (Q + S)

Polygon Rule: By arranging the given vectors in tip-to-tail fashion and connecting the tail of the first vector with the tip of the last one.

Subtraction of Vectors

000000

Equilibrium in a Plane

0000777

Adding Forces in Space

Equilibrium in Space

 $\nabla \nabla$

Subtraction is defined as **a special case of addition**. Therefore, the rules of vector addition also apply to vector subtraction:

$$\mathbf{P} - \mathbf{Q} = \mathbf{P} + (-\mathbf{Q})$$

Vector Operations

000000000

Adding Forces in a Plane

000000000

Adding Forces in Space OOOO∇∇ Equilibrium in Space O∇

Resolution of a Vector into Components

Vector **F** can be resolved into an infinite number of possible sets of vectors (called **Components** of **F**), such that the resultant of all the components is **F**.

Sets of **two components** are the most common sets in mechanics (and they form a parallelogram).

For Example,

Four (among infinite) possible two-component sets for a given vector \mathbf{F} : $\mathbf{F} = \mathbf{P} + \mathbf{Q}$

Rectangular Components

Resolution of a Vector into Components (cont.)

We can resolve a vector into **two** <u>unique</u> components by having some information about the components. It is done graphically by drawing the appropriate **parallelogram** or **triangle** that satisfies the given conditions.

<u>Ex. 1</u>: One of the two components (say **P**) of vector **F** is known.

 $\mathbf{F} = \mathbf{P} + \mathbf{Q}$

Ex. 2: Lines of action of the components (say u, v) of vector **F** are known.

Vector Operations	Adding Forces in a Plane
0000000	00000000

Equilibrium in a Plane OOOO∇∇∇ Adding Forces in Space OOOO∇∇ Equilibrium in Space OV

Adding Forces in a Plane

Adding Forces in Space OOOO∇∇

Force on a Particle

A **force** represents the **action** of one body on another. It can be exerted by actual contact, (like a push or a pull) or at a distance (like gravitational or magnetic forces).

Experimental evidence has shown that a force is a vector quantity since it is characterized by its <u>magnitude</u>, its direction, and its point of application, and it adds according to the parallelogram law.

```
Newton (N) [SI], Pound (lb) [USCS]
```

- Fixed Vector (cannot be moved), e.g., forces acting on a particle.
- Sliding Vectors (can be moved along their lines of action), e.g., forces acting on a rigid body.
- Free Vectors (can freely move in space), e.g., couple.

In this chapter, we assume all forces acting on a given body ("particle") act at the same point, i.e., forces are **fixed vectors** and **concurrent**.

Adding Forces in Space OOOO∇∇ Equilibrium in Space

Addition of Concurrent Forces

Two methods to solve the problems concerning the **resultant of forces**:

(1) Trigonometric Method:

- It is more convenient when <u>only two forces</u> are involved.
- In this method, we use Triangle Rule (Parallelogram Law) + Sine/Cosine laws.

(2) Analytic Method:

- It is more convenient when more than two forces are involved.
- In this method, we use <u>rectangular components</u> of the forces.
- It is a general solution and the most common approach.

Amin Fakhari, Spring 2023

(1) Trigonometric Method

000077

Adding Forces in Space

When only two forces are involved, the Triangle Rule (or Parallelogram Law), and Sine/Cosine laws can be used.

 $\frac{A}{\sin\alpha} = \frac{B}{\sin\beta} = \frac{C}{\sin\gamma}$

Law of Cosines: $C^2 = A^2 + B^2 - 2AB \cos \gamma$

Equilibrium in a Plane

0000777

(I) Oblique Triangles:

α

Law of Sines:

Vector Operations

00000000

(II) Parallel lines cut by a transversal:

Equilibrium in Space

 $\nabla \nabla$

В

Adding Forces in a Plane

000000000

Vector Operations Addir 00000000 000

Adding Forces in a Plane ○○○▼▽○▽○▽ Equilibrium in a Plane OOOO∇∇∇ Adding Forces in Space OOOO∇∇ Equilibrium in Space O∇

Sample Problem 2.1

Two forces \mathbf{P} and \mathbf{Q} act on a bolt A. Determine their resultant (magnitude and direction). Use trigonometric method.

Adding Forces in Space OOOO∇∇ Equilibrium in Space

Sample Problem 2.2

Two tugboats are pulling a barge. If the resultant of the forces exerted by the tugboats is a 5000-lb force directed along the axis of the barge, determine

(a) the tension in each of the ropes, given that $\alpha = 45^{\circ}$,

(b) the value of α for which the tension in rope 2 is a minimum.

Use trigonometric method.

Rectangular Components of a Force in a Plane

 $0000\Delta\Delta$

Adding Forces in Space

Equilibrium in a Plane

Equilibrium in Space

 $\nabla \nabla$

When a force is resolved into two components along two <u>perpendicular axes</u> (e.g., x and y), the components are called **rectangular components**.

 \mathbf{F}_{χ} , \mathbf{F}_{γ} : Vector Components of \mathbf{F}

Adding Forces in a Plane

Vector Operations

i, **j**: Unit Vectors along the +x and +y axes, $||\mathbf{i}|| = ||\mathbf{j}|| = 1$

 F_x , F_y : Scalar Components of **F** (can be positive or negative, depending upon the sense of F_x and of F_y)

- When \mathbf{F}_x and \mathbf{F}_y are given, direction and magnitude of \mathbf{F} : $\theta = \tan^{-1} \frac{|F_y|}{|F_x|}$, $F = \sqrt{F_x^2 + F_y^2}$

Concept Application 2.2

000077

Equilibrium in a Plane

0000777

Adding Forces in Space

Equilibrium in Space

 $\nabla \nabla$

A man pulls with a force of 300 N on a rope attached to the top of a building. What are the horizontal and vertical components of the force exerted by the rope at point A?

Adding Forces in a Plane

000000000

Vector Operations

00000000

Stony Broo

Vector Operations 00000000 $000\Delta \Delta 0\Delta 0\Delta$

Adding Forces in a Plane

Equilibrium in a Plane 0000777

Adding Forces in Space $0000\Delta\Delta$

Equilibrium in Space $\nabla \nabla$

(2) Analytic Method

Consider three forces **P**, **Q**, and **S** acting on a particle A:

The resultant **R** is obtained by adding algebraically the x and y scalar components of the given forces. When three or more forces are involved, this general method is used.

Equilibrium in a PlaneAdding Forces in SpaceOOOO∇∇∇OOOO∇∇

Equilibrium in Space

Sample Problem 2.3

Four forces act on bolt A as shown. Determine the resultant of the forces on the bolt.

Vector Operations	Adding Forces in a Plane	Equilibrium in a Plane
0000000	00000000	0000777

Equilibrium in a Plane

Amin Fakhari, Spring 2023

Equilibrium of a Particle

Equilibrium in a Plane

When the resultant of all the forces acting on a particle is zero, the particle is in Equilibrium.

From Newton's First Law of Motion, we can conclude that a particle in equilibrium is either at rest (static equilibrium) or moving in a straight line with constant speed.

Adding Forces in a Plane

 $000\Delta \Delta 0\Delta 0\Delta$

Vector Operations

00000000

Vector Operations 00000000

Adding Forces in a Plane OOO∇∇O∇O∇ Equilibrium in a Plane $\bigcirc \bigcirc \bigcirc \bigcirc \bigtriangledown \bigtriangledown \bigtriangledown \bigtriangledown \bigtriangledown$

Adding Forces in Space OOOO∇∇ Equilibrium in Space O**▽**

Free-Body Diagram

A drawing that shows the abject with all the <u>forces</u> that act on it is called a Free-Body Diagram (FBD). Drawing an accurate FBD is a <u>must</u> in the solution of problems in mechanics.

In FBD, you should indicate the magnitudes and directions (angles or dimensions) of known and unknown forces.

Adding Forces in Space OOOO∇∇ Equilibrium in Space O**▽**

Free-Body Diagram

Three common types of supports encountered in particle equilibrium problems:

Linearly Elastic Springs:

Smooth Contact:

When an object rests on a smooth surface, the surface will exert a force on the object that is normal to the surface at the point of contact.

Cables and Pulleys:

If the cable is unstretchable and its weight is negligible, and pulley is frictionless, the cable is subjected T to a constant tension T throughout its length.

(forces are concurrent at the center)

Adding Forces in Space OOOO∇∇ Equilibrium in Space

 Γ_{AC}

W

 \mathbf{T}_{AB}

50°

 \mathbf{T}_{AB}

Equilibrium of a Particle

Methods to solve the problems concerning the equilibrium of a particle:

(1) Trigonometric Method:

- It is more convenient when a particle is in equilibrium under <u>only three forces</u>.
- In this method, we use Triangle Rule (or Parallelogram Law) + Sine/Cosine laws.

(2) Analytic Method:

- It is more convenient when a particle is in equilibrium under more than three forces.
- In this method, we use rectangular components of the forces.
- It is a general solution and the most common approach.

Adding Forces in Space OOOO∇∇ Equilibrium in Space O∇

Sample Problem 2.4

In a ship-unloading operation, a 3500-lb automobile is supported by a cable. What are the tensions in the rope AC and cable AB? Use trigonometric method.

Adding Forces in Space OOOO∇∇ Equilibrium in Space O∇

Sample Problem 2.5

Determine the magnitude and direction of the <u>smallest</u> force **F** that maintains the 30-kg package shown in equilibrium. Note that the force exerted by the rollers on the package is perpendicular to the incline. Use trigonometric method.

Adding Forces in Space OOOO∇∇ Equilibrium in Space O∇

Sample Problem 2.6

For a new sailboat, a designer wants to determine the drag force that may be expected at a given speed. To do so, she places a model of the proposed hull in a test channel and uses three cables to keep its bow on the centerline of the channel. Dynamometer readings indicate that for a given speed, the tension is 40 lb in cable AB and 60 lb in cable AE. Determine the drag force exerted on the hull and the tension in cable AC.

Vector Operations	Adding Forces in a Plane
0000000	00000000

Adding Forces in Space

 \bigcirc

Adding Forces in Space

We use a Right-Handed Coordinate System.

Adding Forces in a Plane

 $000\Delta \Delta 0\Delta 0\Delta$

Vector Operations

00000000

$$\mathbf{F} = \mathbf{F}_{y} + \mathbf{F}_{h}$$

$$\mathbf{F}_{h} = \mathbf{F}_{x} + \mathbf{F}_{z}$$

$$\mathbf{F} = \mathbf{F}_{x} + \mathbf{F}_{y} + \mathbf{F}_{z} = F_{x}\mathbf{i} + F_{y}\mathbf{j} + F_{z}\mathbf{k}$$

Equilibrium in a Plane

0000777

i, **j**, **k**: Unit Vectors along the +x, +y, and +z axes. F_x , F_y , F_z : Scalar Components of **F** (can be positive or negative) **F**_x, **F**_y, **F**_z : Vector Components of **F**.

Magnitude of **F**:
$$F = \sqrt{F_x^2 + F_y^2 + F_z^2}$$

Equilibrium in Space

 $\nabla \nabla$

Direction of **F**: It can be determined by (**1**) three angles θ_x , θ_y , θ_z called as **Coordinate Direction Angles**, or (**2**) two points on the line of action of the force.

Equilibrium in a Plane

Adding Forces in Space ○●○○▽▽ Equilibrium in Space

(1) Coordinate Direction Angles

 θ_x , θ_y , θ_z are the angles of the force **F** with the +x, +y, +z axes ($0 \le \theta_x$, θ_y , $\theta_z \le 180^\circ$).

$$F_x = F \cos \theta_x$$
, $F_y = F \cos \theta_y$, $F_z = F \cos \theta_z$

 $\cos \theta_x$, $\cos \theta_y$, $\cos \theta_z$ are called <u>Direction Cosines</u> of **F**.

$$\mathbf{F} = \mathbf{F}_{x} + \mathbf{F}_{y} + \mathbf{F}_{z} = F_{x}\mathbf{i} + F_{y}\mathbf{j} + F_{z}\mathbf{k}$$
$$= F\left(\underbrace{\cos\theta_{x}\,\mathbf{i} + \cos\theta_{y}\,\mathbf{j} + \cos\theta_{z}\,\mathbf{k}}_{\boldsymbol{\lambda} = \lambda_{x}\mathbf{i} + \lambda_{y}\mathbf{j} + \lambda_{z}\mathbf{k}}\right) = F\boldsymbol{\lambda}$$

 $\|\mathbf{F}\| = F\|\boldsymbol{\lambda}\| \rightarrow \|\boldsymbol{\lambda}\| = 1 \rightarrow \begin{array}{c} \boldsymbol{\lambda}: \text{ Unit Vector along}\\ \text{the line of action of } \mathbf{F} \end{array}$

• Note: Since $\|\lambda\| = 1$, θ_x , θ_y , θ_z are not independent: $\cos^2 \theta_x + \cos^2 \theta_y + \cos^2 \theta_z = 1$ (Relationship among direction cosines)

 (If only two of the coordinate angles are known, the third angle can be found.) Adding Forces in Space $\bigcirc \bigcirc \bigcirc \bigcirc \bigtriangledown \bigtriangledown \bigtriangledown$

(2) Force Directed along a Line

The line of action of \mathbf{F} is determined by the two points M and N.

Addition of Concurrent Forces

The resultant **R** of two or more forces in space can be determine using **Analytic Method**. **Trigonometric Method** is generally not practical in the case of forces in space.

$$\mathbf{R} = \Sigma \mathbf{F} = (\Sigma F_x)\mathbf{i} + (\Sigma F_y)\mathbf{j} + (\Sigma F_z)\mathbf{k} = R_x\mathbf{i} + R_y\mathbf{j} + R_z\mathbf{k}$$

Magnitude:
$$R = \sqrt{R_x^2 + R_y^2 + R_z^2}$$

Direction:
$$\begin{cases} \theta_x = \cos^{-1} \frac{R_x}{R} \\ \theta_y = \cos^{-1} \frac{R_y}{R} \\ \theta_z = \cos^{-1} \frac{R_z}{R} \end{cases}$$
Recall the resultant **R** of forces in plane:
 $R_y \mathbf{j} = \mathbf{k} = R_x \mathbf{i} + R_y \mathbf{j}$
 $\theta_z = \tan^{-1} \frac{|R_y|}{|R_x|},$
 $R_z = \cos^{-1} \frac{R_z}{R}$

Adding Forces in Space $0000 \nabla \nabla$

Sample Problem 2.7

A tower guy wire is anchored by means of a bolt at A. The tension in the wire is 2500 N. Determine

- (a) the components F_x , F_y , and F_z of the force acting on the bolt at A,
- (b) the angles θ_x , θ_y , and θ_z defining the direction of the force.

Sample Problem 2.8

00007

Equilibrium in a Plane

0000777

Adding Forces in Space

Equilibrium in Space

 $\nabla \nabla$

A wall section of precast concrete is temporarily held in place by the cables shown. If the tension is 840 lb in cable *AB* and 1200 lb in cable *AC*, determine the magnitude and direction of the resultant of the forces exerted by cables *AB* and *AC* on stake *A*.

Adding Forces in a Plane

000000000

Vector Operations

00000000

Stony Broc

Vector Operations	Adding Forces in a Plane	Equilibri
0000000	$\nabla O \nabla \Delta \Delta \Delta \Delta \Delta O \Delta O$	70000

Equilibrium in Space

Equilibrium of a Particle

000077

Adding Forces in Space

Equilibrium in a Plane

0000777

Equilibrium in Space

 $\Box \nabla$

When the resultant of all the forces acting on a particle is **zero**, the particle is in **Equilibrium**.

$$\mathbf{R} = \Sigma \mathbf{F} = \mathbf{0} \quad (\text{equation of equilibrium})$$

$$(\Sigma F_x)\mathbf{i} + (\Sigma F_y)\mathbf{j} + (\Sigma F_z)\mathbf{k} = \mathbf{0} \quad \Rightarrow \quad \Sigma F_x = 0, \quad \Sigma F_y = 0, \quad \Sigma F_z = 0$$
The first step in solving three-dimensional equilibrium problems is to draw a **free-body diagram** showing the particle in equilibrium and all of the forces acting on it.

Note that using these equations, we can determine <u>at most three unknowns</u>.

Adding Forces in a Plane

000000000

Vector Operations

The

00000000

Stony Brook

Sample Problem 2.9

000077

Equilibrium in a Plane

0000777

A 200-kg cylinder is hung by means of two cables AB and AC that are attached to the top of a vertical wall. A horizontal force **P** perpendicular to the wall holds the cylinder in the position shown. Determine the magnitude of **P** and the tension in each cable.

Adding Forces in a Plane

000000000

Vector Operations

00000000