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Internal Loadings

To design a structural member, it is necessary to know the loading acting within the member
in order to be sure the material can resist this loading.

% General internal loadings in two-dimensions:

* Force F is called Normal or Axial Force. It acts perpendicular to the cross section.
* Force Vis called Shear Force. It is tangent to the cross section. Axial or Normal force

* Couple moment M is called Bending Moment. ) .
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% General internal loadings in three-dimensions: components A .
. . I/\k_i_/"‘\ .
* F,, is Normal or Axial Force. | Oy /AxmlorNormal force
* V, and V, are Shear Force components. | AV | ~ Torsional moment
* M, and M,, are Bending Moment components. | R\ T
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Internal loadings can be determined by using the method of sections:

Fo—
1. Draw the FBD and determine the reactions at the supports. cil &
2. Keep all loadings (including couple moments) acting on the B

member in their exact locations. | |

v G Afe)
e For calculating the internal forces, you should not consider the forces

as sliding vectors and couple moments as free vectors. Moreover, you
should not replace distributed loads by equivalent concentrated loads. C,

3. Pass an imaginary section through the member, perpendicular
to its axis at the point where the internal loadings are to be Ty, \% Fp;
determined. M

4. Draw a free-body diagram of the segment that has the least F A
number of loads and unknowns on it, and apply the equations
of equilibrium. A,

Note: If the solution yields a negative scalar, the sense of the quantity is opposite to that shown on the
free-body diagram.
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A Simple Example

By passing an imaginary section a—a perpendicular to the axis of the member through point
B, the member is separated into two segments. The internal loadings (internal force-couple
system) become external on the free-body diagram of each segment:

)

— —

A B
a Pl P2
y Ay M M /
N ﬂ B‘%—» 4—(% B = =
x A Y/ F F |
M, 14 1%

The internalfo.rce-couple sy§tem SMp=0-> M
can be determined by applying the

equations of equilibrium to the XF, =0 = F V
FBD of either segment: 5E,=0 =V

According to Newton’s third law,
these loadings must act in opposite
directions on each segment.

Note: These loadings generally vary from point to point in a member.
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Sample Problem 7.1

In the frame shown, determine the internal forces (a) in member ACF at point J, (b) in
member BCD at point K.

<~—3.6m
@)

A
. A 2400 N
B

——:O E @ F

|=<— 4.8 m—>|
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Beams

Beams are usually long, straight prismatic structural members designed to support loads
applied at various points along them. In most cases, the loads are perpendicular to the axis
of the beam and cause only shear and bending in the beam. Beams are often classified as
to how they are supported.

|
Staticall | | I | [ |
Y A 3 A e |
Determinate Beams ‘
(Unknowns = 3): ! L ! ! L ! ! L .
(a) Simply supported beam (b) Overhanging beam (c) Cantilever beam
Statically | I | | I | | | |
Indeterminate Beams _4A. e <R | - | |
(Unknowns > 3): | | | | | | |
~—L;— L, | | L | | L |
(d) Continuous beam (e) Beam fixed at one end and simply (f) Fixed beam
supported at the other end
. P, P, W2
e A beam can be subjected to concentrated l Wi
c . M
loads (P;, P,, M), distributed loads (wy, w,) A VN LE—— c
or a combination of both types of loads: A ~ B A B
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Sign Convention for Beams

For problems in two dimensions engineers generally use a sign convention to report the
internal loadings IV and M at a given point of a beam:

» The internal shear V is said to be » The internal bending moment M is said to
be positive if it tends to bend the segment on
which it acts in a concave upward manner.

positive if it causes the beam segment
on which it acts to rotate clockwise.

M M
1 - d b
() posiive shear (1) \/ (1) posiive moment ()

- Tll rlﬁzl/ MPositiveInte_rnaI Loadings ) | y
A'IA' b (1) &D / \M(T(u) ﬁlc /Sr-x

Important Note: The sign convention is only for reporting the internal loadings values, and it has
nothing to do with the sign of Vor M in the equations of equilibrium.
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Shear and Moment Diagrams

Shear and bending-moment diagrams represent the variations of I/ and M along the beam’s
axis, x. They are obtained by using the method of sections at different distances x4, x5, x3,...
from one end.

I |

In general, the functions V(x) and M (x) (or their slopes) w
will be discontinuous, at points where a distributed load ARR
suddenly changes or where concentrated forces or
couple moments are applied.

U
Therefore, the regions between 4 shear diagram
these points must be selected to v, ()
obtain V(x) and M(x). V()
L X
a b

Vi(x) 0<x<a Mi(x) 0<x<a

V(ix) =<Vo(x) a<x<b, M(x)=<M,(x) a<x<bh V()
Va(x) b<x<L M;(x) b<x<L 3
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Construction of Shear & Moment Diagrams
(Method of Sections)

P
1. Draw the FBD and determine the reactions at the supports. 3 L) 3
- =L
P
2. Specify separate coordinates x having an origin at the beam’s ol lD -
left end and extending to regions between concentrated forces *! ; : : 3
and/or couple moments, or where the distributed loading is =3 Ry~
continuous. -~ x v
_" M
P
3. Section the beam at each distance x, draw the FBD of AER‘_Q c ) lD
one of the segments (vectors V and M act in their positive M(i} | B
sense, in accordance with the sign convention), and find IV p Ry=75
and M with respect to x at each segment. Dl 1
Al | )M
4. Plot V(x) and M(x). T » i
Ry=3 M'(T A B
P Y PL idr ________ ! X V'! L—x— RH:‘;
2 . 1 |
L e |
? 2 L L
2
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Sample Problem 7.2

Draw the shear and bending-moment diagrams for the beam and loading shown.

20 kN 40 kN

B

A | D
A =

<—2.5m+|<—3 m —»LZ m->-|
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Sample Problem 7.3

Draw the shear and bending-moment diagrams for the beam AB. The distributed load of
40 Ib/in. extends over 12 in. of the beam from A to C, and the 400-Ib load is applied at E.

l l 14() Ib/in.
YyVYY Y

A (@ ®) B
e C D ﬂ_
E
400 Ib
. | ..
12 in. cin 1 in.|f10 in.
32 in.
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Beams: Relations among Load w,
Shear V, and Bending Moment M
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Relations among Load w, Shear /', and
Bending Moment M

A guick method for constructing V and M diagrams is based on differential relations that
exist between the load w, shear I/, and bending moment M. F,

w F,

Y r

Consider the beam subjected to an arbitrary load w = w(x) ﬂ/ﬂl
and a series of concentrated forces (e.g., F;, F5) and couple Al
|

C
moments (e.g., M):

X dx
FBD of a small segment of the beam (dx) chosen at x which is L |<—d—§
not subjected to a concentrated load: > i
w 1
1
Note: Both the shear force and moment acting on the right-hand '
face must be increased by a small, finite amount (dV and dM) in y

M

/)
—_— <

l) M + dM

i C|'v+dv
dx =

Now, we write two equations of equilibrium (i.e., XF, = 0 and y
XM = 0) for the segment. N

order to keep the segment in equilibrium.

X

Amin Fakhari, Spring 2023 MEC260 ¢ Ch7: Internal Forces and Moments P15



Internal Forces in Members Beams Beams: Relations amongw, V, M Cables with Concentrated Loads

Oo0ooVv O000VV Oe000VVV Oo0o0oVv

Relation between Distributed Load w and Shear V

XF, =0 V—wx)dx -V +dV)=0 - dV =-w(x)dx

av
Result 1: — = —w(x
T (x)
» Slope of shear diagram = — Distributed load intensity ISkN oy
m W
Fl 20kN -m
ReSUIt 2' \ ¥ Y Y Y Y VY
Integration between any two points of each segment:
2y 10 kN 25 N
Vz — V]_ = _J W(x)dx VEkND
X1 100
. _ 6
» Change in shear = — (Area under distributed load w(x)) - 1 L Xxcm)
-5.00
Note: These equations are valid only between the points where _10
concentrated forces F are applied. 250
Note: The shear diagram is discontinuous at such points, and it (M has no effect on shear diagram)

jumps toward the direction of F by the magnitude of F.
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Relation between Shear V and Moment M

=~ 0
dx
ZMC/ = 0: (M-l—dM) — M —Vdx + wdx 5 =0 - dM = V(x)dx

Result 1: dM—V
esult 1: I (%)

» Slope of bending-moment diagram = Shear
» The shear is zero at points of a segment where the bending moment is max or min.

15 kN

Result 2: ¢ 10kN/m W
Integration between any two points of each segment: kem bV

X2 |

MZ — M1 = j V(X)dx
X1
» Change in moment = Area under shear diagram L e
. . . 35.0

Note: These equations are valid only between the points where 150, 30.0 250
concentrated couple moments M are applied. 20:0
Note: The bending-moment diagram is discontinuous at such I |
points, and it jumps upward if M is clockwise and downward if M — | —Xx(m)
. . . 2 3 #4 b
is counterclockwise by the magnitude of M.
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Remarks

av
m |f the loading curve w = w(x) is a polynomial of Tx —w(x)
degree n, V = V(x) will be a polynomial of degree n + 1, X d*M —
and M = M(x) will be a polynomial of degree n + 2. am _ dx2

dx

For a segment that w is zero, V is constant, and M is a line (of non-zero slop).
For a segment that w is constant, V is a line (of non-zero slop), and M is a parabola.

® The area A under the shear curve should be considered positive where the shear is
positive and should be negative where the shear is negative.

v M bending-moment diagram
L A+ A
b 1P Fuh A; sheardiagram 1 2
FI
—a— A ——
W I} 1 1 FB
F AS L 1
X
0 | a b a b L o
X
- —F
Fa Fg ‘ ’
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Construction of Shear & Moment Diagrams
(Quick Method)

1. Draw the FBD and determine the reactions at the supports.

2. Divide the beam into segments, between the points where loading changes.

3. Plot V(x) by using the loadings on beam, starting from x = 0. For each segment,
determine the function type (constant, line, parabola,...), values of V at two endpoints of
each segment (and the slop at the endpoints if it is needed). Note that I/(x) jumps toward
the direction of a concentrated force by its magnitude.

4. Plot M (x) by using the V(x), starting from x = 0. For each segment, determine the
function type (constant, line, parabola,...), values of M at two endpoints of each segment
(and the slop at the endpoints if it is needed). Note that M (x) jumps upward if a
concentrated moment is clockwise and downward if it is counterclockwise, by its magnitude.

dv

VCkN) MCkam) — = —w(x)
15 kN dx
10 kN/m 100 35.0
l 20 kN - m : 1 ¢ xem ) 15:0 30.0 d_M _
\ R . 2] ! 20:0 dx
AR T |B -5.00
le 2m —~—Ilm—-—-—-1m-—= 2m —‘ 7 } f } —x(m)
~25.0 = 3 4 &
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Sample Problem 7.4

Draw the shear and bending-moment diagrams for the beam and loading shown.

20 kip@ 12 kipq 1.5 kips/ft

Y

}——L —\—»10 ft—>-|-<— 8 ft ]

Yy

Amin Fakhari, Spring 2023 MEC260 ¢ Ch7: Internal Forces and Moments P20



Internal Forces in Members Beams Beams: Relations amongw, V, M Cables with Concentrated Loads

Oo0ooVv O000VV O0000OVYV Oo0o0oVv

Sample Problem 7.5

Draw the shear and bending-moment diagrams for the beam and loading shown and
determine the location and magnitude of the maximum bending moment.

20 kN/m

EERREER
6 m >!<3m—>|

0
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Sample Problem 7.7

The simple beam AC is loaded by a couple of magnitude T applied at point B. Draw the
shear and bending-moment diagrams for the beam.

B
A o C
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Cables with Concentrated
Loads
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Cables

Cables (and chains) are flexible members capable of withstanding only tension. They are
used in many engineering applications, such as suspension bridges and power transmission
lines, aerial tramways, etc.

[3]

Cables may be divided into two categories, according to their loading:
(1) Cables with Concentrated Loads [1,2]
(2) Cables with Distributed Loads

i. Cable subjected to a distributed load (Parabolic Cables) [3]

ii. Cable subjected to its own weight (Catenary Cable) [4]
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Cables with Concentrated Loads

Consider a cable supporting several concentrated loads. We assume that:
* The cable is flexible (i.e., its resistance to bending is negligible).
* The cable is inextensible (i.e., the cable length remains constant).

* The weight of the cable is negligible compared with the loads. A Given: L, d, x1, X, x3, P1, P; P3
* Each of the concentrated loads lies in a given vertical line. Y I |
pla___spn 1
A
! : s,
Thus, the cable takes the form of several straight-line Tac, Y Y3
segments, each of which can be approximate as a . B "By
two-force member, and is subjected to a constant @ P, ] e
tensile force T directed along the cable. -] Yr, ‘Pz Tess
/ X ‘ 7 C2C3
tension in each segment shape of the cable
Unknowns: 11 e L bee . & !
A ? A ’ B ’ B ’ T 7 T 7 T 7 T 4 4 ’
xr Ly Bxr Byr 1AC1 101Cor 1CoCar 1380 Y1 V20 V3 We need more information, e.g.,
Equilibrium Equations: 10 — cable’s total length S, position or
Two equations at each point 4, Cy, C,, C3, B. slope of a point D, A,/A,, B,/B,, etc.

Amin Fakhari, Spring 2023 MEC260 ¢ Ch7: Internal Forces and Moments P25



Internal Forces in Members Beams Beams: Relations among w, V, M Cables with Concentrated Loads

Oo0ooVv O000VV O0000VVV ooeVv

Cables with Concentrated Loads

If the coordinates x and y of a point D of the cable is given,
we cut the cable though D:

Ffrom | 2Mp =0
entire YF, = 0
cable

From 2, =0

portion {ZMD =0 <
AC{D

e

- Ay, Ay, By, By, c,

T,
'P2 *P; €"
|

X3

We can now find the vertical distance, slope, and tension of any point of the cable by cutting the
cable though that points. AA.

XMc, =0 = v V Y V3 A
SF, =0
SF, =0

similarly
_

} - TC2C3’ 8C2C3 v T61C2/ 861C2 v

Note: The horizontal component of the tension force is the same at any point of the
cable (i.e., T cos @ =-A,). Thus, the tension T is maximum in the portion of cable
that has the largest angle of inclination @ (i.e., adjacent to one of the two supports
of the cable).
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Sample Problem 7.8

The cable AE supports three vertical loads from the points indicated. If point C is 5 ft
below the left support, determine (a) the elevation of points B and D, (b) the maximum
slope and the maximum tension in the cable.

4 kips
12 kips

20 ft—10 ft <15 ft>r<15 ft>
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