## MEC 411: Control System Design and Analysis (Fall 2023)

#### Amin Fakhari, Ph.D.

Department of Mechanical Engineering

Stony Brook University

# Ch1: Introduction to Control Systems

#### Contents:

Introduction

**Control Systems Configurations** 

**Objectives of Control Systems** 

A Motivational Example

| 000 000000 000 0000 | Introduction | Control Systems Configurations | Objectives of Control Systems | A Motivational Example |
|---------------------|--------------|--------------------------------|-------------------------------|------------------------|
|                     | 000          | 000000                         | 000                           | 0000                   |

# Introduction

Stony Brook University Objectives of Control Systems **OOO** 

A Motivational Example 0000



### Manual & Automatic Control

 A system that involve a person controlling a machine is called Manual Control (e.g., driving an automobile)



• A system that involves machines only is called **Automatic Control**.

**Automatic Control** is essential in any field of engineering and science like space-vehicle systems, robotic systems, modern manufacturing systems, and any industrial operations involving control of temperature, pressure, humidity, flow, etc.





A Motivational Example 0000



#### **Block Diagram**

A **Block Diagram** is an intuitive/graphical way of representing a system. It shows us how the systems are <u>interconnected</u> and how the signal flows between them.





**Summing Junction** is algebraic sum of input signals using associated signs.

tony Bro

| Introduction | Control Systems Configurations | Objectives of Control Systems | A Motivational Example |
|--------------|--------------------------------|-------------------------------|------------------------|
| OOO          |                                | OOO                           | OOOO                   |
|              |                                |                               |                        |

# **Control Systems Configurations**



#### **Open-Loop Control System**

Two major configurations of control systems: **Open-Loop** and **Closed-Loop**.

**Open-Loop Control System** is the system in which the output is <u>not</u> fed back for comparison with the reference input. Hence, the output has <u>no</u> effect on the control effort.



[*Ex.* **1**] Washing Machine: Soaking, washing, and rinsing operate on a time basis and the machine does not measure the output signal, i.e., cleanliness of the clothes.

[*Ex.* 2] **Toaster**: Heating operates on a time basis and the toaster does not measure the output signal, i.e., the color of the toast.



### **Closed-Loop Control System**

**Closed-Loop or Feedback Control System** is the system in which the output is measured and fed back, and the difference between the system output and reference input (i.e, error) is used as a means of control. Hence, the output has effect on the control effort.



• The feedback can drive the system toward the desired performance in the presence of unpredictable disturbances.



### **Examples of Closed-Loop Control Systems**

#### **1. Temperature Control System of an Electric Furnace:**

Assume that a controller uses electrical signals to operate valves of a temperature control system. The input position can be converted to a voltage by a potentiometer, a variable resistor, and the output temperature can be converted to a voltage by a thermistor, a device whose electrical resistance changes with temperature.





### **Examples of Closed-Loop Control Systems**

**2. Speed Control System** (James Watt's Centrifugal Governor):

The amount of fuel admitted to the engine is adjusted according to the difference between the desired and the actual engine speeds by using the speed governor.





### **Examples of Closed-Loop Control Systems**

#### 3. Position Control System of an Antenna:

**Purpose** : To have the angle output,  $\theta_o(t)$ , follow the input angle of the potentiometer,  $\theta_i(t)$ .





### **Closed-Loop vs Open-Loop Control Systems**

#### **Open-Loop**:

- The accuracy of the system depends on calibration. Thus, it performs better when the relationship between the input and output is known.
- It is convenient when measuring the output is hard or expensive.
- In the presence of disturbances, the system will not perform the desired task.
- Its construction and maintenance is simple, easy, and inexpensive.
- Its stability is not a major problem.

#### **Closed-Loop**:

- It has the advantage of greater accuracy.
- It is relatively insensitive to external disturbances and internal variations in system parameters.
- It is more complex and expensive than open-loop system.
- Its stability is a major problem because the controller may cause oscillation in the output value.
- The control systems engineer must consider the trade-off between the simplicity and low cost of an open-loop system and the accuracy and higher cost of a closed-loop system.

| Introduction | Control Systems Configurations | <b>Objectives of Control Systems</b> | A Motivational Example |                          |
|--------------|--------------------------------|--------------------------------------|------------------------|--------------------------|
| 000          | 000000                         | 000                                  | 0000                   | Stony Broo<br>University |
|              |                                |                                      |                        |                          |

# **Objectives of Control Systems**



#### **Control Systems Objectives**

Major objectives of Analysis and Design of control systems are:

(for determining a system's performance)

(for creating or changing a system's performance)

- Producing the desired **Transient Response**.

[Ex.] An elevator arrives at a floor with an appropriate speed.



**Objectives of Control Systems** 

A Motivational Example 0000



#### **Control Systems Objectives**





### **Control Systems Objectives**

**Instability** may have two causes:

- 1. The system being controlled may be unstable itself. For example, the Segway vehicle will simply fall over if the control is turned off.
- 2. Addition of feedback to the system may itself drive the system unstable.

#### **Other Objectives:**

- Disturbance rejection
- Robustness
- Sensitivity of system performance to changes in parameters

- ...



| Introduction | Control Systems Configurations | Objectives of Control Systems | A Motivational Example | ~   |
|--------------|--------------------------------|-------------------------------|------------------------|-----|
| 000          | 000000                         | 000                           | 0000                   | U U |
|              |                                |                               |                        |     |

# **A Motivational Example**

ny Broc



#### **Car Cruise Control**

A simplified dynamic model of the car in the presence of disturbance, e.g., wind or incline:



Assume that  $F_p(t) = K_e \theta(t)$  where  $\theta(t)$  is gas-pedal depression and  $K_e$  is a constant.

$$m\frac{dv}{dt} + Bv = K_e\theta(t) + F_d(t)$$

#### **Open-Loop Control**



The response to a step in the command  $\theta(t)$  with v(0) = 0 and in the presence of constant disturbance (i.e.,  $F_d(t) = \overline{F}_d$ ).  $\theta(t) = \begin{cases} \overline{\theta} & t \ge 0 \\ 0 & t < 0 \end{cases}$ 



Amin Fakhari, Fall 2023

MEC411 • Ch1: Introduction to Control Systems

#### Closed-Loop Control: A Proportional (P) Controller

#### Goals:

- Maintain the speed of a car at a desired value  $v_d(t)$  in the presence of external disturbances/forces (such as wind gusts, gravitational forces on an incline, etc.).
- Improve the dynamic response of the car as the driver steps on the gas.

Let's choose a **Proportional (P) controller** (where the control effort is proportional to the error):



error: 
$$e(t) = v_d(t) - v(t)$$
  
control effort:  $\theta(t) = K_c e(t) = K_c (v_d(t) - v(t))$  (the gas pedal is depressed by an  
amount proportional to the error)  
controller gain



#### Closed-Loop Control: A Proportional (P) Controller

 $\frac{m}{B}\frac{dv}{dt} + v = \frac{K_e}{B}\theta(t) + \frac{1}{B}F_d(t) \xrightarrow{K_c(v_d(t) - v(t))}{M} \frac{m}{B + K_cK_e}\frac{dv}{dt} + v = \frac{K_cK_e}{B + K_cK_e}v_d(t) + \frac{1}{B + K_cK_e}F_d(t)$ (closed-loop equation)

The response to a step in the command  $v_d(t)$  with v(0) = 0 and in the presence of constant disturbance (i.e.,  $F_d(t) = \overline{F}_d$ ).

$$\frac{m}{B+K_cK_e}\frac{dv}{dt} + v = \frac{K_cK_e}{B+K_cK_e}v_d + \frac{1}{B+K_cK_e}\overline{F}_d \longrightarrow v(t) = -v'_{ss}e^{-\frac{t}{\tau'}} + v'_{ss}$$
$$\tau' = \frac{m}{B+K_cK_e} = \frac{B\tau}{B+K_cK_e}, \quad v'_{ss} = \frac{K_cK_ev_d}{B+K_cK_e} + \frac{\overline{F}_d}{B+K_cK_e}$$

By increasing the controller gain  $K_c$ ,

- the impact of the disturbance is reduced,
- τ decreases (i.e., the car responds more quickly to changes in the gas pedal),

•  $v_{ss} \rightarrow v_d$ .

