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Laplace Transform

The definition of the unilateral (or one-sided) Laplace Transform is:

LIfF®O]=F(@s) = | f(t)e  tdt
0-
where s = g + jw is a complex variable (with real numbers o and w) and 0~ is a value
just before t = 0 (which is applicable for discontinuous functions like impulse function or

discontinuous initial conditions of differential equations at t = 0).

jw
A
s-plane

Note: The Laplace Transform exists if there exists a real number ¢4 such that:

lim|f(£)e™"[ = 0
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Example

Find the Laplace transform of f(t) = Ae™%t (t = 0).

Answer: F(s) =
s+a
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Inverse Laplace Transform

Finding f(t) from F(s):

L7YF(s)] = LJJHOO F(s)eStds = f(t) > ()
- 277:] o—joo B (t B )

where g, the abscissa of convergence, is a real constant and is chosen larger than the real
parts of all singular points of F(s). Thus, the path of integration is parallel to the jw axis
and is displaced by the amount o from it. This path of integration is to the right of all
singular points.

Evaluating the inversion integral appears complicated. In practice, we frequently use the
Laplace Transform Theorems and Partial-Fraction Expansion Method for transforming
between f(t) and F(s).
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Laplace Transform Pairs

f(t), >0 F(s) Laplace Transform

(impulse) §(t) 1 | /\A

(step) u(t) 1 . | |
S Time Domain Complex Domain
I
¢ n.
Sn+1
gt 1 \_/
e Inverse Laplace Transform
S+a
w :
sin wt - d(t) = oo for0— <t < 0+ A
S“+ w = ( elsewhere 1
S 0+
COoS wt — / o(t)dt = 1 A 8D
S% + w? 70
= |
u(ty =1fort >0 Sfin

=0forr <0
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Laplace Transform Theorems

No. Theorem Name
1. L[k fi(t) + kof5,(0)] = k1F1(S) + k,Fy () Linearity theorem
2. Lle7¥f(t)]=F(s+a) Frequency shift theorem
3. L[f(t—=T)] =e5TF(s) Time shift theorem
4. L[f(at)]=—-F (£> Scaling theorem
a
df (t) B} . -
5. [ 2 | = sF(s)—f(07) Differentiation theorem
d*f (0] _ _ . -
6. L 7| = s?F(s)—sf(07) —f'(07) Differentiation theorem
_ - n
d"f(t
7. L dj;g ) = s"F(s) — Z sk £R=1007) Differentiation theorem
- : k=1
_ F(s) .
8. L f (v)dt| = Integration theorem
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Laplace Transform Theorems

No. Theorem Name

9. LItf®)] =— dFd(SS) Multiplication by time
10.  L[t"f(t)] = (—1)" dr;igls) ,(n=12,..) Multiplication by time
11, lim f@) = lim sF(s) Final value theorem !
12. tlirggf(t) = lim 5 F(s) Initial value theorem 2
13. L7YF (5)F,(s)] = f1(t) = f,(¢) Convolution Integral 3

1 For this theorem to yield correct finite results, all roots of the denominator of F(s) must
have negative real parts, and no more than one can be at the origin.

2 For this theorem to be valid, f(t) must be continuous or have a step discontinuity at
t = 0 (that is, no impulses or their derivatives at t = 0).

3@ * () = fotfl(t — 1) fo(1)dt = f:fl(r)fz(t — 1)dt and f;(t) and f,(t) are 0 for
t <O0.
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Example

Answers:
f(t) =1+ 2sinwt L{f ()} =7 $2 1 205 4+ w2
(s) = s3 + w?s

f@®) =Asin(t—ty)  L{F®O}=? F(s) = Szi ot

(©) = de~%sinwt  L{F(£)} =7 F(s) = ——n
f(t) =Ae ¥ sinw f =1 (s + a)? + w?

1 ~1

F(s) = G 1 3)2 L7HF(s)} =? f(t) =e 3t
F(s) = ! LHF(s)} =? Lo a

S ~s2(s —a) Sy = f)y=—("—at-1)
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Partial-Fraction Expansion

To find the inverse Laplace transform of a complicated function F(s) = N(s)/D(s), we
can convert the function to a sum of simpler terms for which we know the Laplace
transform of each term using the Tables and Theorems.

If the order of N(s) is less than the order of D(s), then a Partial-Fraction Expansion can be
made. If the order of N(s) is greater than or equal to the order of D(s), then first N(s)
must be divided by D (s) successively until the result has a remainder whose numerator is
of order less than its denominator (i.e., F(s) = R(s) + N(s)/D(s)).

s3+2s°+6s5s+7
F(s) = TrsrE » F(s)=s+1+

s2+s+5

Based on roots of D(s) there are three cases:

Case 1: Roots of the Denominator of F(s) Are Real and Distinct
Case 2: Roots of the Denominator of F(s) Are Real and Repeated
Case 3: Roots of the Denominator of F(s) Are Complex or Imaginary
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Case 1: Real and Distinct Roots

F(s) = N(s) = N(s) Note: Order of N(s) is less
D(s) (s+p)(s+p)(s+p)(s+py) than the order of D(s).
K, K, K; K,

K; is constant and

(s+p1) (s+p2) (s +p:) (s +pn) called Residue.

(s+PON(S) N

= prO L = G PG+ PGP0~ G+ o) o

= f)=LYHYF(s)}=KePit+...4+KePit+...4+ K e Pt for t=>0
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Example

2
s+ 1)(s+2)

F(s) = L YF(s)} =7

Answer:

f(t) =2e t—2e7 2 t=>0
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Case 2: Real and Repeated Roots

F(s) = N(s) — N(s) Note: Order of N(s) is less
D(s) (s+p)"(s+py)-(s+p,) than the order of D(s).
K K K K K
— L — + 2 —+ - roo4p_ ot oLy
(s+p)" (s+Pp1) (s+p)  (s+p2) (s + Pn)
Y

(Each multiple root generates additional
terms consisting of denominator factors

of reduced multiplicity)

Ky, K;-41,..., K, can be found using the method explained in Case 1.

1 d""Y(s+p))"F(s
K,,..., K, can be found using: K; = G- {( dgizill) ( )}

1 tn—l
: . . L_l —_— _at —
Note: For finding f(t), we know {—(s n a)”} e (n—1)!
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Example

2
(s +1)(s + 2)?

F(s) = L7YF(s)} =2

Answer:

f(t)=2e t—2te 2t —2e72t t>0
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Case 3: Complex or Imaginary Roots
Method 1

F(s) = NGs) = N(s) Note: Order of N(s) is less
D(s) (s+py)(s?+as+b):-- than the order of D(s).
Ky (Kzs + K3)

=(s+p1)+(52+as+b)+m )

K, can be found using the method explained in Case 1.

K, and K5 can be found by multiplying both sides of equation (*) by D(s) and balancing
coefficients of both sides of equation:

N(s) K (Kzs + K3)
D(s) (s+py)) (s2+as+b)

. = N(s) = K;(s®? 4+ as + b) + (K,s + K3)(s + py) + -

a\? a\?
/52+as+b=<s+z) +b_(§> = (s +0)* + w?,

Note: For finding f(t), we know < - {A(s +0) + Bw
-

> (= Ae %cos wt + Be %'sin wt
(s+0)+w
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Example

3
F = -1 =
Q s(s? +2s+5) LTHF(s)} =2
Answer:
(t)—3 S -t 2t+1' 2t
f =Tz e CcoS > sin t>0
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Case 3: Complex or Imaginary Roots
MethOd 2 (optional)

The techniques described for real roots, i.e., Case 1 and Case 2, can be also used for complex
and imaginary roots.

N(S)_ N(s) K K, K,
" D(s) (s+p)(s2+as+b)- (S+p1)+(5+0+jw)+(s+g_jw)+"'

* K; and K, can be found using the method explained in Case 1, and K3 will be the
complex conjugate of K.

* Using this general method, inverse Laplace transform of a function with Repeated
Complex or Imaginary Roots can be also found using the method explained in Case 2.

- eja)t_l_e—ja)t
2
eja)t _ e—jwt

- 2]

cos wt

Note: For finding f(t), we know <

sin wt
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Example

3
s(s?+ 2s+5)

F(s) = L YF(s)} =?

3 K, K, K,
F(s) = —+ +
(s) s+1+j2 s+1—2

S(SZ+ZS+5): S

K;, K5, and K3 can be found using method explained in Case 1:
K5 is complex conjugate of K;:

3 3 3 3
= — K, = = ——(2 1 = —— — 7
s——1—j2
31 3  2+j1 2—7j1
F(s)==——— — + :
55 20s+1+j2 s+1-—j2
3 3 _ : _ .
f®) = 2 =55 [ +jDe T2 4 (2 - j1)e~ 02
3 3 pJ2t 4 p=J2t pJ2t _ p—j2t 3 3 _, 1 .
)= 2 po-t]g 2 — f(t) =———=e""(cos 2t + 7 sin 2t)
f(©) = " 50° ( > )+ 2( 2] )] 5 5 2t>0
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Example

s3+552+4+9s5+7

-1 —
s+ 1)(s +2) LrG(s)y =7

G(s) =

Answer:

d
g(t) = 8() +25(t) + 2et_e2t t=>0
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Example

s24+2s+3
(s+1)3

Answer:

(1+t2et ¢

A%
o
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Example: Solving an ODE Using Laplace Transform

%+ 2%+ 5x =3, x(0)=0  x(0)=0

Answer:

x(t) = £ ge"tcos 2t — Ee"tsin 2t
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Using MATLAB and Control
System Toolbox
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Laplace and Inverse Laplace Transforms Using
laplace, ilaplace

symsstwAa f(t) = Ae % sinwt L{f(t)} =?
F = laplace(A*exp(-a*t) * sin(w*t)); _ 1 _ B
f =ilaplace(1/(s + 3)"2); F(s) (s + 3)2 LTHF()} =7
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Partial Fraction Expansion/Decomposition Using
residue

[r,p,k] = residue(b,a) finds the residues, poles, and direct term of a Partial Fraction
Expansion of the ratio of two polynomials:

b(s) b,s™+b,_,s™14+...4+bs+b T r T
()z m m-—1 — 1 O= n F e 2 + 1 +k(S)
a(s) aps*+a,_1s"H+ -+ a5+ qg S — Pn S—D, S—p;

where b = [bm ... b1 bO] and a = [an ... al a0] are coefficients of the polynomials, r = [rn ...
r2 rl] are the residues, p = [pn ... p2 p1] are the poles, and k is a polynomial.

[b,a] = residue(r,p,k) converts the partial fraction expansion back to the ratio of two
polynomials and returns the coefficients in b and a.

Example: F(s) = —4s+8  —12 N 8
b= [—4 8], r= [_12, 8]
a=[168]; p =[-4;-2]
[r,p,k] = residue(b,a) k=] -
[b,a] = residue(r,p,k) b=[-48]
a=[16 8]
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