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Nonlinear Systems

A system is nonlinear if the principle of superposition does not apply.

For example, in the dynamic equations of robots usually the nonlinear terms sin , cos , and 
squares of velocities appears.

𝑚1 + 𝑚2 𝓁1
ሷ𝜃1 + 𝑚2𝓁2

ሷ𝜃2cos 𝜃1 − 𝜃2 + 𝑚2𝓁2
ሶ𝜃2
2sin 𝜃1 − 𝜃2 + 𝑔 𝑚1 + 𝑚2 sin 𝜃1 = 0

𝑚2𝓁2
ሷ𝜃2 + 𝑚2𝓁1

ሷ𝜃1cos 𝜃1 − 𝜃2 − 𝑚2𝓁1
ሶ𝜃1
2sin 𝜃1 − 𝜃2 + 𝑚2𝑔sin 𝜃2 = 0

𝓁1

𝓁1

𝑚1

𝑚2

𝜃1

𝜃2

Double-Pendulum:
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Examples of Physical Nonlinearities

An electronic amplifier is linear 
over a specific range but exhibits 
the nonlinearity called saturation 
at high input voltages.

A motor that does not respond 
at very low input voltages due 
to frictional forces exhibits a 
nonlinearity called dead zone.

Gears that do not fit tightly 
exhibit a nonlinearity called 
backlash which the input moves 
over a small range without the 
output responding.

Amplifier Saturation Motor Dead Zone Backlash in Gears

Backlash

• Nonlinearities can be classified in terms of their mathematical properties, as continuous and 
discontinuous. Because discontinuous nonlinearities cannot be locally approximated by linear 
functions, they are also called hard nonlinearities (e.g., backlash, hysteresis, or stiction).

Backlash

𝑉in

𝑉out 𝜃𝑚

𝑒𝑎

𝜃2

𝜃1
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Nonlinear System Behavior: Chaos

• In the steady state, sinusoidal inputs to a stable LTI system generate a sinusoidal outputs 
of the same frequency (but different in amplitude and phase angle from the input). By 
contrast, the output of a nonlinear system may display sinusoidal, periodic, or chaotic 
behaviors.
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Nonlinear System Behavior: Chaos

• For stable linear systems, small differences in initial conditions can only cause small 
differences in output. However, output of strongly nonlinear systems is extremely 
sensitive to initial conditions. 

• Starting the pendulum from a slightly different initial 
condition would result in a vastly different trajectory.

►
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Linearization of Nonlinear 
Systems
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Linearization of Nonlinear Systems

In control engineering, a normal operation of the system may be around an equilibrium 
point or a limited operating range. Therefor, it is possible to approximate the nonlinear 
system by an equivalent linear system within the limited operating range.
• Linear approximations simplify the analysis and design of a system.
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Linear Approximation of Nonlinear Mathematical Models

The linearization procedure is based on (1) the expansion of nonlinear function 𝑓 𝑥  into a 

Taylor Series about the operating point 𝐴 𝑥0, 𝑦0 = 𝑓 𝑥0  and (2) the retention of only 

the linear term.
Note: Since the variables deviate only slightly from the operating condition 𝑥 − 𝑥0 , 
higher-order terms of the Taylor series expansion can be neglected.

𝑓 𝑥 = 𝑓 𝑥0 +
𝑓′ 𝑥0

1!
𝑥 − 𝑥0 +

𝑓′′ 𝑥0

2!
𝑥 − 𝑥0

2 + ⋯

𝑦 = 𝑓 𝑥

𝑓 𝑥 ≈ 𝑓 𝑥0 + 𝑓′ 𝑥0 𝑥 − 𝑥0

(A straight-line relationship)

Expressing this straight line in frame 𝛿𝑥 − 𝛿𝑓 𝑥 :
𝛿𝑥 = 𝑥 − 𝑥0

𝛿𝑓 𝑥 = 𝑓 𝑥 − 𝑓 𝑥0

𝛿𝑓 𝑥 = 𝑓′ 𝑥0 𝛿𝑥
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Example 

𝑓(𝑥) = 5 cos 𝛿𝑥 +
𝜋

2
= −5 sin 𝛿𝑥

𝑥 =
𝜋

2
+ 𝛿𝑥

𝑓 𝑥 ≈ −5𝛿𝑥

Linearize 𝑓(𝑥) = 5 cos 𝑥 about 𝑥 = 𝜋/2.

𝑓 𝑥 ≈ 𝑓 𝑥0 + 𝑓′ 𝑥0 𝑥 − 𝑥0

𝑓 𝑥 ≈ 5 cos
𝜋

2
− 5 sin

𝜋

2
𝑥 −

𝜋

2

𝑓 𝑥 ≈ −5 𝑥 −
𝜋

2

Method 2:

For small deviation about 
𝜋

2
 :

Method 1:
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Example 

Linearize ሷ𝑥 + 2 ሶ𝑥 + cos 𝑥 = 0 for small deviations about 𝑥 = 𝜋/4.
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ሷ𝑥 + 2 ሶ𝑥 −
2

2
𝑥 = −

2

2
−

2

2

𝜋

4

Answer:



State-Space Representation
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Some Definitions

Linear Combination: A linear combination of 𝑛 variables, 𝑥𝑖, is given by

𝑆 = 𝑘1𝑥1 + 𝑘2𝑥2 + ⋯ + 𝑘𝑛𝑥𝑛     ,     𝑘𝑖 = constant,    𝑖 = 1, … , 𝑛

Linear Independence: A set of variables is said to be linearly independent if none of the 
variables can be written as a linear combination of the others.

State Variables: The smallest set of linearly independent system variables (𝑥1, … , 𝑥𝑛) such 
that knowledge of these variables at 𝑡 = 𝑡0 , together with knowledge of the input (𝒖 𝑡 ) 
for 𝑡 ≥ 𝑡0 , completely determines the behavior of the system for any time 𝑡 ≥ 𝑡0.

System Variable: Any variable that responds to an input or initial conditions in a system.

System
𝑟 input 𝑚 output

𝑢1, … , 𝑢𝑟 𝑦1, … , 𝑦𝑚

𝑛 state variables

𝑥1, … , 𝑥𝑛
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State-Space Representation

System

State Vector:

State-space Representation is a mathematical model of a physical system as a set of input 
𝒖 𝑡 ∈ ℝ𝑟, output 𝒚 𝑡 ∈ ℝ𝑚, and state variables 𝒙 𝑡 ∈ ℝ𝑛 related by 𝑛 simultaneous 
first-order differential equations.

The number of states (𝑛) 
is the order of the system.

Note: State variables need not be physically measurable or observable quantities.

State Equation

Output Equation

𝒇 and 𝒈 are 
vector functions.

Note: The choice of state variables of a system is not unique, but the number of 
states is unique. For all invertible 𝑻 ∈ ℝ𝑛×𝑛, ഥ𝒙(𝑡) = 𝐓𝒙(𝑡) can be also the system 
state variables.

𝑥 𝑡

𝑥1 = 𝑥

𝑥2 = ሶ𝑥

ሶ𝒙 𝑡 = 𝒇 𝒙 𝑡 , 𝒖 𝑡 , 𝑡
𝒚 𝑡 = 𝒈 𝒙 𝑡 , 𝒖 𝑡 , 𝑡

𝒖(𝑡) ∈ ℝ𝑟 𝒚(𝑡) ∈ ℝ𝑚

𝒙(𝑡) ∈ ℝ𝑛
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State-Space Representation

ሶ𝒙 𝑡 = 𝒇 𝒙, 𝒖, 𝑡
𝒚 𝑡 = 𝒈 𝒙, 𝒖, 𝑡

ሶ𝒙 𝑡 = 𝑨 𝑡 𝒙 𝑡 + 𝑩 𝑡 𝒖 𝑡
𝒚 𝑡 = 𝑪 𝑡 𝒙 𝑡 + 𝑫 𝑡 𝒖 𝑡

ሶ𝒙 𝑡 = 𝑨𝒙 𝑡 + 𝑩𝒖 𝑡
𝒚 𝑡 = 𝑪𝒙 𝑡 + 𝑫𝒖 𝑡

General Form:
MIMO, Nonlinear, Time 
Variant (General Form )

𝑨: State matrix,          𝑩: Input matrix
𝑪: Output matrix,       𝑫: Feedforward matrix

MIMO, Linear, 
Time Variant

MIMO, Linear, Time 
Invariant

ሶ𝒙 𝑡 = 𝑨𝒙 𝑡 + 𝑩𝑢 𝑡
𝑦 𝑡 = 𝑪𝒙 𝑡 + 𝑫𝑢 𝑡

SISO, Linear, Time Invariant
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State-Space Representation of LTI Systems

• An 𝑛th-order differential equation can be converted to 𝑛 simultaneous first-order 
differential equations.

• There are many ways to do this conversion and obtain state-space representations of 
systems, such as phase-variable form, controllable canonical form, observable canonical 
form, diagonal canonical form, and Jordan canonical form.

Consider a general, 𝑛th-order, linear differential equation with constant coefficients:

𝑑𝑛𝑥

𝑑𝑡𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑥

𝑑𝑡𝑛−1
+ ⋯ + 𝑎0𝑥 = 𝑏0𝑢

A convenient way to choose state variables is to choose 𝑥 𝑡  and its (𝑛 − 1) 
derivatives as the state variables, which are called phase variables.
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State-Space Representation of LTI Systems

𝑥1 = 𝑥 

𝑥2 =
𝑑𝑥

𝑑𝑡
⋮

𝑥𝑛 =
𝑑𝑛−1𝑥

𝑑𝑡𝑛−1

ሶ𝑥1 =
𝑑𝑥

𝑑𝑡

ሶ𝑥2 =
𝑑2𝑥

𝑑𝑡2

⋮

ሶ𝑥𝑛 =
𝑑𝑛𝑥

𝑑𝑡𝑛

Differentiating Substituting

ሶ𝑥1 = 𝑥2

ሶ𝑥2 = 𝑥3

⋮
ሶ𝑥𝑛−1 = 𝑥𝑛

ሶ𝑥𝑛 = −𝑎𝑛−1𝑥𝑛 − ⋯ − 𝑎0𝑥1 + 𝑏0𝑢 

ሶ𝒙 = 𝑨𝒙 + 𝑩𝑢

𝑦 = 𝑪𝒙

,   𝑪 = 1 0 ⋯ 0

Vector-Matrix Form

(Output can be 
the first state)

𝑑𝑛𝑥

𝑑𝑡𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑥

𝑑𝑡𝑛−1
+ ⋯ + 𝑎0𝑥 = 𝑏0𝑢

𝒙 =

𝑥1

𝑥2

⋅
⋅
⋅

𝑥𝑛

 , 𝑨 =

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
0 0 0 ⋯ 1

−𝑎0 −𝑎1 −𝑎2 ⋯ −𝑎𝑛−1

 , 𝑩 =

0
0
⋅
⋅
⋅
0
𝑏0
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Example 

The external force 𝑢 𝑡  is the input to the system, and the 
displacement 𝑥 𝑡  of the mass, measured from the equilibrium 
position in the absence of the external force, is the output. Find 
the state equations.

𝑥 𝑡

Linear Systems Nonlinear Systems

Let’s define:

𝑚 ሷ𝑥 + 𝑏 ሶ𝑥 + 𝑘𝑥 = 𝑢

𝑥1 = 𝑥
𝑥2 = ሶ𝑥

ሶ𝑥1 = 𝑥2

ሶ𝑥2 =
1

𝑚
(−𝑘𝑥 − 𝑏 ሶ𝑥) +

1

𝑚
𝑢

Solution:

ሶ𝑥1 = 𝑥2

ሶ𝑥2 = −
𝑘

𝑚
𝑥1 −

𝑏

𝑚
𝑥2 +

1

𝑚
𝑢

𝑦 = 𝑥 = 𝑥1

ሶ𝑥1

ሶ𝑥2
=

0 1

−
𝑘

𝑚
−

𝑏

𝑚

𝑥1

𝑥2
+

0
1

𝑚

𝑢 𝑦 = 1 0
𝑥1

𝑥2

ሶ𝒙 = 𝑨𝒙 + 𝑩𝑢
𝑦 = 𝑪𝒙
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Example 

Find the state equations. What is 
the output equation if the output 
is 𝑧1 𝑡 ?

𝑧1 𝑡 𝑧2 𝑡

𝑀1 ሷ𝑧1 + 𝐷 ሶ𝑧1 + 𝐾𝑧1 − 𝐾𝑧2 = 0

ሶ𝑥1 = 𝑥2

ሶ𝑥2 = −
𝐾

𝑀1
𝑥1 −

𝐷

𝑀1
𝑥2 +

𝐾

𝑀1
𝑥3

ሶ𝑥3 = 𝑥4

ሶ𝑥4 = +
𝐾

𝑀2
𝑥1 −

𝐾

𝑀2
𝑥3 +

1

𝑀2
𝑓(𝑡)

ሶ𝑥1

ሶ𝑥2

ሶ𝑥3

ሶ𝑥4

=

0 1 0 0
−𝐾/𝑀1 −𝐷/𝑀1 𝐾/𝑀1 0

0 0 0 1
𝐾/𝑀2 0 −𝐾/𝑀2 0

𝑥1

𝑥2

𝑥3

𝑥4

+

0
0
0

1/𝑀2

𝑓(𝑡)

𝑥1 = 𝑧1

𝑥2 = ሶ𝑧1

𝑥3 = 𝑧2

𝑥4 = ሶ𝑧2

𝑦 = 1 0 0 0

𝑥1

𝑥2

𝑥3

𝑥4

𝑀2 ሷ𝑧2 − 𝐾𝑧1 + 𝐾𝑧2 = 𝑓(𝑡)

Solution:
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Converting from SS to a TF

Deriving the transfer function from the state-space equations:

ሶ𝒙 = 𝑨𝒙 + 𝑩𝒖

𝒚 = 𝑪𝒙 + 𝑫𝒖

)𝑠𝑿(𝑠) = 𝑨𝑿(𝑠) + 𝑩𝑼(𝑠

)𝒀(𝑠) = 𝑪𝑿(𝑠) + 𝑫𝑼(𝑠

𝑿(𝑠) = 𝑠𝑰 − 𝑨 −1𝑩𝑼 𝑠

Laplace transform 
assuming zero 

initial conditions

(𝑰 is the identity matrix)

𝒀(𝑠) = 𝑪 𝑠𝑰 − 𝑨 −1𝑩 + 𝑫 𝑼 𝑠

Transfer Function Matrix

Transfer Function for a SISO system which 𝑼 𝑠 = 𝑈 𝑠  and 𝒀 𝑠 = 𝑌(𝑠):

𝐺 𝑠 =
𝑌 𝑠

𝑈 𝑠
= 𝑪 𝑠𝑰 − 𝑨 −1𝑩 + 𝐷
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Example

Obtain the transfer function 𝑌 𝑠 /𝑈 𝑠  from the state-space equations of the system 
shown in the previous example.

Solution:

𝐺 𝑠 =
𝑌 𝑠

𝑈 𝑠
= 𝑪 𝑠𝑰 − 𝑨 −𝟏𝑩 + 𝐷

𝐺 𝑠 =
1

𝑚𝑠2 + 𝑏𝑠 + 𝑘

ሶ𝑥1

ሶ𝑥2
=

0 1

−
𝑘

𝑚
−

𝑏

𝑚

𝑥1

𝑥2
+

0
1

𝑚

𝑢

𝑦 = 1 0
𝑥1

𝑥2
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Converting a TF to SS

Then, convert this 𝑛th-order differential equation to 𝑛 simultaneous first-order differential 
equations.

To convert a transfer function into state-space equations in phase-variable form, first 
convert the transfer function to a differential equation by cross-multiplying and taking the 
inverse Laplace transform, assuming zero initial conditions.

𝑑𝑛𝑦

𝑑𝑡𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑦

𝑑𝑡𝑛−1
+ ⋯ + 𝑎0𝑦 = 𝑏0𝑢

𝑌 𝑠

𝑈 𝑠
=

𝑏0

𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + ⋯ + 𝑎0
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Example

Find the state-space representation in phase-variable form.

ഺ𝑐 + 9 ሷ𝑐 + 26 ሶ𝑐 + 24𝑐 = 24𝑟

𝑥1 = 𝑐
𝑥2 = ሶ𝑐
𝑥3 = ሷ𝑐

𝑠3 + 9𝑠2 + 26𝑠 + 24 𝐶(𝑠) = 24𝑅(𝑠)

ሶ𝑥1

ሶ𝑥2

ሶ𝑥3

=
0 1 0
0 0 1
−24 − 26 − 9

𝑥1

𝑥2

𝑥3

+
0
0

24
𝑟 𝑦 = 1 0 0

𝑥1

𝑥2

𝑥3

ሶ𝑥1 = 𝑥2

ሶ𝑥2 = 𝑥3

ሶ𝑥3 = −24𝑥1 − 26𝑥2 − 9𝑥3 + 24𝑟
𝑦 = 𝑐 = 𝑥1

Solution:
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Converting a TF to SS

If a transfer function has a polynomial in 𝑠 in the numerator, separate the transfer function 
into two cascaded transfer functions; the first is the denominator and the second is just 
the numerator.

1

𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + ⋯ + 𝑎0
𝑏𝑚𝑠𝑚 + 𝑏𝑚−1𝑠𝑚−1 + ⋯ + 𝑏0

𝑋1 𝑠𝑈 𝑠 𝑌 𝑠

• The first transfer function with just the denominator is converted to the phase-variable 
representation in state space.

• The second transfer function with just the numerator yields the output equation.

𝑏𝑚𝑠𝑚 + 𝑏𝑚−1𝑠𝑚−1 + ⋯ + 𝑏0

𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + ⋯ + 𝑎0

𝑈 𝑠 𝑌 𝑠
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Example

Find the state-space representation of 
the transfer function.

Solution:

From previous example:
ሶ𝑥1

ሶ𝑥2

ሶ𝑥3

=
0 1 0
0 0 1
−24 − 26 − 9

𝑥1

𝑥2

𝑥3

+
0
0
1

𝑟

𝑐 = ሷ𝑥1 + 7 ሶ𝑥1 + 2𝑥1

𝐶(𝑠) = 𝑠2 + 7𝑠 + 2 𝑋1(𝑠)

𝑥1 = 𝑥1

ሶ𝑥1 = 𝑥2

ሷ𝑥1 = 𝑥3 𝑦 = 2 7 1

𝑥1

𝑥2

𝑥3

𝑦 = 𝑐(𝑡) = 𝑥3 + 𝑥2 + 2𝑥1
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Using MATLAB and Control 
System Toolbox
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Transfer-Function Representation Using tf, zpk

𝐹1(𝑠) =
3

𝑠 𝑠2 + 2𝑠 + 5

𝐹2(𝑠) =
1

𝑠

𝐹3(𝑠) = 𝑠

Method 1

Method 2

𝐹4(𝑠) =
16

𝑠 𝑠 + 1 2

%% Transfer-Function Representation, Method 1
F1 = tf([3] , [1 2 5 0]); % or
F1 = tf([3] , conv([1 0],[1 2 5]));
F2 = tf([1] , [1 0]);
F3 = tf([1 0] , [1]);
F4 = tf(16, poly([0 -1 -1]));

%% Transfer-Function Representation, Method 2
s = tf('s');
F1 = 3/(s^3 + 2*s^2 + 5*s);
F2 = 1/s;
F3 = s;
F4 = 16/(s*(s+1)^2);

%% Transfer-Function Representation, Method 3
F1 = zpk([],[0 -1+2i -1-2i],[3]);
F2 = zpk([],[0],[1]);
F3 = zpk([0],[],[1]);
F4 = zpk([],[0 -1 -1],[16]);

Method 3
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sys = tf(numerator,denominator)

numerator and denominator are row 
vectors of polynomial coefficients in 
order of descending power.

zero-pole-gain model with zeros and 
poles specified as row vectors of roots 
of numerator and denominator, and 
the scalar value of gain.

sys = zpk(zeros,poles,gain) 



State-Space Representation Using ss and 
Conversions Using tf2ss, ss2tf

ሶ𝒙 =
−4 −1.5
4 0

𝒙 +
2
0

𝑢(𝑡)

𝑦 = 1.5 0.625 𝒙

%% State-Space Representation
A = [-4 -1.5;4 0];
B = [2 0]';
C = [1.5 0.625];
D = 0;
T_ss = ss(A,B,C,D);

% converting SS to TF
T_tf = tf(T_ss);

%% TF to SS, SS to TF
num = [1 7 2];
den = [1 9 26 24];
[A, B, C, D] = tf2ss(num, den);
T1 = ss(A,B,C,D);
T1 = tf(T1);

% For SISO systems
[num,den] = ss2tf(A,B,C,D);
T2 = tf(num,den);

𝑇(𝑠) =
3𝑠 + 5

𝑠2 + 4𝑠 + 6

𝑇1(𝑠) = 𝑇2(𝑠) =
𝑠2 + 7𝑠 + 2

𝑠3 + 9𝑠2 + 26𝑠 + 24
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