Ch4: Automatic Controllers

Contents:

Introduction

PID Controllers

Physical Realization of Controllers/Compensators

Introduction

Automatic Controllers

An **Automatic Controller** compares the actual value of the plant output with the reference input, determines the deviation, and produces a control signal that will reduce the deviation to zero or to a small value with a desired transient response.

Classifications of Common Controllers

Most controllers may be classified according to their **control actions** (u) as:

- **1. On-Off Controller (Two-Position or Binary Controller)**
- **2. Proportional (P) Controller**
- **3. Integral (I) Controller**
- **4. Derivative (D) Controller**
- **5. PD, PI, and PID Controllers**

On-Off Controller

On-Off Controller (**Two-Position** or **Binary** Controller): It has only two possible values (usually on and off) at its output $u(t)$, depending on the input $e(t)$ to the controller.

- This control system is relatively simple and inexpensive and is used very widely.
- Output oscillation between two limits is a typical response characteristic of this control system.

PID Controllers

Proportional (P) Controller

Proportional (P) Controller: Output $u(t)$ is **proportional** to its input $e(t)$.

$$
u(t) = K_P e(t) \longrightarrow U(s) = K_P E(s)
$$

proportional gain

This controller is essentially an **amplifier** with an adjustable gain.

Integral (I) Controller

Integral (I) Controller: Output $u(t)$ is **proportional** to the **integral** of its input $e(t)$.

$$
u(t) = K_I \int_0^t e(\tau) d\tau \longrightarrow U(s) = \frac{K_I}{s} E(s) \longrightarrow \bigotimes_{k=1}^{k(s)} \frac{U(s)}{K_I/s} \longrightarrow U(s)
$$
integral gain

In this controller, the control action $u(t)$ at any instant is the area under the error signal curve up to that instant. Therefore, the control action is based on the **history** of the system error.

Note: The control action $u(t)$ can have a nonzero value when the error signal $e(t)$ is zero, but this is impossible in a Proportional controller. Thus, constant **disturbances** can be canceled with zero error.

Derivative (D) Controller

Derivative (D) Controller: Output $u(t)$ is **proportional** to the **derivative** of its input $e(t)$.

- Derivative control is essentially **anticipatory**, measures the instantaneous error, and predicts the large overshoot ahead of time.
- This controller tends to **increase** the **stability** and **sensitivity** of the system. However, it also tends to **amplify noise**.
- This controller does not affect the steady-state error directly, but it adds damping to the system and by increasing the gains the steady-state may be improved.
- It is always used in combination with Proportional (P) or Proportional-plus-Integral (PI) control action, i.e., PD or PID.

PD, PI, and PID Controllers

PD, PI, and PID Controllers: These controllers are **combinations** of proportional (P), derivative (D), and integral (I) controllers.

For example, PID controller:
\n
$$
u(t) = K_P e(t) + K_I \int e(t) dt + K_D \frac{de(t)}{dt} \longrightarrow \begin{cases} U(s) = \left(K_P + \frac{K_I}{s} + K_D s \right) E(s) \\ \text{or} \\ U(s) = K_P \left(1 + \frac{1}{T_I s} + T_D s \right) E(s) \end{cases}
$$
\n
$$
\xrightarrow{R(s)} \xrightarrow{E(s)} \text{PID} \xrightarrow{U(s)} \begin{cases} G(s) \\ \text{in the equal time} \end{cases} \text{integral time} \xrightarrow{G(s)} \text{derivative time}
$$

- This controller has the advantages of each of the three individual control actions.
- If the system is second order or higher the use of PID controller is required if we wish to have arbitrary transient-response behavior and acceptable steady-state behavior.

Parameters of Step Response of Underdamped Second-Order Systems

The parameters defined for the step input response of underdamped second-order systems:

1. Peak Time T_n : The time required for the response to reach the **first** (or maximum) peak.

 $c\!\left(T_p\right)-c\!\left(\infty\right)$ **2. Maximum Overshoot** M_p : The percentage of the steady-state value that the response overshoots the steady-state value at the peak time T_p .

3. Settling Time T_S : The time required for the response to **reach and stay** within 2% (or 5%) of the steady-state value.

4. Rise Time T_r : The time required for the response to go from 0% to 100% (or 10% to 90% or 5% to 95%) of the steady-state value.

೦೦೦

Physical Realization of Controllers/Compensators

Active-Circuit Realization

Note: This transfer function contains a minus sign. Another circuit can be connected to either the input or the output of the circuit to act as a **sign inverter** as well as a gain adjuster.

Active-Circuit Realization: PID Controllers

Amin Fakhari, Fall 2023 **MEC411 • Ch4: Automatic Controllers** P14

Example

Implement the following PID controller.

$$
G_c(s) = \frac{(s + 55.92)(s + 0.5)}{s}
$$

Answer:

Since there are four unknowns and three equations, we arbitrarily select a practical value for one of the elements, e.g., $C_2 = 0.1$ µF, and find the remaining values.

Active-Circuit Realization: Lag/Lead Compensators

 $R_3C_3 > R_4C_4$

Passive-Circuit Realization: Lag/Lead Compensators

Lag, lead, and lag-lead compensators can also be implemented with passive networks.

