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Introduction

After obtaining a mathematical representation of a system, it is analyzed for its performance, 
i.e., transient response, steady-state response, and stability, to see if these characteristics 
yield the desired behavior.

• In practice, the input signal to a control system is not known ahead of time and is 
random in nature. Hence, in analysis and design of control systems, we must have a 
basis for comparing the performance of various control systems.

• This basis may be set up by specifying particular test input signals (that the system will 
be subjected to most frequently under normal operation) and comparing the responses 
of various systems (with zero initial condition) to these input signals.
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Typical Test Input Signals

The commonly used 
test input signals:
impulse,
step,
ramp,
parabola,
sinusoidal,
white noise.

⇌
⇌

⇌

𝑑

𝑑𝑡

𝑑

𝑑𝑡

𝑑

𝑑𝑡
∫

∫

∫
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Order of a System

• The order of the equivalent differential equation representing the system.

𝑎𝑛

𝑑𝑛𝑐 𝑡

𝑑𝑡𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑐 𝑡

𝑑𝑡𝑛−1
+ ⋯ + 𝑎0𝑐 𝑡 = 𝑏𝑚

𝑑𝑚𝑟 𝑡

𝑑𝑡𝑚
+ 𝑏𝑚−1

𝑑𝑚−1𝑟 𝑡

𝑑𝑡𝑚−1
+ ⋯ + 𝑏0𝑟 𝑡

𝐺 𝑠 =
𝑏𝑚𝑠𝑚 + 𝑏𝑚−1𝑠𝑚−1 + ⋯ + 𝑏0

𝑎𝑛𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + ⋯ + 𝑎0
=

𝑠 + 𝑧1 𝑠 + 𝑧2 ⋯ 𝑠 + 𝑧𝑚

𝑠 + 𝑝1 𝑠 + 𝑝2 ⋯ 𝑠 + 𝑝𝑛

ሶ𝒙 𝑡 = 𝑨𝒙 𝑡 + 𝑩𝒖 𝑡
𝒚 𝑡 = 𝑪𝒙 𝑡 + 𝑫𝒖 𝑡

• The highest power of 𝑠 in the denominator of the transfer function after cancellation of 
common factors in the numerator.

• The number of simultaneous first-order equations required for the state-space 
representation of the system (i.e., the dimension of vector 𝒙 or the number of states).

Order of a system is
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Poles & Zeros of a Transfer Function

Poles of a Transfer Function (𝑝𝑖) are (1) the values of the Laplace transform variable, 𝑠, 
that cause the transfer function to become infinite or (2) any roots of the denominator of 
the transfer function that are common to roots of the numerator (i.e., before cancelation).

Zeros of a Transfer Function (𝑧𝑖) are (1) the values of the Laplace transform variable, 𝑠, 
that cause the transfer function to become zero, or (2) any roots of the numerator of the 
transfer function that are common to roots of the denominator (i.e., before cancelation).

Symbol of pole on the complex 𝑠-plane: 
Symbol of zero on the complex 𝑠-plane: o

𝐺 𝑠 =
𝑏𝑚𝑠𝑚 + 𝑏𝑚−1𝑠𝑚−1 + ⋯ + 𝑏0

𝑎𝑛𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + ⋯ + 𝑎0
=

𝑠 + 𝑧1 𝑠 + 𝑧2 ⋯ 𝑠 + 𝑧𝑚

𝑠 + 𝑝1 𝑠 + 𝑝2 ⋯ 𝑠 + 𝑝𝑛
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Forced & Natural Responses vs
Transient & Steady-State Responses

The total time response 𝑐 𝑡  of a linear system is the sum of two responses:
1) Natural Response (or homogeneous solution) 𝑐𝑛 𝑡  which depends only on the system, not the input.
2) Forced Response (or particular solution) 𝑐𝑓 𝑡  which depends only on the input, not the system.

By considering the response plot, it is inferred that the response 
can consist of two parts, the Transient response (the way it goes 
from the initial state to the final state) and Steady-State response 
(the way it behaves as time approaches infinity).

❖ Natural Response contributes more to the Transient Response and Force Response contributes 
more to the Steady-State Response.

𝑐 𝑡 = 𝑐𝑛 𝑡 + 𝑐𝑓 𝑡

𝑅 𝑠 𝐶 𝑠𝐺 𝑠

𝑐 𝑡𝑟 𝑡 = 𝑐𝑛 𝑡 + 𝑐𝑓 𝑡

(Frequency Domain)

(Time Domain)
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Example: Time Response of a System

Pole: 𝑠 = −5
Zero: 𝑠 = −2

The unit step response of the system:

(Forced response) (Natural response)

𝐶(𝑠) =
(𝑠 + 2)

𝑠(𝑠 + 5)
=

𝐾1

𝑠
+

𝐾2

𝑠 + 5
=

2/5

𝑠
+

3/5

𝑠 + 5

𝑐(𝑡) =
2

5
+

3

5
𝑒−5𝑡

         

 

 

   

   

   

   

 

2

5
3

5
𝑒−5𝑡

𝑐(𝑡) =
2

5
+

3

5
𝑒−5𝑡

𝑐

𝑡
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Important Conclusions

a. Poles of the transfer function determine the form of the natural response (exponential, 
sinusoid, ...),

b. Poles of the input function determine the form of the forced response,
c. Zeros and poles of the input and transfer function contribute to the amplitudes (or 

residues), i.e., 𝐾1 and 𝐾2, of both the forced and natural responses,
d. Non-zero poles on the real axis (−𝛼) generate exponential responses (𝑒−𝛼𝑡). Therefore, 

the farther to the left a pole is on the negative real axis, the faster the exponential 
transient response will decay to zero 
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Example: Evaluating Response Using Poles

Specify the forced and natural parts of the solution.

𝑐 𝑡 = 𝐾1
 Forced 

response 

+ 𝐾2𝑒−2𝑡 + 𝐾3𝑒−4𝑡 + 𝐾4𝑒−5𝑡

Natural 
response

Answer:
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First-Order Systems
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First-Order Systems

Consider a First-Order System (without zeros) with zero initial conditions.

≡

(One pole)

or

[Physical Examples: RC circuit, thermal system]

• Standard Form (used to normalize response):

• General Form:

1

𝑇𝑠 + 1

𝑘

𝑠 + 𝑎
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Unit-Step Response

𝑅 𝑠 = 1/𝑠

Transient Response Specifications:

1. Time Constant 𝑇: The time required for 
the step response to rise to 63% of the 
steady-state value (final value). 

• The initial rate of change (slope) of response is 𝑎 or 1/𝑇.

𝑐 𝑡 = 𝑐𝑓 𝑡 + 𝑐𝑛 𝑡 = 1 − 𝑒−𝑎𝑡

𝐶 𝑠 = 𝑅 𝑠 𝐺 𝑠 =
𝑎

𝑠 𝑠 + 𝑎
=

1

𝑠
−

1

𝑠 + 𝑎

𝑇 = ቚ𝑡
𝑐 𝑡 =0.63𝑐 ∞

=
1

𝑎

𝑇 2𝑇 3𝑇 4𝑇 5𝑇

𝑐 ∞

steady-state value

0.05

0.02
0.05

= 1 − 𝑒−𝑡/𝑇

ቤ
𝑑𝑐 𝑡

𝑑𝑡
𝑡=0

= 𝑎 =
1

𝑇

ቚ𝑐 𝑡
𝑡=1/𝑎

= 1 − 𝑒−1 ≈ 0.63

𝑐 ∞ = 1
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Unit-Step Response

2. Rise Time 𝑇𝑟: The time required for the step response to go from 10% to 90% of the 
steady-state value.

𝑇𝑟 = ቚ𝑡
𝑐 𝑡 =0.9𝑐 ∞

− ቚ𝑡
𝑐 𝑡 =0.1𝑐 ∞

=
− ln 0.1

𝑎
−

− ln 0.9

𝑎
≈

2.30

𝑎
−

0.10

𝑎
=

2.2

𝑎

3. Settling Time 𝑇𝑠: The time required for the step response to reach and stay within 2% 
(or 5%) of the steady-state value.

𝑇𝑠 = ቚ𝑡
𝑐 𝑡 =0.98𝑐 ∞

=
− ln 0.02

𝑎
≈

4

𝑎

Note: The farther to the left the pole (−𝑎) from the 
imaginary axis 𝑗𝜔, the faster the transient response.

𝑇𝑟 =
2.2

𝑎
= 2.2𝑇

𝑇𝑠 =
4

𝑎
= 4𝑇





𝑡

𝑐


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Example

For the given the transfer function. Find the time constant 𝑇, settling time 𝑇𝑠, and rise 
time 𝑇𝑟.

𝐺 𝑠 =
100

𝑠 + 50

Note: 𝑇, 𝑇𝑟, and 𝑇𝑠 are independent of the value of 𝑘 in the general form of a first order 

system 
𝑘

𝑠+𝑎
 .

𝑇 =
1

𝑎
=

1

50
= 0.02s

𝑇𝑠 =
4

𝑎
=

4

50
= 0.08s

𝑇𝑟 =
2.2

𝑎
=

2.2

50
= 0.044s

Answer:
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Example: Determining Transfer Function via 
Testing

Often it is not possible or practical to obtain a system’s transfer function analytically. 
Therefore, the system’s step response can lead to a representation of the system.

The unit-step response of an unknown system is given. Determine its transfer function.

0.72

0.45

0.13Answer:

𝐺(𝑠) =
5.54

𝑠 + 7.7
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Unit-Ramp Response

𝑅 𝑠 = 1/𝑠2

𝐶 𝑠 = 𝑅 𝑠 𝐺 𝑠 =
𝑎

𝑠2 𝑠 + 𝑎

𝑐 𝑡 = 𝑐𝑓 𝑡 + 𝑐𝑛 𝑡 = 𝑡 −
1

𝑎
+

1

𝑎
𝑒−𝑎𝑡

𝑒 𝑡 = 𝑟 𝑡 − 𝑐 𝑡 =
1

𝑎
1 − 𝑒−𝑎𝑡

lim
𝑡→∞

𝑒 𝑡 =
1

𝑎
= 𝑇

Note: The farther to the left the pole (−𝑎) from the imaginary axis 𝑗𝜔, the smaller the 
steady-state error in following the ramp input.

𝑇 = 1/𝑎

=
1

𝑠2
−

Τ1 𝑎

𝑠
+

Τ1 𝑎

𝑠 + 𝑎
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Unit-Impulse Response

𝑅 𝑠 = 1

𝐶 𝑠 = 𝑅 𝑠 𝐺 𝑠 =
𝑎

𝑠 + 𝑎

𝑐 𝑡 = 𝑐𝑓 𝑡 + 𝑐𝑛 𝑡 = 𝑎𝑒−𝑎𝑡

𝑇 = 1/𝑎

An Important Property of LTI Systems:
Comparing the system responses to these three inputs clearly indicates that the response to 
the derivative/integral of an input signal 𝑟 can be obtained by differentiating/integrating 
the response 𝑐 of the system to the original input signal 𝑟. 

𝑇 ሶ𝑥 + 𝑥 = 𝛿 𝑡 ,

𝑥 0− = 0

𝑇 ሶ𝑤 + 𝑤 = 0,

𝑤 0+ = 1/𝑇

Note:

𝑟impulse  ⇌  𝑟step  ⇌  𝑟ramp

∫

𝑑/𝑑𝑡

∫

𝑑/𝑑𝑡
𝑐impulse  ⇌  𝑐step  ⇌  𝑐ramp

∫

𝑑/𝑑𝑡

∫

𝑑/𝑑𝑡

𝑟 → 𝑐
𝑑𝑟/𝑑𝑡 → 𝑑𝑐/𝑑𝑡

∫ 𝑟 → ∫ 𝑐

0
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Second-Order Systems
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Second-Order Systems

• Unlike first-order systems, changes in the parameters (𝑎,𝑏) of a second-order system can 
totally change the form of the response. Therefore, depending on the location of two 
poles of the second-order system, it can exhibit different types of responses: 
Overdamped, Underdamped, Undamped, and Critically Damped.

𝑘

𝑠2 + 𝑎𝑠 + 𝑏

Consider a Second-Order System (without zeros) with zero initial conditions.

[Physical Examples: RLC circuit, Mass-Spring-Damper System, DC Motor]

• Standard Form (used to normalize response):• General Form:
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Unit-Step Response

1. Overdamped Response

When 𝐺 𝑠  has two real poles at 𝜎1 and  𝜎2:

𝑐 𝑡 = 𝑐𝑓 𝑡 + 𝑐𝑛 𝑡 = 1 + 𝐾1𝑒−𝜎1𝑡 + 𝐾2𝑒−𝜎2𝑡

• It is called overdamped due to absorption of a large amount of energy in the system.

𝐶 𝑠 =
1

𝑠
∙

𝑏

𝑠2 + 𝑎𝑠 + 𝑏
=

1

𝑠
∙

𝑏

𝑠 + 𝜎1 𝑠 + 𝜎2

𝐶 𝑠 = 𝑅 𝑠 𝐺 𝑠

=
𝐾0

𝑠
+

𝐾1

𝑠 + 𝜎1
+

𝐾2

𝑠 + 𝜎2

𝜎1𝜎2

1

zero slope at 𝑡 = 0

𝜎1 + 𝜎2 = 𝑎

𝜎1𝜎2 = 𝑏
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Unit-Step Response

2. Underdamped Response

• This is an exponentially damped sinusoidal response.

When 𝐺 𝑠  has two complex poles at −𝜎𝑑 ± 𝑗𝜔𝑑:

−𝑗𝜔𝑑

+𝑗𝜔𝑑

−𝜎𝑑

= 1 + 𝑒−𝜎𝑑𝑡 𝐾1 cos 𝜔𝑑𝑡 + 𝐾2 sin 𝜔𝑑𝑡

= 1 + 𝐾3𝑒−𝜎𝑑𝑡 cos 𝜔𝑑𝑡 − 𝜙

𝐶 𝑠 =
1

𝑠
∙

𝑏

𝑠2 + 𝑎𝑠 + 𝑏
=

𝐾0

𝑠
+

𝐾1 𝑠 + 𝜎𝑑 + 𝐾2𝜔𝑑

𝑠 + 𝜎𝑑
2 + 𝜔𝑑

2

𝐶 𝑠 = 𝑅 𝑠 𝐺 𝑠

𝑐 𝑡 = 𝑐𝑓 𝑡 + 𝑐𝑛 𝑡

Envelope Curve: Exponential decay of 
amplitude generated by real part (−𝜎𝑑)

1 ± 𝐾3𝑒−𝜎𝑑𝑡

Sinusoidal oscillation generated 
by imaginary part (𝜔𝑑)

𝑐 𝑡

𝑡

zero slope at 𝑡 = 0

1

0

𝜎𝑑 = 𝑎/2

𝜔𝑑
2 = 𝑏 − 𝑎/2 2

= 1 + 𝐾3𝑒−𝜎𝑑𝑡 sin 𝜔𝑑𝑡 + ത𝜙

𝐾3 = 𝐾1
2 + 𝐾2

2, 𝜙 = tan−1
𝐾2

𝐾1
, ത𝜙 = tan−1

𝐾1

𝐾2
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Unit-Step Response

3. Undamped Response

• This is a sinusoidal response whose frequency is 𝜔𝑛 (i.e., location of the imaginary poles).

𝐾3 = 𝐾1
2 + 𝐾2

2, 𝜙 = tan−1
𝐾1

𝐾2
, ത𝜙 = tan−1

𝐾2

𝐾1

= 1 + 𝐾3 cos 𝜔𝑛𝑡 − 𝜙 = 1 + 𝐾3 sin 𝜔𝑛𝑡 + ത𝜙

When 𝐺 𝑠  has two imaginary poles at ±𝑗𝜔𝑛: +𝑗𝜔𝑛

−𝑗𝜔𝑛

𝐶 𝑠 =
1

𝑠
∙

𝑏

𝑠2 + 𝑎𝑠 + 𝑏
=

𝐾0

𝑠
+

𝐾1𝑠 + 𝐾2𝜔 𝑛

𝑠2 + 𝜔𝑛
2

𝐶 𝑠 = 𝑅 𝑠 𝐺 𝑠

𝑐 𝑡 = 𝑐𝑓 𝑡 + 𝑐𝑛 𝑡 = 1 + 𝐾1 cos 𝜔𝑛𝑡 + 𝐾2 sin 𝜔𝑛𝑡
1

zero slope at 𝑡 = 0

𝑎 = 0

𝜔𝑛
2 = 𝑏
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Unit-Step Response

4. Critically-Damped Response

When 𝐺 𝑠  has two repeated real poles at 𝜎1:

𝜎1

𝐶 𝑠 =
1

𝑠
∙

𝑏

𝑠2 + 𝑎𝑠 + 𝑏
=

1

𝑠
∙

𝑏

𝑠 + 𝜎1
2

𝐶 𝑠 = 𝑅 𝑠 𝐺 𝑠

𝑐 𝑡 = 𝑐𝑓 𝑡 + 𝑐𝑛 𝑡 = 1 + 𝐾1𝑒−𝜎1𝑡 + 𝐾2𝑡𝑒−𝜎1𝑡

1

zero slope at 𝑡 = 0

2𝜎1 = 𝑎

𝜎1
2 = 𝑏

=
𝐾0

𝑠
+

𝐾1

𝑠 + 𝜎1
+

𝐾2

𝑠 + 𝜎1
2
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Unit-Step Response: Summery

❖ Note: The critically damped case is the division between the overdamped cases and 
the underdamped cases and is the fastest response possible without overshoot.

Example:

𝐹
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A New Definition of Second-Order Systems

• Damping Ratio (𝜁):

Two physically meaningful specifications/parameters used to describe the characteristics 
of the second-order transient response:

• Natural Frequency (𝜔𝑛): It is the frequency of system oscillation without damping.

𝜁 =
Exponential decay frequency

Natural frequency (red/s)

Without damping, the poles 
would be on the 𝑗𝜔-axis

𝑎 = 0𝐺 𝑠 =
𝑏

𝑠2 + 𝑎𝑠 + 𝑏
𝜔𝑛 = 𝑏

𝜁 =
𝜎𝑑

𝜔𝑛
=

𝑎/2

𝜔𝑛
=

𝑎

2 𝑏

𝐺 𝑠 =
𝑏

𝑠2 + 𝑎𝑠 + 𝑏
Poles: −𝜁𝜔𝑛 ± 𝜔𝑛 𝜁2 − 1𝐺 𝑠 =

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2

Therefore, standard form of a second-order system in terms of 𝜁 and 𝜔𝑛 can be written as

𝑏 = 𝜔𝑛
2

𝑎 = 2𝜁𝜔𝑛
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Step Response of Second-Order Systems Using the 
New Definition

The step response can be 
classified based on the 
value of 𝜁:

Poles: −𝜁𝜔𝑛 ± 𝜔𝑛 𝜁2 − 1

𝐺 𝑠 =
𝜔𝑛

2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2

Amin Fakhari, Fall 2023 MEC411 • Ch6: Time Response P27

Introduction 1st-Order Systems 2nd-Order Systems Underdamped 2nd-Order Syst. MATLAB Higher-Order Syst. Syst. w/ Zeros



Example

For the given the transfer function, find 𝜁 and 𝜔𝑛.
𝐺 𝑠 =

360

s2 + 4.2s + 36

𝜔𝑛 = 6,   𝜁 = 0.35Answer:
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Underdamped Second-Order 
Systems
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1

Step Response of Underdamped Second-Order Systems

Underdamped second-order systems (i.e., when 0 < 𝜁 < 1) are common in physical 
problems. Thus, a detailed description of these systems is necessary for both analysis 
and design.

𝐶 𝑠 = 𝑅 𝑠 𝐺 𝑠 =
1

𝑠
∙

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 =

𝐾1

𝑠
+

𝐾2𝑠 + 𝐾3

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2

𝑐 𝑡 = 1 − 𝑒−𝜎𝑑𝑡 cos 𝜔𝑑𝑡 +
𝜁

1 − 𝜁2
 sin 𝜔𝑑𝑡 = 1 −

𝑒−𝜎𝑑𝑡

1 − 𝜁2
cos 𝜔𝑑𝑡 − 𝜙

𝜙 = tan−1 Τ𝜁 1 − 𝜁2

𝜔𝑑 = 𝜔𝑛 1 − 𝜁2

𝜎𝑑 = 𝜁𝜔𝑛
= 1 −

𝑒−𝜎𝑑𝑡

1 − 𝜁2
sin 𝜔𝑑𝑡 + ത𝜙

ത𝜙 = tan−1 ൗ1 − 𝜁2 𝜁 𝑠-plane

cos 𝛽 = 𝜁



(Exponential Damping Frequency or Attenuation)

(Damped Natural Frequency)
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Step Response of Underdamped Second-Order Systems

Pair of envelope curves for the 
unit-step response:

Unit-step response for different 
damping ratio 𝜁 values:
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Parameters of Step Response of Underdamped 
Second-Order Systems

The parameters defined for the step input response of underdamped second-order systems:

1. Peak Time 𝑇𝑝: The time required for the response to reach the first (or maximum) peak.

3. Settling Time 𝑇𝑠: The time 
required for the response to reach 
and stay within 2% (or 5%) of the 
steady-state value.

0.05

steady-state value

𝑀𝑝 =
𝑐 𝑇𝑝 − 𝑐 ∞

𝑐 ∞
× 100

2. Maximum Overshoot 𝑀𝑝: The percentage of the steady-state value that the response 

overshoots the steady-state value at the peak time 𝑇𝑝.

4. Rise Time 𝑇𝑟: The time required for 
the response to go from 0% to 100% 
(or 10% to 90% or 5% to 95%) of the 
steady-state value.
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Calculation of Parameters: 𝑇𝑝

ሶ𝑐 𝑡 =
𝜔𝑛

1 − 𝜁2
𝑒−𝜎𝑑𝑡 sin 𝜔𝑑𝑡 = 0 𝜔𝑑𝑡 = 𝑛𝜋

Each value of 𝑛 yields the time for local maxima or minima. 
Letting 𝑛 = 0 yields 𝑡 = 0. The first peak is found by letting 
𝑛 = 1:

𝑇𝑝 =
𝜋

𝜔𝑑

Peak Time 𝑇𝑝:



𝑇𝑝 = ቚ𝑡
ሶ𝑐 𝑡 =0

 ሶ𝑐 𝑡 =

𝑑 1 − 𝑒−𝜎𝑑𝑡 cos 𝜔𝑑𝑡 +
𝜁

1 − 𝜁2
 sin 𝜔𝑑𝑡

𝑑𝑡
= 0 

𝑐 𝑡

𝑡

1

𝑛 = 1

𝑛 = 0

Amin Fakhari, Fall 2023 MEC411 • Ch6: Time Response P33

Introduction 1st-Order Systems 2nd-Order Systems Underdamped 2nd-Order Syst. MATLAB Higher-Order Syst. Syst. w/ Zeros



Calculation of Parameters: 𝑀𝑝

𝑀𝑝 =
𝑐 𝑇𝑝 − 𝑐 ∞

𝑐 ∞
× 100

Maximum Overshoot 𝑀𝑝:

𝑐 𝑇𝑝 = 𝑐
𝜋

𝜔𝑑
= 1 − 𝑒−𝜎𝑑𝜋/𝜔𝑑 cos 𝜋 +

𝜁

1 − 𝜁2
 sin 𝜋 = 1 + 𝑒

− 𝜁𝜋/ 1−𝜁2

𝑐 ∞ = 1 (For the unit step)

𝑀𝑝 = 𝑒
− 𝜁𝜋/ 1−𝜁2

× 100

𝜁 =
− ln 𝑀𝑝/100

𝜋2 + ln2 𝑀𝑝/100

𝑀𝑝

𝜁

(or)



Amin Fakhari, Fall 2023 MEC411 • Ch6: Time Response P34

Introduction 1st-Order Systems 2nd-Order Systems Underdamped 2nd-Order Syst. MATLAB Higher-Order Syst. Syst. w/ Zeros



Calculation of Parameters: 𝑇𝑠

Settling Time 𝑇𝑠:

• For 2% of the steady-state value:

1 − 1 −
𝑒−𝜎𝑑𝑡

1 − 𝜁2
= 0.02

𝑇𝑠 =
− ln 0.02 1 − 𝜁2

𝜎𝑑

Since for 0 < 𝜁 < 0.9, we have 

3.91 < − ln 0.02 1 − 𝜁2 < 4.74
𝑇𝑠 ≈

4

𝜎𝑑



• Similarly, for 5% of the steady-state value: 𝑇𝑠 ≈
3

𝜎𝑑



We can find 𝑇𝑠 by finding the time it takes for the envelope curve 
to reach 2% or 5% of the steady-state value.

𝑒−𝜎𝑑𝑡

1 − 𝜁2
= 0.02


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Calculation of Parameters: 𝑇𝑟

Rise Time 𝑇𝑟:

𝑐 𝑇𝑟 = 1

cos 𝜔𝑑𝑇𝑟 +
𝜁

1 − 𝜁2
 sin 𝜔𝑑𝑇𝑟 = 0 𝑇𝑟 =

1

 𝜔𝑑
tan−1

1 − 𝜁2

−𝜁
=

1

 𝜔𝑑
tan−1

𝜔𝑑

−𝜎𝑑
=

𝜋 − 𝛽

𝜔𝑑

• For 10% to 90%, a precise analytical relationship cannot be found.

• For 0% to 100%:

 𝑇𝑟 = ቚ𝑡
𝑐 𝑡 =𝑐 ∞

− ቚ𝑡
𝑐 𝑡 =0



𝑠-plane

cos 𝛽 = 𝜁



1 − 𝑒−𝜎𝑑𝑇𝑟 cos 𝜔𝑑𝑇𝑟 +
𝜁

1 − 𝜁2
 sin 𝜔𝑑𝑇𝑟 = 1 

(from above figure)
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Lines of Constant 𝑇𝑠, 𝑇𝑝, and 𝑀𝑝

• Horizontal lines on the 𝑠-plane are lines of constant Peak Time, since 𝑇𝑝 = 𝜋/𝜔𝑑.

• Vertical lines on the 𝑠-plane are lines of constant Settling Time, since 𝑇𝑠 = 4/𝜎𝑑.

𝑠-plane

• Radial lines on the 𝑠-plane are lines of constant 𝜁 and Maximum Overshoot, since 

cos 𝛽 = 𝜁 , 𝑀𝑝 = 𝑒
− 𝜁𝜋/ 1−𝜁2

× 100

𝑇𝑠2 < 𝑇𝑠1, 𝑇𝑝2 < 𝑇𝑝1, 𝑀𝑝1 < 𝑀𝑝2
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Step Responses of Underdamped 2nd-Order Systems as 
Poles Move

As the poles move in a vertical direction upward, 
𝜔𝑑 and 𝑀𝑝 increase, 𝑇𝑝 and 𝑇𝑟 decrease, and 𝑇𝑠 

remains constant.

As the poles move in a horizontal direction to the 
left, 𝑀𝑝 and 𝑇𝑠 decrease (the response damps out 

more rapidly), 𝑇𝑟 increases, 𝜔𝑑 and 𝑇𝑝 remain 

constant.

As the poles move diagonally away from the origin, 
𝜔𝑑 increases, 𝑇𝑟, 𝑇𝑠, and 𝑇𝑝 decrease, and 𝑀𝑝 

remains constant.

𝑇𝑟 = 𝜋 − 𝛽 /𝜔𝑑,  𝑇𝑝 = 𝜋/𝜔𝑑,  𝑇𝑠 = 4/𝜎𝑑,  cos 𝛽 = 𝜁 
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Some Comments

• Except for certain applications where oscillations cannot be tolerated, it is desirable that 
the transient response be sufficiently fast and be sufficiently damped. Thus, for a 
desirable transient response of a second-order system, the damping ratio (𝜁) must be 
between 0.4 and 0.8. Values of 𝜁 < 0.4 yield excessive overshoot and values of 𝜁 > 0.8 
responds slowly.

For example, in this figure, a desired region for 
poles of a 2nd-order system to have fast (𝑇𝑠 < 4/𝜎), 
yet well-damped (𝜁 > 0.4), transient response 
characteristics, is shown.

• To guarantee specific, desired transient response 
characteristics, it is necessary that the poles of the 
system lie in a particular region in the complex plane.
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Impulse Response of Second-Order Systems

Impulse Response of second-order systems can be derived by differentiating the 
corresponding unit-step response, since the unit-impulse function is the time derivative 
of the unit-step function.

𝑐(𝑡) =
𝜔𝑛

1 − 𝜁2
𝑒−𝜁𝜔𝑛𝑡 sin 𝜔𝑛 1 − 𝜁2 𝑡

𝑐(𝑡) = 𝜔𝑛
2𝑡𝑒−𝜔𝑛𝑡

𝑐(𝑡) =
𝜔𝑛

2 𝜁2 − 1
𝑒

− 𝜁− 𝜁2−1 𝜔𝑛𝑡

• 0 ≤ 𝜁 < 1 ∶

• 𝜁 = 1 ∶

• 𝜁 > 1 ∶

ሷ𝑥 + 𝑎 ሶ𝑥 + 𝑏𝑥 = 𝑏𝛿 𝑡 ,

𝑥 0− = 0, ሶ𝑥 0− = 0

ሷ𝑤 + 𝑎 ሶ𝑤 + 𝑏𝑤 = 0,

ሶ𝑤 0+ = 𝑏, 𝑤 0+ = 0

Note:

−
𝜔𝑛

2 𝜁2 − 1
𝑒

− 𝜁+ 𝜁2−1 𝜔𝑛𝑡
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Example

Find the peak time, maximum overshoot, and settling time (to reach 2% of the steady-state 
value).

Answer:

𝑇𝑝 = 0.726 s, 𝑀𝑝 = 16.303, 𝑇𝑠 = 1.6 s
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Example

Design the value of gain 𝐾 for the shown feedback control system so that the system will 
respond to a step input with a 10% overshoot.

𝐾 = 17.9Answer:
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Example

Given the system shown, find 𝐽 and 𝐷 to yield 20% overshoot and a settling time of 2 
seconds for a step input of torque 𝑇 𝑡 .

𝐷 = 1.04 Nms/rad𝐽 = 0.26 kgm2

Answer:
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Using MATLAB and Control 
System Toolbox
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Time Response of Systems Using step and impulse 

num = 4;
den = [1 1 4];
T1 = tf(num,den);

% Unit-Step Response
step(T1)

% Unit-Step Response for a given time range
figure
t_range = 0:0.1:15;
step(T1,t_range)

% or
figure
[y,t] = step(T1);
plot(t,y)

% Time response of multiple systems
T2 = tf(1,[1 2 1]);
T3 = tf(4,[1 4 4]);
T4 = tf(4,[1 1 4]);
figure
step(T2,T3,T4)
% or
figure
step(T2,'r-',T3,'k-.',T4,'b--')

• When t is not explicitly included in 
the step commands, the time vector 
is automatically determined.

For Unit-Impulse Response:
Method 1: Substitute the command "step" with command "impulse".
Method 2: The unit-impulse response of 𝐺 𝑠  is the same as the unit-step response of 𝑠𝐺 𝑠 .

For Unit-Step Response:
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Time Response of Systems Using lsim

For Unit-Ramp Response:
Method 1: The unit-ramp response of 𝐺 𝑠  is the same as the unit-step response of 𝐺 𝑠 /𝑠.
Method 2: Use the general command "lsim".

lsim(sys,r,t)
y = lsim(sys,r,t)

The command "lsim" is used to obtain the response to an 
arbitrary input.

num = 4;
den = [1 1 4];
T1 = tf(num,den);
t = 0:0.1:10;
r = t; % ramp input
y = lsim(T1,r,t);
figure
plot(t,r,'-',t,y,'-.')
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To find step-response characteristics (e.g., 𝑇𝑝, 𝑇𝑠, …) use stepinfo. stepinfo(sys)



Higher-Order Systems
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Dominant Poles

• If a system has more than two poles or has zeros, analytical expressions for 𝑇𝑠, 𝑇𝑝, and 𝑀𝑝 

cannot be found and the transient response of these systems to any given input can be 
obtained by a computer simulation. However,

• In this section, the effect of adding a pole to a second-order system 𝑇 𝑠  is investigated.

𝑇′ 𝑠 =
𝑇 𝑠

𝑠 + 𝑝3
=

𝑘

𝑠2 + 𝑎𝑠 + 𝑏 𝑠 + 𝑝3

o If the system has just two complex dominant poles, it can be 
approximated as a second-order system and all the derived 
formulas for 𝑇𝑠, 𝑇𝑝, and 𝑀𝑝 of the second-order systems can 

be used.
o Transient response of all other higher-order systems can be 

considered using Root Locus techniques (that will be covered 
in the next chapters).

𝜎

𝑗𝜔

𝑠-plane









dominant poles
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System Response with an Additional Pole

Consider the unit-step response of a three-pole system 𝑇′ 𝑠  with two complex dominant 
poles −𝜎𝑑 ± 𝑗𝜔𝑑 and a real pole 𝑝3:

𝐶 𝑠 =
1

s
∙

𝑘

𝑠2 + 𝑎𝑠 + 𝑏 𝑠 + 𝑝3
=

𝐾1

𝑠
+

𝐾2 𝑠 + 𝜎𝑑 + 𝐾3𝜔𝑑

𝑠 + 𝜎𝑑 + 𝜔𝑑
2 +

𝐾4

𝑠 + 𝑝3

𝑐 𝑡 = 𝐾1 + 𝑒−𝜎𝑑𝑡 𝐾2cos 𝜔𝑑𝑡 + 𝐾3sin 𝜔𝑑𝑡 + 𝐾4𝑒−𝑝3𝑡

𝐾4𝑒−𝑝3𝑡

𝐾1 + 𝑒−𝜎𝑑𝑡 𝐾2cos 𝜔𝑑𝑡 + 𝐾3sin 𝜔𝑑𝑡

Comparison of the component parts of 𝑐 𝑡  for 3 cases:

−𝜎𝑑 𝜎

𝑗𝜔

−𝑝3

+𝑗𝜔𝑑

−𝑗𝜔𝑑

𝑠-plane

Case I: 𝑝 is near dominant complex 
dominant poles (i.e., 𝑝3 > 𝜎𝑑).
Case II: 𝑝 is far from dominant complex 
dominant poles (i.e., 𝑝3 ≫ 𝜎𝑑).
Case III: 𝑝 is at infinity (i.e., 𝑝3 = ∞, 
and consequently, 𝐾4 = 0).
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System Response with an Additional Pole

Therefore, if the term 𝐾4𝑒−𝑝3𝑡 decays to an insignificant value at the time of the first 
overshoot, then 𝑇𝑠, 𝑇𝑝, and 𝑀𝑝 will be generated by the underdamped second-order step 

response component and the system can be represented as a pure second-order system.

Note: It can be assumed that if the real pole 𝑝3 is five times farther to the left than the dominant poles 
(i.e., 𝑝3 > 5𝜎𝑑), the system is represented by its dominant second-order pair of poles. 

Note: The magnitude of residue of the non-dominant pole (𝐾4) will also decrease as the pole is moved 
farther into the left of 𝑗𝜔-axis.

Example:

𝑇1(𝑠) =
24.542

𝑠2 + 4𝑠 + 24.542

𝑐1 𝑡 = 1 − 1.09𝑒−2𝑡cos 4.532𝑡 − 23.8∘

𝑐2 𝑡 = 1 − 0.29𝑒−10𝑡 − 1.189𝑒−2𝑡cos 4.532𝑡 − 53.34∘

𝑐3 𝑡 = 1 − 1.14𝑒−3𝑡 + 0.707𝑒−2𝑡cos 4.532𝑡 + 78.63∘

𝑐 𝑡

𝑇2(𝑠) =
245.42

(𝑠 + 10) 𝑠2 + 4𝑠 + 24.542

𝑇3(𝑠) =
73.626

(𝑠 + 3) 𝑠2 + 4𝑠 + 24.542

Amin Fakhari, Fall 2023 MEC411 • Ch6: Time Response P50

Introduction 1st-Order Systems 2nd-Order Systems Underdamped 2nd-Order Syst. MATLAB Higher-Order Syst. Syst. w/ Zeros



Example

Determine the validity of a second-order approximation for each of these two transfer 
functions:

𝐺(𝑠) =
700

(𝑠 + 15) 𝑠2 + 4𝑠 + 100

𝐺(𝑠) =
360

(𝑠 + 4) 𝑠2 + 2𝑠 + 90

a)

b)

Answer:    a) Valid, b) invalid
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Systems with Zeros
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System Response with a Zero

Let 𝐶 𝑠  be the response of a system 𝑇 𝑠 , with a constant in the numerator. If we add a 
zero to the transfer function, i.e., 𝑇′ 𝑠 = 𝑠 + 𝑧 𝑇 𝑠 , the response will consist of two 
parts:

𝐶′ 𝑠 = 𝑠 + 𝑧 𝐶 𝑠 = 𝑠𝐶 𝑠 + 𝑧𝐶 𝑠

(Derivative of the 
original response)

𝑐′ 𝑡 = ሶ𝑐 𝑡 + 𝑧𝑐 𝑡

(A scaled version of 
the original response)

• In this section, the effect of adding a zero to a second-order system 𝑇 𝑠  is investigated.

𝑇′ 𝑠 = 𝑇 𝑠 𝑠 + 𝑧 =
𝑘 𝑠 + 𝑧

𝑠2 + 𝑎𝑠 + 𝑏
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System Response with a Negative Zero

𝑇′ 𝑠 =
𝑘 𝑠 + 𝑧

𝑠2 + 2𝑠 + 9

Let 𝑇′ 𝑠  be a second-order system with a negative real zero 𝑧 (i.e., 𝑧 is placed in the Left 
Half-Plane or LHP). As the 𝑧 moves away from the dominant poles to the left, the derivative 
term ሶ𝑐 𝑡  contributes less to the response 𝑐′ 𝑡  and the response approaches to the form 
of the second-order system and the zero acts as a simple gain factor (i.e., 𝑐′ 𝑡 ≈ 𝑧𝑐 𝑡 ).

𝑠-plane

−𝑧

(Step Response)
• As 𝑧 becomes smaller (closer to the dominant 

poles), the derivative term contributes more to 
the response and maximum overshoot increases. 

𝑇′ 𝑠 =
𝑘 𝑠 + 𝑧

𝑠2 + 𝑎𝑠 + 𝑏

𝑐′ 𝑡 = ሶ𝑐 𝑡 + 𝑧𝑐 𝑡

𝑧 > 0

For step response, 𝑐 𝑡 > 0, ሶ𝑐 𝑡 > 0, 
𝑧𝑐 𝑡 > 0, then 𝑐′ 𝑡 > 0.
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System Response with a Positive Zero
(Minimum-Phase & Nonminimum-Phase Systems)

Let 𝑇′ 𝑠  be a second-order system with a positive real zero 𝑧 (i.e., 𝑧 is placed in the Right 
Half-Plane or RHP). In this case, the step response first begins to turn toward the negative 
direction even though the steady-state value is positive.

❖ If all the poles and zeros of a system lie in the LHP, then the system is called Minimum 
Phase. If a system has at least one pole or zero in the RHP, then the system is called 
Non-Minimum-Phase (NMP) phase.

𝑠-plane

−𝑧𝑇′ 𝑠 =
𝑘 𝑠 + 𝑧

𝑠2 + 𝑎𝑠 + 𝑏

𝑧 < 0

𝑐′ 𝑡 = ሶ𝑐 𝑡 + 𝑧𝑐 𝑡

For step response, 𝑐 𝑡 > 0, ሶ𝑐 𝑡 > 0, 
but since 𝑧 < 0, then 𝑧𝑐 𝑡 < 0.
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Pole-Zero Cancellation

Consider a three-pole system with a zero.

• If the zero at −𝑧 is very close to the pole at −𝑝3 (i.e., 𝑧 ≈ 𝑝3), then the amplitude of the 
exponential decay 𝑒−𝑝3𝑡 in the step-input response is much smaller than the other 
amplitudes and the system can be approximated as a second-order system. Hence, a 
pair of closely located poles and zeros will effectively cancel each other. 

𝐺(𝑠) =
𝑘 𝑠 + 𝑧

𝑠2 + 𝑎𝑠 + 𝑏 𝑠 + 𝑝3

• If the pole term, 𝑠 + 𝑝3 , and the zero term, 𝑠 + 𝑧 , cancel out (i.e., 𝑧 = 𝑝3), the system 
is approximated as a second-order system.

𝐶 𝑠 =
1

𝑠
𝐺 𝑠 =

0.87

𝑠
−

5.3

𝑠 + 5
+

4.4

𝑠 + 6
+

0.033

𝑠 + 4.01
𝑐2 𝑡 = 0.87 − 5.3𝑒−5𝑡 + 4.4𝑒−6𝑡 + 0.033𝑒−4.01𝑡

𝐺(𝑠) =
26.25 𝑠 + 4

𝑠 + 4.01 𝑠 + 5 𝑠 + 6

≈ 0≈ 0
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