Ch7: Stability

Contents:

Stability Definition Stability Determination Using MATLAB and Control System Toolbox Routh-Hurwitz Criterion Special Cases

Stability Definition

Introduction

Stability is the most important system specification. **Instability** may have two causes:

- 1. The system being controlled may be unstable itself (Ex.: Segway).
- 2. Addition of feedback to the system may itself drive the system unstable.

The total time response $c(t)$ of a linear system is the sum of two responses:

- **Natural Response** (or **homogeneous** solution) $c_n(t)$ which depends only on the system, not the input.
- **2) Forced Response** (or **particular** solution) $c_f(t)$ which depends only on the input, not the system.

 $R(s)$ $G(s)$ $C(s)$ (Frequency Domain) Input Output **System** $r(t)$ $c(t) = c_n(t) + c_f(t)$ (Time Domain)

• Stability can be defined based on either the natural response $c_n(t)$ or the total response $c(t)$.

Definition of Stability Based on Natural Response

• An LTI system is **Stable** if the **natural response** approaches zero as time approaches infinity.

$$
t \to \infty \quad \Rightarrow \quad c_n(t) \to 0
$$

• An LTI system is **Unstable** if the **natural response** approaches infinity as time approaches infinity.

$$
t \to \infty \quad \Rightarrow \quad c_n(t) \to \infty
$$

• An LTI system is **Marginally Stable** if the **natural response** remains constant or oscillates as time approaches infinity.

❖ These definitions rely on the **natural response**. However, sometimes, it is difficult to separate the natural response from the forced response by looking at the **total response**.

 $c_{n-1}(t)$

 $c_n(t)$

Definition of Stability Based on Total Response (BIBO Stability)

• A system is **Stable** if every bounded input yields a bounded output.

This definition is also called the **B**ounded-**I**nput **B**ounded-**O**utput (**BIBO**) **Stability**.

Note: If the **input is unbounded**, the **total response will be unbounded,** and it cannot be concluded whether the system is **stable or unstable**. Because it is not clear that the forced response is unbounded, or the natural response is unbounded.

Stability Determination

Stability Determination Using Poles: Stable System

(1) If the closed-loop transfer function has **poles only in the left half-plane** (LHP), the system is **stable**. $j\omega_{\rm A}$

$$
Re^{-\sigma t}
$$
\n
$$
T(s) = \frac{N(s)}{D(s)}
$$
\n
$$
Ke^{-\sigma_d t} \cos(\omega_d t - \phi)
$$
\n
$$
\uparrow
$$

The natural response $c_n(t)$ decay to **zero** as time approaches **infinity**.

Example:

Stability Determination Using Poles: Marginally Stable System

(2) If the closed-loop transfer function has **poles of multiplicity 1 only on the imaginary axis** and (possible) **poles in the left half-plane** (LHP), the system is **marginally stable**.

The natural response $c_n(t)$ neither increase nor decrease in amplitude.

Stability Determination Using Poles: Unstable System

(3) If the closed-loop transfer function has **at least one pole in the right half-plane** (RHP) and/or **poles of multiplicity greater than 1 on the imaginary axis**, the system is **unstable**.

The natural response $c_n(t)$ approach **infinity** as time approaches **infinity**.

Stability Determination Using Poles: Summery

A sketch of pole locations and corresponding natural responses:

Stony Brool

How to Determine If a System Is Stable?

It is not always simple to determine if a closed-loop system is stable.

For Example:

Although the poles of the forward transfer function $G(s)$ can be found easily, finding the **poles** of the equivalent **closed-loop system** $T(s)$ needs complicated calculations.

Stony Broc

How to Determine If a System Is Stable?

$$
T(s) = \frac{N(s)}{D(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_0} \qquad C(s)
$$

(a) If all signs of the coefficients of $D(s)$ are not the same, the system is **unstable**.

$$
D(s) = s^3 + 3s^2 - 7s + 4
$$

(b) If some **powers of** s in $D(s)$ are missing, the system is either **unstable** or **marginally stable**. $D(s) = s^3 + 3s^2 + 4$

missing power:

• If all coefficients of $D(s)$ are **positive** and not missing (these are the necessary but not sufficient condition for stability), a computer can be used to calculate the root locations of $D(s)$.

Using MATLAB and Control System Toolbox

Stability Determination Using roots **&** pole

MATLAB can solve for the poles of a transfer function to determine stability.

If the denominator $D(s)$ of a closed-loop transfer function is given, we can use command roots and if the transfer function $T(s)$ is given (or can be found), we can use command pole.

roots([1 28 284 1232 1930 20]) | $\qquad \qquad$ G = tf(10*poly([-2]), poly([0 -4 -6 -8 -10])); % or % G = $zpk(-2,[0 - 4 - 6 - 8 - 10],10)$; $T = feedback(G, 1);$ pole(T)

Routh-Hurwitz Criterion

Routh-Hurwitz Criterion

Routh-Hurwitz Criterion can determine the **number** of closed-loop system poles that are in the left half-plane (LHP), in the right half-plane (RHP), and on the $j\omega$ -axis without having to solve for the roots of $D(s)$ (notice it determines how many, not where).

• Although modern calculators can calculate the exact location of system poles, the power of the Routh-Hurwitz criterion lies in **design** rather than analysis.

For example, Routh-Hurwitz Criterion can yield a closed-form expression for the range of the unknown parameter K to yield stability.

$$
\frac{R(s) + \sum_{s(s+7)(s+11)} K}{T(s) = \frac{K}{s^3 + 18s^2 + 77s + K}}
$$

Generating a Routh Table

The method has two steps: (1) **Generating** a **Routh Table**, (2) **Interpreting** the **Routh Table**.

• First create the Routh Table by labeling the rows with powers of s from the highest power of the **denominator** of the closed-loop transfer function to s^0 .

Generating a Routh Table

• Each other element is a **negative determinant** of elements in the previous two rows **divided** by the element in the first column directly above the calculated row. The lefthand column of the determinant is always the first column of the previous two rows, and the right-hand column is the elements of the column above and to the right.

Note:

For convenience, any row of the Routh Table can be **multiplied/divided** by a **positive** constant without changing the values of the rows below.

Interpreting the Routh Table

Routh-Hurwitz Criterion declares that the **number of closed-loop system poles** that are in the **right half-plane** (RHP) is equal to the number of **sign changes** in the first column.

Thus, a system is **stable** if there are **no sign changes** in the first column of the Routh table.

Make the Routh table for the system and consider its stability.

Answer: The system is unstable since two poles exist in the right half-plane.

Make the Routh table for the closed-loop system and consider its stability.

$$
T(s) = \frac{10}{s^4 + 2s^3 + 3s^2 + 4s + 5}
$$

Answer: The system is unstable since two poles exist in the right half-plane.

Relative Stability Analysis

In designing a control system, it is necessary that the system has adequate **Relative Stability**. Relative stability is a measure of how close a system is to instability (or a measure of how close the poles of a system are to the $j\omega$ -axis).

For examining relative stability, shift the $j\omega$ -axis by substituting $s = \hat{s} - a$ into the denominator polynomial $D(s)$ of the closed-loop system and writing the polynomial in terms of \hat{s} .

Then, apply Routh-Hurwitz Criterion to the new polynomial $D(\hat{s})$. The number of changes of sign in the first column of the Routh Table is equal to the number of roots of the original polynomial $D(s)$ that are located to the right of the vertical line $s = -a$.

Special Cases

Stony Brook
University

Special Case 1: Zero Only in the First Column (Method 1)

If the first element of a row is zero, division by zero would be required to form the next row. To avoid this, two methods can be used.

Method 1:

In this method, the zero term is replaced by a **very small positive number** ϵ and the rest of the elements in the table are computed in terms of ϵ . Then, the signs of the elements in the first column can be determined.

 $_{\rm c}$ ⁵

 $\mathbf{1}$

 \mathcal{L}

 \leq

Example:

$$
T(s) = \frac{10}{s^5 + 2s^4 + 3s^3 + 6s^2 + 5s + 3}
$$
\n
$$
s^4
$$
\n
$$
s^2
$$
\n
$$
s^3
$$
\n
$$
s^2
$$
\n

Special Case 1: Zero Only in the First Column (Method 2)

Method 2:

In this method, the original polynomial $D(s)$ is replaced by a polynomial $D(\hat{s})$ that has the reciprocal roots of the original polynomial $D(s)$, then, the Routh Table for the new polynomial $D(\hat{s})$ will possibly not have a zero in the first column.

Note: Taking the reciprocal of a root value does not move it to another half plane.

$$
D(s) = s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0 = 0 \xrightarrow{s = 1/\hat{s}} { \left(\frac{1}{\hat{s}}\right)^n \left[1 + a_{n-1}\hat{s} + \dots + a_1\hat{s}^{n-1} + a_0\hat{s}^n\right] = 0}
$$

Thus, the polynomial with reciprocal roots is a polynomial with the coefficients written in reverse order.

Example:

$$
T(s) = \frac{10}{s^5 + 2s^4 + 3s^3 + 6s^2 + 5s + 3}
$$

$$
D(\hat{s}) = 3\hat{s}^5 + 5\hat{s}^4 + 6\hat{s}^3 + 3\hat{s}^2 + 2\hat{s} + 1
$$

Unstable: Two poles in the RHP

$$
\begin{array}{c}\n\star \\
\hline\n\end{array}
$$

 Stony Brook
 University

Special Case 2: Entire Row is Zero

If all the coefficients in any derived row are zero, the evaluation of the rest of the array can be continued by forming an **auxiliary polynomial** $P(s)$ with the coefficients of the **last non-zero row** (starting with the power of *s* in the label column and continue by skipping every other power of s) and by using the coefficients of the **derivative** of this auxiliary polynomial $P(s)$ in the next row.

Example:

() = 10 ⁵ + 7 ⁴ + 6 ³ + 42 ² + 8 + 56 → → → → → → → → → () = ⁴ + 6 ² + 8 () ⁼ 4 ³ + 12 + 0 Dividing the row by a positive constant only for simplification.

Special Case 2: Important Comments

- An entire row of zeros will appear only in an **odd-numbered** row.
- In the previous example: $s^5 + 7s^4 + 6s^3 + 42s^2 + 8s + 56 = (s^4 + 6s^2 + 8)(s + 7)$ • An entire row of zeros will appear when an **Even Polynomial** is **a factor of the original polynomial** (an even polynomial has only **even powers** of s). This even polynomial is actually the **Auxiliary Polynomial** $P(s)$. Thus, $P(s)$ is always a factor of the denominator $D(s)$, i.e., $D(s) = P(s)Q(s)$.
- Even polynomials only have roots that are **symmetrical about the origin**, i.e., each or combination of (*A*) symmetrical and real, (*B*) symmetrical and imaginary, or (*C*) quadrantal.
- Since imaginary roots are symmetric about the origin, if we do not have a row of zeros, we cannot have imaginary roots (on $j\omega$ -axis). If we have a row of zeros, we may have imaginary roots (on $j\omega$ -axis).

Special Case 2: Important Comments (count.)

- The number of sign changes in the Routh table from the auxiliary (or even) polynomial's row down to the end equals the number of RHP roots of the auxiliary polynomial $P(s)$. Having accounted for the roots in the RHP and LHP, the remaining roots must be on the $j\omega$ -axis. If there is no sign change, all the roots of $P(s)$ will be on the $j\omega$ -axis.
- The number of sign changes in the Routh table from the beginning of the table to the row containing the auxiliary polynomial $P(s)$ equals the number of RHP roots of the **other factor** $Q(s)$ of the original polynomial $D(s)$. $D(s) = P(s)Q(s)$

(Roost of $s^4 + 6s$

 \Rightarrow This system is **marginally stable**.

Find the number of poles in the left half-plane, the right half-plane, and on the $j\omega$ -axis for the system.

Answer: The system has two poles in the right half-plane, two poles in the left half-plane, and no pole on the $j\omega$ -axis. Thus, the system is unstable.

Find the number of poles in the left half-plane, the right half-plane, and on the $j\omega$ -axis for the system

Answer: The system has two poles in the right half-plane, three poles in the left half-plane, and no pole on the $j\omega$ -axis. Thus, the system is unstable.

Find the range of gain K for the system that will cause the system to be stable, unstable, and marginally stable. Assume $K > 0$.

Find the frequency of oscillation for the marginally stable case.

Answer: If $K < 1386$, the system is stable; if $K > 1386$, the system is unstable; if $K = 1386$, the system is marginally stable, and the frequency of oscillation is $\sqrt{77}$.

For the transfer function, tell how many poles are in the right half-plane, in the left half-plane, and on the $j\omega$ -axis.

$$
T(s) = \frac{20}{s^8 + s^7 + 12s^6 + 22s^5 + 39s^4 + 59s^3 + 48s^2 + 38s + 20}
$$

Answer: The system has two poles in the right half-plane, two poles in the left half-plane, and four poles on the $j\omega$ -axis. Thus, the system is unstable.

Find the number of poles in the left half-plane, the right half-plane, and on the $j\omega$ -axis for the system. Draw conclusions about the stability of the closed-loop system.

Answer: The system has two poles in the right half-plane, four poles in the left half-plane, and two poles on the $j\omega$ -axis. Thus, the system is unstable.