
Ch6: Arduino Programming
– Part 1

Contents:

Arduino Boards

C/C++ Language Overview

Arduino Programming

Digital I/O

Amin Fakhari, Fall 2024 P1

Arduino Boards

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P2

What Is an Arduino?

The Arduino is a microcontroller development platform paired with an intuitive
programming language that you develop using the Arduino integrated development
environment (IDE).

By equipping the Arduino with sensors, actuators, lights, speakers, add-on modules (called
shields), and other integrated circuits, you can turn the Arduino into a programmable
“brain” for just about any control system.

Arduino UNO

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P3

Arduino Is an Open-Source Hardware

SparkFun RedBoard Freeduino

Because the Arduino is open-source hardware, all the design files, schematics, and source
code are freely available to everybody.

You can integrate the Arduino platform into your designs, make and sell Arduino clones,
and use the Arduino software libraries in other projects.

Three Examples of Arduino Clones:

Seeduino

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P4

Some Arduino Shields

microSD Shield Ethernet Shield GPS Logger Shield

Cellular Shield Wi-Fi Shield Motor Driver Shield

Color LCD Shield

Bluetooth Shield

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P5

Arduino Boards

There are many different official Arduino boards, each with different capabilities (Applications, number
of inputs and outputs, speed, operating voltage, form factor, etc.).

Arduino Uno
is the best board to get started with

electronics and Arduino Programming.

Arduino Mega 2560
is UNO’s big brother with many general I/O
pins to interface with many more devices. It
is designed for more complex projects (e.g.,

3D printers and robotics projects).

Arduino Due
is the first Arduino board based on a
32-bit ARM core microcontroller and
it is the perfect board for powerful

larger scale Arduino projects.

Arduino Nano
is a compact board similar to
the UNO and designed to be

mounted right into a
breadboard socket.

A full range of official Arduino products: https://www.arduino.cc/en/hardware

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P6

Arduino-Based Projects

Three main components of Arduino based projects:
- Arduino IDE (Integrated Development Environment)
- One of the Arduino boards
- External hardware (including shields and hand-made circuits)

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P7

Arduino Uno Components

ATmega328P Microcontroller
Arduino Uno uses an AVR ATMega328P
microcontroller. It has 32 KB (with 0.5 KB occupied
by the bootloader for programming the MCU). It
also has 2 KB of SRAM and 1 KB of EEPROM

ATmega16U2 Microcontroller
It takes care of the USB connection and serves
as an interface between a USB cable and the
serial USART pins on the main microcontroller.

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P8

ATmega328P-Arduino Pin Mapping

A few pins are already irreversibly wired up and unavailable for use. For instance, PB6 and
PB7 are already hard-wired up to the crystal oscillator.

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P9

Arduino Uno Components

USB Connector
It is used to power the Arduino and also load
code onto the Arduino.

Power Jack
It is used to power the Arduino when no USB
cable is connected to the USB Connector.
The recommended voltage for Arduino Uno
is between 7 and 12 volts.

ICSP for Atmega328P MCU

ICSP for ATmega16U2 MCU

ICSPs (In-Circuit Serial Programming) are
used to update or load the firmware into
the microcontroller.

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P10

Arduino Uno Components

Reset button
It can be used to restart the execution of the
program uploaded in the MCU.

Power LED Indicator
This LED should light up whenever you plug
your Arduino into a power source.

TX & RX LEDs
These LEDs will give us visual indications whenever the Arduino is receiving
or transmitting data like when we are loading a new program onto the board
(TX: Transmit, RX: Receive).

Debug LED
It is already connected to pin 13, which enables you
to run your first program (blinking an LED) without
connecting any additional circuitry.

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P11

Arduino Uno Components

DIGITAL Pins (1-13)
These pins can be used for both digital input (like
telling if a button is pushed) and digital output (like
powering an LED). Each pin can provide (source) or
receive (sink) 20 mA as recommended operating
condition and 40mA as maximum value to avoid
permanent damage to the microcontroller. Each
digital pin has an internal pull-up resistor
(disconnected by default) of 20-50k ohm.

PWM Pins (~)
These pins act as normal digital pins, but can also be used for something called
Pulse-Width Modulation (PWM). Think of these pins as being able to simulate
analog output (like fading an LED in and out).

ANALOG IN Pins (A0-A5)
These pins can read the signal from an analog sensor and
convert it into a digital value that we can read. Each can
provide 10 bits of resolution (i.e., 1010=1024 different values).

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P12

Arduino Uno Components

GND
There are 3 GND (Ground) pins on the Arduino,
any of which can be used to ground your circuit.

5V & 3.3V
These pins supply 5 & 3.3 volts generated by the on-board regulators. Maximum
current draw is 50 mA.

RESET
It is used to reset the microcontroller when the
reset button on the board is blocked by shields.

Vin
It is used to supply voltage for Arduino through
this pin (7-12V), or, if supplying voltage via the
power jack, access it through this pin.

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P13

Arduino Uno Components

AREF
It is used as reference voltage for the analog
inputs (upper end of the input range). By default,
it is the same as the chip supply voltage (5V on
most Arduino boards), so the analog inputs can
measure between 0 and 5V. If you connect the
AREF pin to a lower voltage and set the analog
reference to EXTERNAL by analogReference(), you
can then measure between 0 and AREF voltage to
increase the measuring resolution.

IOREF
It provides the voltage reference with which the microcontroller operates. A properly
configured shield can read the IOREF pin voltage and select the appropriate power
source or enable voltage translators on the outputs to work with the 5V or 3.3V.

I2C (TWI) Interface
It actually uses two of the analog pins (A4 or SDA and A5 or SCL).

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P14

Arduino vs. AVR Microcontroller

• Arduino’s microcontroller comes pre-flashed with a bootloader that can flash the chip
for you, without need for a hardware programmer. However, the bootloader take up a
portion of the flash memory so uploaded program must be smaller.

• A few pins of Arduino’s microcontroller are already irreversibly wired up and unavailable
for use.

• Arduino board comes with a built-in USB-to-serial converter, so you don’t have to buy a
separate one.

• Arduino can easily be powered by your computer’s USB power supply. However, for
some small projects, Arduino is still bulky (since cannot be installed directly on
breadboard) and expensive.

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P15

Powering Arduino

USB2 Cable Type A/B

• For testing your project, use USB power or wall adapter power supply for powering
Arduino.

• For actual demonstration, use an external 9V battery for powering Arduino, and AA
batteries for powering motors.

+

Wall Adapter
Power Supply

9V Battery

9V Battery Snap
Connector with DC
Barrel Jack Adapter

9V Battery Snap
Connector

SPDT Switch

+
9V Battery

+
VinGND

(Optional)

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P16

C/C++ Language Overview

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P17

The C Programming Language

C is a middle-level language that is often used in place of assembly language for the
programming of microprocessors.

Advantages of C Language:
• It is easier to use.
• It is standardized, i.e., the same program can be used with different microprocessors (an

appropriate compiler is used to translate the C program into the machine language for the
specific microprocessor). Assembly language is different for the different microprocessors.

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P18

Basic Structure of C Programming

Main Function Section
Local Declaration Section
Statements

Pre-processor

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P19

C Programming

1. Keywords:
In C, certain words (in lower case letters) are reserved as keywords with specific meanings
and should not be used for any other purpose in a C program. The ANSI C standard
keywords:

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P20

C Programming

2. Statements:
• Statements are the entries which make up a program.
• Every statement is terminated by a Semicolon (;). Forgetting to end

a line in a semicolon will result in a compiler error.
• Statements can be grouped together in blocks by putting them

between braces, i.e., { }.

{
statement 1;
statement 2;
}

Note: Normally, statements in a program execute one after the other in the
order in which they are written, which is called sequential execution.

3. Comments:
Comments are important for annotating specific lines of code and
documentation.
❖ When // is put on any line, the compiler ignores all text after

that symbol on the same line (single-line comment).
❖ Everything written between /* and */ will not be compiled

(multiline comment).

/*
Comments…
*/

// comment…

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P21

C Programming

int main (void) {
 …
 …
 …
 return (0);
}

4. Main Function:
Every C program must have a function called main(). By convention, a return value of 0
from main() is used to indicate normal program termination.

#include <stdio.h>

int main() {

 int op1, op2, sum; // variable declaration

 op1 = 5; // variable definition

 op2 = 3;

 sum = op1 + op2; // addition operation

 printf("sum of %d and %d is %d", op1, op2, sum);

 return (0);

}

Example: Addition operation in C

❖ Note that in C programs all spaces are ignored by the compiler.

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P22

Arduino Programming

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P23

Installing and Running the Arduino IDE

- Access the Arduino website at www.arduino.cc and download the newest version of the
IDE from the Download page.

- Install Arduino IDE and the required drivers.
- Connect the Arduino to your computer via USB 2.0 cable type A to B.
- Launch the Arduino IDE and go to Tools → Board and ensure that the right board is

selected i.e., Arduino Uno.
- Navigate to Tools → Port and select the appropriate port.

If you still have a problem, refer to
https://www.arduino.cc/en/Guide/HomePage or

https://learn.sparkfun.com/tutorials/installing-arduino-ide

- To compile and upload your program onto your Arduino, Click the Upload button

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P24

http://www.arduino.cc/
https://www.arduino.cc/en/Guide/HomePage
https://learn.sparkfun.com/tutorials/installing-arduino-ide

Programming Arduino

void setup() {

pinMode(8,OUTPUT);

}

void loop() {

digitalWrite(8, HIGH);

delay(1000);

digitalWrite(8, LOW);

delay(1000);

}

#include <avr/io.h>

#include <util/delay.h>

int main (void) {

 DDRB = 0b00000001;

 while (1) {

 PORTB = 0b00000001;

 _delay_ms(1000);

 PORTB = 0b00000000;

 _delay_ms(1000);

 }

 return (0);

}

Sketch uses 178 bytes (0%) of program storage space.

Sketch uses 928 bytes (2%) of program storage space.

Arduino IDE provides a set of Arduino core functions and libraries to make programming
much easier. Arduino Boards can also be programmed in pure C (which is faster and more
optimum) using Arduino IDE.

Arduino Programming C

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P25

Types of Interfaces to MCUs

You can use three types of interfaces to your microcontroller:
• Digital I/O: Switches as inputs, LEDs or buzzers as outputs
• Analog I/O: Sensors of various types, PWM
• Serial: A serial communications protocol of which there are four main types: TTL Serial,
I2C, 1-Wire, and Serial Peripheral Interface (SPI).

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P26

Digital I/O

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P27

Arduino Programming: Digital I/O

void setup() {

// put your setup code here, to run once:

pinMode(LED_BUILTIN, OUTPUT); // Pin 13

}

void loop() {

// put your main code here, to run repeatedly:

digitalWrite(LED_BUILTIN, HIGH);

delay(1000);

digitalWrite(LED_BUILTIN, LOW);

delay(1000);

}

setup() and loop() functions must be included in all Arduino programs and by convention,
do not return anything

Code within the curly braces of the setup() function is executed once at the start of the
program. This is useful for one-time settings. Code within the curly braces of the loop()
function repeats forever as long as the Arduino is on.

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P28

Arduino Programming

void setup() {

// put your setup code here, to run once:

pinMode(LED_BUILTIN, OUTPUT); // Pin 13

}

void loop() {

// put your main code here, to run repeatedly:

digitalWrite(LED_BUILTIN, HIGH);

delay(1000);

digitalWrite(LED_BUILTIN, LOW);

delay(1000);

}

pinMode(pin , direction)

Pin Number

Pin Direction: INPUT (to sink current)
or OUTPUT (to sourse current)

(Pins are INPUTs by default)

Configuring pin direction:

Setting the pin state:

digitalWrite(pin , state)

Pin Number

Pin State: HIGH or LOW
(5V) (0V)

(It remains in this state until it is changed again)

delay(time)

Pauses the program
for the amount of time
(in milliseconds)

Note: Arduino language is C/C++. Arduino Language Reference:
https://www.arduino.cc/reference/en/

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P29

https://www.arduino.cc/reference/en/

Basic Variable Types

Type Size Value range

char 1 byte 0 to 255 (2
8
-1) char myChar = ‘A’;

int 2 bytes -32,768 to 32,767 (-2
15

 to 2
15

-1)

float 4 bytes -3.4028235E+38 t0 3.4028235E+38 Precision: 6 digits

double 8 bytes Precision: 14 digits

Boolean: boolean myBool = true;
 boolean myBool = false;

Qualifiers alters the meaning of base data types to yield a new data type:
• Size qualifiers: long and short
• Sign qualifiers: unsigned and signed (a variable is signed by default)
• Constant qualifier: const (value of cost cannot be changed in the program)
• Volatile qualifier: volatile

A Variable is a named memory location that can hold various values. To declare a variable,
the type is inserted before the variable name.

VariableType VariableName = Value;

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P30

Turn On an LED Using Arduino

const int LED = 9;

void setup() {

 pinMode (LED, OUTPUT);

 digitalWrite(LED, HIGH);

}

void loop() {

 //we are not doing anything in the loop!

}

This code is a variable declaration. All instances of LED in the program will be
replaced with 9 when they are called.

const is a variable qualifier and makes a variable “read-only” and its value
cannot be changed during program execution.

(When you are defining values that will not change, using the const qualifier is recommended.)

Arduino

GND
330Ω

9


Note: loop() repeats forever as long as the Arduino is on. If you want your Arduino to
do something once at boot only, you still need to include the loop() function, but you
can leave it empty.

Remember to use
CAPITAL Letters!

(INPUT, OUTPUT,
HIGH, LOW)

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P31

“for” Loop

The for loop is used to repeat a block of statements enclosed in curly braces.

for (initialization; condition; increment or decrement) {
 statement(s);
}

The initialization happens first and exactly once. Each time through the loop, the
condition is tested; if it's true, the statement block, and the increment or decrement is
executed; then, the condition is tested again. When the condition becomes false, the
loop ends.

for (int i=100; i<=1000; i=i+100) {

 digitalWrite(LED, HIGH);

}

Ex.
sets an index variable

for the loop

Index
Variable

Start Value

specifies when the
loop should stop

specifies what should happen
to the index variable at the
end of each loop execution.

statement

i+=100

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P32

LED with Changing Blink Rate

const int LED=9;

void setup() {

 pinMode (LED, OUTPUT);

}

void loop() {

 for (int i=100; i<=1000; i=i+100) {

 digitalWrite(LED, HIGH);

 delay(i);

 digitalWrite(LED, LOW);

 delay(i);

 }

}

Arduino

GND
330Ω

9


“for” Loop

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P33

“for” Loop Description

…

void loop() {

 for (int i=100; i<=1000; i=i+100) {

 digitalWrite(LED, HIGH);

 delay(i);

 digitalWrite(LED, LOW);

 delay(i);

 }

}

1. i equals 100. The condition is true, hence,
2. The LED is set high, and stays high for 100ms (i.e., the current value of i).
3. The LED is set low, and stays low for 100ms, (i.e., the current value of i).
4. At the end of the loop, i is incremented by 100, so it is now 200.
5. 200 is less than or equal to 1000, so the loop repeats again.
6. The LED is set high, and stays high for 200ms, (i.e., the current value of i).
7. The LED is set low, and stays low for 200ms, (i.e., the current value of i).
8. At the end of the loop, i is incremented by 100, so it is now 300.
9. This process repeats until i surpasses 1000 and loop ends.
The outer loop() function repeats again, sets the i value back to 100 and starts the process again.

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P34

Reading Digital Inputs

Pullup Resistor is used to make
the initial state of input pin HIGH

𝑉 = 5𝑉

GND

Button

𝑹

Input Pin

Arduino

Pulldown Resistor is used to make
the initial state of input pin LOW

𝑉 = 5𝑉

GND

Button

𝑹
Input Pin

Arduino

Note: Typically, a pulldown resistor is around
1kΩ and a pullup resistor is around 10kΩ.

Till now, you are able to generate (write) digital outputs (like Blinking LEDs), the next step
is to read digital inputs, such as switches and buttons, so that you can interact with your
project in real time.

Tactile Push Button

Not Connected

Connected

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P35

“if/else” Statement

“if” statement tests whether a certain condition is true. if (condition) {
 statement(s) A;
}
else {
 statement (s) B;
}

If its condition is true, the statement(s) A is executed, if
not, the statement(s) B (i.e., “else” statement) is executed.

if (condition) {
 statement(s) A;
}

if (condition 1) {
 statement(s) A;
}
else if (condition 2) {
 statement(s) B;
}
else {
 statement(s) C;
}

An unlimited number
of such else if

branches is allowed.

Two Other Formats:

“if” statement without
“else” statement

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P36

Comparison and Boolean Operators

Comparison Operators:
== (equal to)
!= (not equal to)
< (less than)
> (greater than)
<= (less than or equal to)
>= (greater than or equal to)

Boolean Operators:

&& (logical and)

|| (logical or)

! (not)

Comparison Operators can be used inside the condition
of an “if” statement.

Boolean Operators can be used with a condition or between the different conditions
of an “if” statement.

• True only if both conditions are true: “if (x > 0 && y > 0)” is true only if
both x and y are greater than 0.

• True if either condition is true: “if (x > 0 || y > 0)” is true if either x or y is
greater than 0.

• True if the condition is false: “if (!(x>0))” is true if x is not greater than 0.

Beware of accidentally using the single equal sign (=), which
is the assignment operator (puts a value into a variable), in
“if” statements. Instead, use the double equal sign (==),
which is the comparison operator (tests whether the values
on the both sides of the sign are equal).

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P37

LED Control with a Button (1)

const int LED=9;

const int BUTTON=2;

void setup() {

 pinMode (LED, OUTPUT);

 pinMode (BUTTON, INPUT);

}

void loop() {

 if (digitalRead(BUTTON) == HIGH){

 digitalWrite(LED, HIGH);

 }

 else {

 digitalWrite(LED, LOW);

 }

}

The LED stay ON while the button is held down, it stay off while the button is unpressed.

𝑉 = 5𝑉

GND

Button

10kΩ
2

Arduino

GND
330Ω

9




Since pins are inputs by default,
this line is not necessary.

Value of a digital input, either HIGH or LOW, is read by digitalRead(pin)

Pin Number

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P38

“while” Loop

while (condition) {
 statement(s);
}

A while loop is used to repeat a block of statements enclosed in curly braces
continuously, and infinitely, until the expression inside the parenthesis, becomes false.

Note: Something must change the condition state, or the while loop will never exit.

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P39

LED Control with a Button (2)

const int LED=9;

const int BUTTON=2;

void setup() {

 pinMode (LED, OUTPUT);

 pinMode (BUTTON, INPUT);

}

void loop() {

 while (digitalRead(BUTTON)){

 digitalWrite(LED, HIGH);

 delay(500);

 digitalWrite(LED, LOW);

 delay(500);

 }

 digitalWrite(LED, HIGH);

}

The LED blinks while the button is held down, it stay ON while the button is unpressed.

𝑉 = 5𝑉

GND

Button

10kΩ
2

Arduino

GND
330Ω

9




while (digitalRead(BUTTON)){

…

}

while (digitalRead(BUTTON) == HIGH){

…

}

Note: Both expressions have the same meaning:

=

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P40

Functions

Functions are blocks of code that can accept input arguments, execute code based on
those arguments, and optionally return a result.

Functions are created to simplify a program and also to encapsulate actions which are
needed to be performed multiple times in a program.

There are two required functions in an Arduino sketch, setup() and loop(). Both does not
have any input and returned value. Other functions must be created everywhere outside
the brackets of those two functions.

Functions can be “called” from everywhere in
the program.

outputType functionName (input1Type input1, input2Type input2, …) {
 …
 statement(s);
 …
 return output;
}

Function
Body

Datatype of output (returned value)

Note: outputType is "void" if nothing is returned.

output = functionName (Arg1, Arg2, …);

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P41

Blinking an LED Using a Function

const int LED=9;

void setup() {

pinMode (LED, OUTPUT);

}

void loop() {

int i = 2;

int k;

k = secondFunction(i);

digitalWrite(LED, HIGH);

delay(k);

digitalWrite(LED, LOW);

delay(k);

}

int secondFunction(int x) {

int result;

result = x * 1000;

return result;

}

In this example, the LED blinks every
“𝑖” second.

Arduino

GND
330Ω

9


Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P42

Code Description

const int LED=9;

void setup() {

pinMode (LED, OUTPUT);

}

void loop() {

int i = 2;

int k;

k = secondFunction(i);

digitalWrite(LED, HIGH);

delay(k);

digitalWrite(LED, LOW);

delay(k);

}

int secondFunction(int x) {

int result;

result = x * 1000;

return result;

}

A function to
multiply a number

by 1000.

The variables which are declared outside
of all functions in the program are global
variables. These variables can be used
and changed by any function within the
program.

The variables which are declared within a
specific function are local variables. These
variables can be used and changed only
within that specific function.

For example, Local variables:
in loop function: i, k
in secondFunction function: x, result

Function is
“called” here.

Global and Local Variables:

For example, Global variable: LED

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P43

Buzzer

A buzzer or beeper is an audio signaling device, which is
usually piezoelectric. Typical uses of buzzers and beepers
include alarm devices, timers, and confirmation of user
input.

A Passive Buzzer has no internal oscillator and needs a signal source that
provides the sound signal. You need to use a function in your code to create
frequencies.

An Active Buzzer has an internal oscillator and generates the sound itself.
Hence, you can simply turn it ON/OFF with an Arduino digital pin, just like
turning ON/OFF an LED.

𝑉 = 5𝑉

GND

Button

10kΩ
2

Arduino



3

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P44

Array

An Array is a collection of variables which have the same data type and are accessed with
an index number.

❖ Different ways to create (declare) an array:
int myInts[6]; // without initialization

int myArray[5] = {9,3,2,4,3}; // with initialization

int myPins[] = {2, 4, 8, 3, 6}; // without array size

❖ Accessing an Array: Arrays are zero indexed (the first element is at index 0).
myArray[0] contains 9
myArray[4] contains 3
myArray[5] is invalid and contains random information (other memory address)

▪ Size of the array is indicated
between square brackets [].

▪ The compiler counts the elements and
creates an array of the appropriate size.

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P45

Array

❖ Similarly, multidimensional arrays can be defined as: array[x][y];

❖ Assigning a value to an array:
myInts[3] = 10;

❖ Retrieving a value from an array:
x = myInts[2];

int myInts[5]={9,3,2,4,3};

char keys[4][3] = {

{'1','2','3'},

{'4','5','6'},

{'7','8','9'},

{'*','0','#'} };

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P46

Using a Matrix Keypad

Keypads use switches arranged in a matrix. To determine which keys are pressed, the
microcontroller will take each of the output pins Q0 to Q2 high in turn, and see what
value is presented at each of the inputs I0 to I3.

Note that if the microprocessor does not support internal pullup
resistors, then pullup resistors would be required on each input.

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P47

Using a Matrix Keypad

#include <Keypad.h>

char keys[4][3] = {

{'1','2','3’},

{'4','5','6’},

{'7','8','9’},

{'*','0','#’} };

byte rowPins[4] = {2, 7, 6, 4};

byte colPins[3] = {3, 8, 5};

Keypad myKeypad = Keypad(makeKeymap(keys), rowPins, colPins,4,3);

void setup() {

}

void loop() {

char key = myKeypad.getKey();

if (key != null) {

// Do something…

}

}

To prepare the Arduino to control a
keypad, first, a keypad “object” must
be created. Using this object, you can
control the keypad during the code.

#include is used to include outside
libraries in the code. Note that
#include has no semicolon terminator.

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P48

Switch Debouncing

const int debouncePeriod = 100; //ms

long lastKeyPressTime = 0;

void loop() {

long timeNow = millis();

 if (digitalRead(5) == LOW && lastKeyPressTime > timeNow + debouncePeriod) {

 // button pressed, and enough time elapsed since last press

 // do what you need to do

 // …

 lastKeyPressTime = timeNow;

 }

}

Here is one of the software methods for debouncing the pushbutton:

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P49

High-Power Digital Outputs

Most microcontrollers will reliably provide us with only around 40 mA of source or sink
current as a direct digital output. If you want to drive a higher power load, such as a relay
or a high-power LED, then you need to use a transistor (BJT or MOSFET).

Remember to use a reverse-biased fly-back diode across the inductive
loads (DC Motors, Solenoids, Relays, ...), to prevent voltage spikes
damaging the transistor during switching.

Arduino Boards

Arduino Boards
C/C++ Language Overview

C/C++ Language Overview
Arduino Programming

Arduino Programming
Digital I/O

Digital I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 1 P50

	Contents
	Slide 1: Ch6: Arduino Programming – Part 1

	Arduino Boards
	Slide 2: Arduino Boards
	Slide 3: What Is an Arduino?
	Slide 4: Arduino Is an Open-Source Hardware
	Slide 5: Some Arduino Shields
	Slide 6: Arduino Boards
	Slide 8: Arduino-Based Projects
	Slide 9: Arduino Uno Components
	Slide 11: ATmega328P-Arduino Pin Mapping
	Slide 13: Arduino Uno Components
	Slide 14: Arduino Uno Components
	Slide 15: Arduino Uno Components
	Slide 16: Arduino Uno Components
	Slide 17: Arduino Uno Components
	Slide 20: Arduino vs. AVR Microcontroller
	Slide 21: Powering Arduino

	C/C++ Language Overview
	Slide 22: C/C++ Language Overview
	Slide 23: The C Programming Language
	Slide 24: Basic Structure of C Programming
	Slide 25: C Programming
	Slide 26: C Programming
	Slide 27: C Programming

	Arduino Programming
	Slide 29: Arduino Programming
	Slide 30: Installing and Running the Arduino IDE
	Slide 31: Programming Arduino
	Slide 32: Types of Interfaces to MCUs

	Digital I/O
	Slide 33: Digital I/O
	Slide 34: Arduino Programming: Digital I/O
	Slide 35: Arduino Programming
	Slide 38: Basic Variable Types
	Slide 40: Turn On an LED Using Arduino
	Slide 41: “for” Loop
	Slide 42: LED with Changing Blink Rate
	Slide 43: “for” Loop Description
	Slide 44: Reading Digital Inputs
	Slide 45: “if/else” Statement
	Slide 46: Comparison and Boolean Operators
	Slide 47: LED Control with a Button (1)
	Slide 49: “while” Loop
	Slide 50: LED Control with a Button (2)
	Slide 51: Functions
	Slide 52: Blinking an LED Using a Function
	Slide 53: Code Description
	Slide 54: Buzzer
	Slide 58: Array
	Slide 59: Array
	Slide 60: Using a Matrix Keypad
	Slide 61: Using a Matrix Keypad
	Slide 62: Switch Debouncing
	Slide 63: High-Power Digital Outputs

