
Ch6: Arduino Programming
– Part 2

Contents:

Analog I/O

Serial Interfaces

Amin Fakhari, Fall 2024 P1

Analog I/O

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P2

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Arduino Programming: Analog I/O

Till now, you are able to generate digital outputs from your Arduino. But what if you want
to output a voltage other than 0V or 5V?

- Using the Digital-to-Analog Converter (DAC) pins on Arduino Due not Uno.
- Using an external Digital-to-Analog Converter (DAC) chip.
- Using a trick called Pulse-Width Modulation (PWM) to emulate an analog signal.

Applications: Fading LEDs, Changing speed of motors,... .

Pins which are able to emulate analog
signals are marked with a ~ on the board,
i.e., 3, 5, 6, 9, 10, and 11.

PWM is a technique for getting analog results with digital means.

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P3

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Pulse-Width Modulation (PWM)

Duty Cycle: the percentage of time that a
square wave is high versus low.

Digital control is used to create a square
wave, a signal switched between On and Off.

Pulse Width: The duration of “On time”.

This On-Off pattern can simulate Analog-like
(Analogish) voltages in between full On (5 V)
and Off (0 V) by changing the portion of the
time the signal spends On versus the time that
the signal spends Off.

time

Voltage

Note: The frequency of the PWM signal on most pins is approximately 490 Hz, but on the
pins 5 and 6 of Uno is approximately 980 Hz (i.e., PWM period is about 2 ms or 1 ms).

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P4

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Fading an LED

analogWrite(pin , value);

PWM pins use analogWrite() command to emulate
analog signals:

const int LED=9;

void setup() {

 pinMode (LED, OUTPUT);

}

void loop() {

 for (int i=0; i<256; i++) {

 analogWrite(LED, i);

 delay(10);

 }

 for (int i=255; i>=0; i--) {

 analogWrite(LED, i);

 delay(10);

 }

}

Pin Number

A value from 0 to 255 (0 to 28-1) to
represent Duty Cycle

To fade the
LED up

To fade the
LED down

equivalent to i=i+1

equivalent to i=i-1

The LED is switching On and Off fast enough. Since it is blinking
faster than your eyes can perceive, the result is as if the signal
is a steady voltage between 0 and 5v controlling the brightness
of the LED.

Digital: Value is either HIGH or LOW
Analog: Value ranges from 0-255 (for output)
and 0-1023 (for input)

Output Voltage

Arduino’s PWM

0V 5V

0 225

The PWM output of Arduino Uno is an 8-bit value,
and you can write values from 0 to 28 − 1 (255) to
simulate voltages from 0V to 5V.

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P5

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Arduino Programming: Analog I/O

The world around us is analog. Ex.: Temperature, Sunlight Brightness, Wind Speed, …

Digital Signal (e.g., Square Wave)
It varies between only two values: 0

and 5V like a Push Button.

Analog Signals (e.g., Cosine Wave)
It includes an infinite number of values
between those two voltages: 0 and 5V.

Time

Voltage

5V

0V

5V

0V

Voltage

Time

Since all devices only process digital signals, in order to interface with the real world,
analog signals need to be converted to digital signals using Analog-to-Digital Converters
(ADCs).

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P6

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Arduino’s ADCs

Suppose that you want to measure the brightness of a room using
a light sensor which can produce a varying output voltage that
changes with the brightness of the room.

The Arduino’s Analog-to-Digital Converter (ADC) pins are used to convert analog voltage
values into number representations that you can work with.

How do you read those values with an Arduino
to figure out how bright the room is?

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P7

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Arduino’s ADCs

The accuracy of an ADC is determined by the resolution. The ADC of Arduino Uno is 10
bits and can subdivide (or quantize) an analog signal into 210 (=1024) different values.

The Arduino can linearly assign a value
from 0 to 1023 for any analog voltage
value that you give it from 0V to 5V.

Reference Voltage for Arduino ADC pins (the max voltage that you are expecting on
these pins) is 5V by default (and it is possible to be changed by connecting AREF to a
lower voltage).

Input Voltage

Arduino’s ADC

0V 5V

0 1023512

2.5V

5V

0V

Voltage

Time

Digital Value

Time
0
1
2
3
4
5
6
7

Analog Signal Digitized Signal

To better understand,
consider a 3-bit ADC which
can quantize an analog
signal into 23 (=8) different
values, from 0 to 7.

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P8

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Reading a Potentiometer

𝑉 = 5𝑉

GND

10kΩ A0

Arduino

USB

As you turn the potentiometer, you vary the voltage that
you are feeding into analog input A0 between 0V and 5V.

Arduino reads potentiometer’s values and transmits them via the USB connection to
the serial terminal on your computer.

const int POT = A0;

int val = 0;

void setup() {

 Serial.begin(9600);

}

void loop() {

 val = analogRead(POT);

 Serial.print("Value: ");

 Serial.println(val);

 delay(500);

}

Click here to see the result

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P9

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Code Description

A variable to hold the analog value reading
from the potentiometer. const int POT = A0;

int val = 0;

void setup() {

 Serial.begin(9600);

}

void loop() {

 val = analogRead(POT);

 Serial.print("Value: ");

 Serial.println(val);

 delay(500);

}

Arduino’s serial communication must be
started in the setup() as

Serial.begin(BaudRate)

Baud Rate which specifies the
communication speed (the number

of bits being transferred per second).

Note: 9600 baud is a common value.

Value of Arduino's analog pin is read using analogRead(pin)

ADC Pin Number

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P10

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Code Description

const int POT = A0;

int val = 0;

void setup() {

 Serial.begin(9600);

}

void loop() {

 val = analogRead(POT);

 Serial.print("Value: ");

 Serial.println(val);

 delay(500);

}

A value or text can be printed over serial to
the computer’s serial terminal using

The command Serial.println() is similar to
Serial.print() but followed by a newline
that advances the cursor to the next line.

Serial.print(arg)

A Value or "Text"

The delay() is used to make reading the data which is transmitted to the serial
terminal easier. Hence, Arduino transmits data via the USB connection to the serial
terminal on your computer every 500ms and TX LED on Arduino blinks every 500ms.

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P11

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Arduino IDE Serial Monitor

In order to launch Arduino IDE Serial Monitor and see what Arduino is sending, click the
circled button as shown.

By turning the potentiometer
dial, you will see the numbers
go up and down between 0 and
1023 to correspond with the
position of the potentiometer. Because you set the baud rate to

9600 in the code, you need to set
it to 9600 in this window as well.

Arduino IDE Serial Monitor

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P12

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Resistor-Based Sensors

Some materials change resistance as a result of physical action. For example, some
semiconductors change resistance when struck by light (Photoresistors), and some
polymers change resistance when heated or cooled (Thermistors).

Photoresistor Thermistor

Symbol: Symbol:

Because these sensors are changing resistance and not voltage, we need to create
a voltage divider circuit so that we can measure their resistance change.

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P13

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Adjustable Voltage Divider

In voltage dividers, if one of the resistors is a variable
resistor (like resistor-based sensors including photoresistors
and thermistors), the change in output voltage (𝑉out) that
results from the varying resistance (𝑅var) can be monitored.

The size of the other resistor (𝑅2) can be used to set the sensitivity of the circuit, or a
potentiometer can be used to make the sensitivity adjustable.

An adjustable voltage divider can be made from a fixed resistor and a variable resistor.

𝐼 =
𝑉in

𝑅2 + 𝑅var
𝑉out = 𝑅2𝐼 =

𝑅2
𝑅var + 𝑅2

𝑉in

𝑅var

𝑅2

𝑉in

𝑉out

𝐼

GND

𝐼

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P14

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Light Indicator

The LED gets brighter as the room gets brighter.

When in complete darkness, its resistance is
maximum and when saturated with light, its
resistance drops nearly to zero.

const int LED=9;

const int LIGHT = A0;

int val = 0;

void setup() {

 pinMode(LED, OUTPUT);

}

void loop() {

 val=analogRead(LIGHT);

 val=map(val, 0, 1023, 0, 255);

 analogWrite(LED, val);

}

GND

1
k
Ω A0

Arduino

GND
330Ω

9

𝑉 = 5𝑉

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P15

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Code Description

const int LED=9;

const int LIGHT = A0;

int val = 0;

void setup() {

 pinMode(LED, OUTPUT);

}

void loop() {

 val=analogRead(LIGHT);

 val=map(val, 0, 1023, 0, 255);

 analogWrite(LED, val);

}

Input Voltage

Arduino’s ADC

0V 5V

0 1023

Output Voltage

Arduino’s PWM

0V 5V

0 225

map() command linearly maps a number from one
range to another. That is, a value of fromLow would
get mapped to toLow, a value of fromHigh to toHigh,
values in-between to values in-between, etc.

fromLow fromHigh

toLow toHigh

From

To

… …

map(value, fromLow , fromHigh , toLow , toHigh)

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P16

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Multiple Switches to One Analog Input

If you have a lot of switches and do not want to tie up a
load of digital inputs, then a common technique is to use
an analog input and a number of resistors. The voltage at
the analog input will then depend on the switches that
are pressed.

Note that in the code, you need to specify a range to
indicate a certain button, rather than just one value.

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P17

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Reading Analog Output of Sensors

Many of the sensors provide an analog output to indicate the property that they are
reading, e.g., the TMP36 temperature sensor IC.

Decoupling Capacitor

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P18

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Reading Analog Output of Sensors

If you are measuring a voltage (say 0-50 V) that is outside the range of the microcontroller’s
analog input (say 0-5 V), then you can just use two resistors as a voltage divider to reduce
the voltage appropriately.

• If there is a risk that the voltage may exceed the expected range (0-50 V), you can protect
the microcontroller’s analog input by adding a Zener diode.

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P19

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Using Analog Pins as Digital Pins

The analog pins can be used identically to the digital pins, using the aliases A0 (for
analog input 0), A1, A2, A3, A4, and A5.

For example, the code would look like this to set analog pin A0 to an output, and to set
it HIGH:

pinMode(A0, OUTPUT);

digitalWrite(A0, HIGH);

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P20

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Serial Interfaces

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P21

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Serial Interfaces

There are a number of different standards for serial interfaces to microcontrollers,
which use different numbers of pins and approaches to communication.

• 1-Wire Bus
• I2C Bus, also known as the Two-Wire Interface (TWI)
• Serial Peripheral Interface (SPI) Bus
• USART Serial

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P22

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

1-Wire Bus

The 1-Wire Serial Bus uses just a single connection to communicate. Up to 255 devices
can be connected to the same wire. This standard was developed by Dallas
Semiconductors and is used in a variety of devices, e.g., DS18B20 temperature sensor.

C

• 1-Wire devices act as either a master or slave. The microcontroller will be the master,
and the peripheral devices, such as sensors, the slave.

• Every slave device has a unique 64-bit identifier that is programmed into ROM by
manufacturer.

two-way communication

Master Slave

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P23

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

1-Wire Bus

The MCU uses the pin as both an input and an output (the pin’s direction changes while
the program is running). Communication is always initiated by the master and send a
command as a sequence of pulses to find all the devices IDs connected to the data line
(by a special search protocol) and communicate with them.

Any available digital pin can be
used for 1-Wire communication.

In Arduino IDE, OneWire.h library is available for 1-wire communication. It hides the
low-level timing and make the programming easier.

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P24

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

I2C Bus

I2C, also known as the Two-Wire Interface (TWI), serves much the same purpose as
1-Wire, although it has two wires rather than one for data.
• It can support multiple devices connected to the same two wires.
• The Serial Clock Line (SCL) is a clock and the Serial Data Line (SDA) a bidirectional

data line.
• I2C devices are either masters or slaves. There can be more than one master device.
• Microcontrollers can use I2C interface to exchange data with other microcontrollers.
• Since all the devices are receiving all the messages, each I2C slave device must have a

unique 7-bit address, or ID number.

Master
Slave

two-way
communication

• I2C is faster than
1-Wire, with top
speeds of up to
400 kbits/s.

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P25

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

I2C Bus

The master supplies the SCL clock, and when there is data to be transmitted, the
sender (master or slave) takes the SDA line out of tri-state and sends data as logic highs
or lows in time with the clock signal. When transmission is complete, the clock can
stop, and the SDA pin be taken back to tri-state.

How I2C Communication Works

SDA

SCL

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P26

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

https://www.youtube.com/watch?v=6IAkYpmA1DQ

I2C Bus

I2C (TWI) Interface
It actually uses two of the analog pins
(A4 or SDA pin and A5 or SCL pin).

In Arduino IDE, Wire.h library is available for I2C (TWI) communication. It hides the
low-level timing of the protocol and make the programming easier.

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P27

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SPI) uses four data lines and is faster than 1-Wire and I2C
buses (up to 80 Mbits/s).

▪ There can only be one master device.
▪ The slave devices are not assigned addresses.

Instead, the master must have a dedicated Slave
Select (SS) line for each of the slave devices, just
selecting the one it communicates with.

▪ The other extra line is required because separate
lines are used for each direction of
communication.

▪ The Master Out/Slave In (MOSI) line carries the data from the master to the slave
device, and the Master In/Slave Out (MISO) line does the reverse. The Serial Clock
(SCK) is the clock pulses which synchronize data transmission generated by the master.

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P28

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Serial Peripheral Interface (SPI)

ISP Interface:
10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK)

In Arduino IDE, SPI.h library is available for ISP communication. It hides the low-level
timing of the protocol and make the programming easier.

❖ Note that SPI is also used as a means of ICSP (In Circuit Serial Programming) on
some microcontrollers, e.g., ATmega and ATtiny families.

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P29

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

USART Serial

Using microcontroller's integrated UART/USART, you can send information between the
microcontroller and your host computer, or other serial-enabled devices (including
other microcontrollers).

ATMega328P microcontroller (on the Arduino Uno) has only one hardware serial port
(USART). It includes Transmit (TX) and Receive (RX) pins that can be accessed on digital
pins 0 and 1 of the Arduino Uno. Serial communication on pins TX/RX uses TTL logic
levels.

This serial interface is used for
• Programming the Arduino since it is equipped

with a bootloader.
• Serial communication with the Arduino IDE.
• Serial communication with other serial-enabled

devices.

TTL Serial

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P30

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

USART Serial

Transmit (TX) and Receive (RX) pins are connected indirectly to the transmit and receive
lines of your USB cable.

Serial and USB are not directly compatible, and
an intermediary USB-to-serial convertor needs
to be used. This convertor can be an FTDI chip
or a secondary USB-capable microcontroller
like ATmega16U2 on the Arduino Uno.

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P31

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

USART Serial

Since ATMega328P microcontroller (on the Arduino Uno) has only one hardware serial
port (USART), you cannot program the Arduino or talk to it from your computer while
another serial-enabled device is connected to the Arduino’s serial port (RX and TX) at
the same time.

A solution is to use SoftwareSerial.h library that allows you to define two arbitrary
digital pins on your Arduino to act as RX/TX pins for talking with another serial-enabled
device (using software to replicate the functionality of the hardwired RX and TX lines).

Note that if you use serial
communication with computer,
you cannot also use pins 0 and 1
for digital input or output.

Serial-enabled Device

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P32

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Level Conversion

There is a recent trend for microcontrollers and other digital ICs to use 3.3 V or even
1.8 V rather than 5 V. Lower-voltage devices use less current and can be more
convenient to power from batteries. When you are communicating with the ICs using
one of the bus and serial interfaces, you will need to make sure that you convert
voltage levels appropriately.

3.3V Output

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P33

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

SPI & USART Serial Level Conversion

Converting levels on SPI and TTL Serial is quite easy, because they have separate lines
for each direction of communication. You only need to use a simple voltage divider.

The Tx output of the 3.3 V device can be connected directly to the Rx input of the 5 V
microprocessor, because it will see any input over about 3 V as a logical high anyway.
The voltage divider is required when the 5 V Tx output of the microprocessor must be
reduced to prevent damage to the 3.3 V device.

TTL Serial 5 V to 3.3 V level conversion

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P34

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

I2C & 1-Wire Level Conversion

The problem is more complex when pins change modes, from being an input and being
an output, as they do with I2C and 1-Wire. In both these cases, the best solution is to
use a custom level-shifting IC, which can convert two levels.
Recommended ICs: TXS0102, MAX3372, PCA9509, and PCA9306.

TXS0102 level converter used for I2C

(OE: output-enable)

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P35

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Interrupts

Interrupts allow you to stop whatever your Arduino is currently doing, complete a
different task, and then return to what the Arduino was previously executing.

• Hardware (or External) Interrupts
• Timer (or Internal) Interrupts

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P36

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Hardware Interrupts

Hardware Interrupts are trigged depending on the state (or change in state), of an
input I/O pin. Hardware interrupts can be particularly useful if you want to change
some state variable within your code without having to constantly poll the state of a
button. Hence, you can execute your main program, and have it “interrupted” to run a
special function whenever an external interrupt event is detected. This interrupt can
happen anywhere in the program’s execution.

❖ For certain fast acquisition tasks like
using a rotary encoder, interrupting is
an absolute necessity.

ATMega328P microcontroller (on the
Arduino Uno) supports just two external
interrupts (INT 0 and INT 1).

Pin 2: INT 0
Pin 3: INT 1

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P37

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Hardware Interrupts

To make sure global variables shared
between an ISR and the main program are
updated correctly, declare them as volatile.

volatile int variable;

void setup() {

...

attachInterrupt(digitalPinToInterrupt(pin), function_ISR, mode);

...

}

void function_ISR() {

...

}

void loop() { ...

}

mode defines when the interrupt
should be triggered: LOW,
CHANGE, RISING, FALLING, HIGH

• ISR (Interrupt Service Routine) is a function which is called when the interrupt occurs.
• ISR must take no parameters and return nothing.
• ISR should be as short and fast as possible.

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P38

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

Timer Interrupts

The ATMega328P (on the Arduino Uno) has three hardware timers, which can be used to
increment millis(), operate delay(), and enable PWM output with analogWrite(). You can
also take manual control of one of these timers to initiate timed functions (triggering a
function every set number of microseconds), generate arbitrary PWM signals on any pin,
and more.

A third-party library (the TimerOne.h library) is used to take manual control of the 16-bit
Timer1 on the ATMega328-based Arduinos.

Amin Fakhari, Fall 2024 MEC 450/550 • Ch6: Arduino Programming – Part 2 P39

Analog I/O

Analog I/O
Serial Interfaces

Serial Interfaces

	Contents
	Slide 1: Ch6: Arduino Programming – Part 2

	Analog I/O
	Slide 2: Analog I/O
	Slide 3: Arduino Programming: Analog I/O
	Slide 4: Pulse-Width Modulation (PWM)
	Slide 5: Fading an LED
	Slide 7: Arduino Programming: Analog I/O
	Slide 8: Arduino’s ADCs
	Slide 9: Arduino’s ADCs
	Slide 11: Reading a Potentiometer
	Slide 12: Code Description
	Slide 14: Code Description
	Slide 15: Arduino IDE Serial Monitor
	Slide 16: Resistor-Based Sensors
	Slide 17: Adjustable Voltage Divider
	Slide 18: Light Indicator
	Slide 19: Code Description
	Slide 22: Multiple Switches to One Analog Input
	Slide 23: Reading Analog Output of Sensors
	Slide 24: Reading Analog Output of Sensors
	Slide 26: Using Analog Pins as Digital Pins

	Serial Interfaces
	Slide 31: Serial Interfaces
	Slide 32: Serial Interfaces
	Slide 33: 1-Wire Bus
	Slide 34: 1-Wire Bus
	Slide 36: I2C Bus
	Slide 37: I2C Bus
	Slide 38: I2C Bus
	Slide 40: Serial Peripheral Interface (SPI)
	Slide 41: Serial Peripheral Interface (SPI)
	Slide 45: USART Serial
	Slide 46: USART Serial
	Slide 48: USART Serial
	Slide 51: Level Conversion
	Slide 52: SPI & USART Serial Level Conversion
	Slide 53: I2C & 1-Wire Level Conversion
	Slide 54: Interrupts
	Slide 55: Hardware Interrupts
	Slide 57: Hardware Interrupts
	Slide 58: Timer Interrupts

