
Ch10: Inheritance &
Virtual Functions

Amin Fakhari, Spring 2024 P1

Inheritance

Amin Fakhari, Spring 2024 MEC510 • Ch10: Inheritance & Virtual Functions P2

Inheritance

Inheritance
Virtual Function Polymorphism

Virtual Function & Polymorphism
Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function, Abstract Classes, Interface Classes

Inheritance

Inheritance in C++ takes place between classes. In an inheritance (is-a) relationship, the
class being inherited from is called the parent class, base class, or superclass, and the
class(es) doing the inheriting is called the child class, derived class, or subclass.

A derived class inherits both member functions and data members (or member variables)
from the parent (subject to some access restrictions), so we do not have to redefine them.
These variables and functions become members of the derived class, in addition to their
own members that are specific to that derived class.

(Inheritance
chains)

Person Employee

Teacher

(Multiple
Inheritance)

Amin Fakhari, Spring 2024 MEC510 • Ch10: Inheritance & Virtual Functions P3

Inheritance

Inheritance
Virtual Function Polymorphism

Virtual Function & Polymorphism
Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function, Abstract Classes, Interface Classes

Constructors & Initialization of Derived Classes

#include <iostream>
class Base {
public:
 Base(int id=0) : m_id{ id } {}
 int getId() const { return m_id; }

private:
 int m_id {};
};
class Derived: public Base {
public:
 // Call Base(int) constructor in the Derived constructor
 Derived(double cost=0.0, int id=0) : Base{ id } , m_cost{ cost } {}
 double getCost() const { return m_cost; }

private:
 double m_cost;
};
int main() {
 Derived derived{ 1.3, 5 }; // use Derived(double, int) constructor
 std::cout << "Id: " << derived.getId() << '\n';
 std::cout << "Cost: " << derived.getCost() << '\n';
}

The derived classes can not access
private members of the base class
directly. Derived classes will need
to use public member functions
of the base to access private
members of the base class.

Amin Fakhari, Spring 2024 MEC510 • Ch10: Inheritance & Virtual Functions P4

Inheritance

Inheritance
Virtual Function Polymorphism

Virtual Function & Polymorphism
Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function, Abstract Classes, Interface Classes

Order of Construction for Inheritance Chains

#include <iostream>
class A {
public:
 A(int a) {
 std::cout << "A: " << a << '\n';
 }
};
class B: public A {
public:
 B(int a, double b) : A{ a } {
 std::cout << "B: " << b << '\n';
 }
};
class C: public B {
public:
 C(int a, double b, char c) : B{ a, b } {
 std::cout << "C: " << c << '\n';
 }
};
int main() {
 C c{ 5, 4.3, 'R' };
}

C++ constructs derived classes in phases, starting with
the most-base class (at the top of the inheritance tree)
and finishing with the most-child class (at the bottom
of the inheritance tree). As each class is constructed,
the appropriate constructor from that class is called to
initialize that part of the class.

Amin Fakhari, Spring 2024 MEC510 • Ch10: Inheritance & Virtual Functions P5

Inheritance

Inheritance
Virtual Function Polymorphism

Virtual Function & Polymorphism
Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function, Abstract Classes, Interface Classes

Inheritance & Access Specifiers

#include <iostream>
class Base {
public:
 Base(int id = 0, double value = 0.0) : m_id{ id }, m_value{ value } { }
 int getId() const { return m_id; }
protected:
 double m_value {};
private:
 int m_id {};
};
class Derived: public Base {
public:
 // Base constructor is called here
 Derived(double cost = 0.0, int id = 0, double value = 0.0) : Base{ id, value } , m_cost{ cost } {}
 double getCost() const { return m_cost; }
 double getValue() const { return m_cost + m_value; }
private:
 double m_cost{};
};
int main() {
 Derived derived{ 1.3, 5, 10.0};
 std::cout << "Id: " << derived.getId() << '\n';
 std::cout << "Cost: " << derived.getCost() << '\n';
 std::cout << "Value: " << derived.getValue() << '\n’;
}

The protected access specifier
allows the class that the
member belongs to, its
friends, and its derived classes
to access the protected
members. However, protected
members are not accessible
from outside the class.

Note: Favor private members
over protected members.

Amin Fakhari, Spring 2024 MEC510 • Ch10: Inheritance & Virtual Functions P6

Inheritance

Inheritance
Virtual Function Polymorphism

Virtual Function & Polymorphism
Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function, Abstract Classes, Interface Classes

Different Kinds of Inheritance:
public, protected, private

// Inherit from Base publicly
class Pub: public Base {
};

// Inherit from Base protectedly
class Pro: protected Base {
};

// Inherit from Base privately
class Pri: private Base {
};

class Def: Base // Defaults to private inheritance
{};

With public inheritance, inherited public members stay
public, inherited protected members stay protected, and
private members stay inaccessible.

With protected inheritance, the public and
protected members become protected, and private
members stay inaccessible.

With private inheritance, the public and protected
members become private, and private members stay
inaccessible.

Note: A class (and its friends) can always access its own non-inherited members. The access specifiers
only affect whether outsiders and derived classes can access those members.
Note: When derived classes inherit members, those members may change access specifiers in the
derived class. It only affects whether outsiders and classes derived from the derived class can access
those inherited members.
Best Practice: Use public inheritance unless you have a specific reason to do otherwise.

Amin Fakhari, Spring 2024 MEC510 • Ch10: Inheritance & Virtual Functions P7

Inheritance

Inheritance
Virtual Function Polymorphism

Virtual Function & Polymorphism
Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function, Abstract Classes, Interface Classes

Multiple Inheritance

#include <string>
#include <string_view>

class Person {
private:
 std::string m_name{};
 int m_age{};
public:
 Person(std::string_view name, int age)
 : m_name{ name }, m_age{ age } {}
 const std::string& getName() const { return m_name; }
 int getAge() const { return m_age; }
};

class Employee {
private:
 std::string m_employer{};
 double m_wage{};
public:
 Employee(std::string_view employer, double wage)
 : m_employer{ employer }, m_wage{ wage } {}
 const std::string& getEmployer() const { return m_employer; }
 double getWage() const { return m_wage; }
};

// Teacher publicly inherits Person and Employee
class Teacher : public Person, public Employee {
private:
 int m_teachesGrade{};
public:
 Teacher(std::string_view name, int age, std::string_view employer,
 double wage, int teachesGrade)
 : Person{ name, age }, Employee{ employer, wage },
 m_teachesGrade{ teachesGrade } {}
};

int main() {
 Teacher t{ "Mary", 45, "Boo", 14.3, 8 };
}

Amin Fakhari, Spring 2024 MEC510 • Ch10: Inheritance & Virtual Functions P8

Inheritance

Inheritance
Virtual Function Polymorphism

Virtual Function & Polymorphism
Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function, Abstract Classes, Interface Classes

Multiple Inheritance: Mixins

#include <string>

struct Point2D {
 int x{};
 int y{};
};

// mixin Box class
class Box {
public:
 void setTopLeft(Point2D point) { m_topLeft = point; }
 void setBottomRight(Point2D point) { m_bottomRight = point; }
private:
 Point2D m_topLeft{};
 Point2D m_bottomRight{};
};

// mixin Label class
class Label {
public:
 void setText(const std::string_view str) { m_text = str; }
 void setFontSize(int fontSize) { m_fontSize = fontSize; }
private:
 std::string m_text{};
 int m_fontSize{};
};

// mixin Tooltip class
class Tooltip {
public:
 void setText(const std::string_view str) { m_text = str; }
private:
 std::string m_text{};
};

// Button using three mixins
class Button : public Box, public Label, public Tooltip {};

int main() {
 // using :: scope resolution prefixes are not required but recommended
 Button button{};
 button.Box::setTopLeft({ 1, 1 });
 button.Box::setBottomRight({ 10, 10 });
 button.Label::setText("Submit");
 button.Label::setFontSize(6);
 button.Tooltip::setText("Submit the form to the server");
}

Amin Fakhari, Spring 2024 MEC510 • Ch10: Inheritance & Virtual Functions P9

Inheritance

Inheritance
Virtual Function Polymorphism

Virtual Function & Polymorphism
Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function, Abstract Classes, Interface Classes

Calling Inherited Functions
class Base {
public:
 Base(int id = 0, double value = 0.0) : m_id{ id }, m_value{ value } { }
 int getId() const { return m_id; }
 void identify() const { std::cout << "Original Functionality (Base).\n"; }
 void print(int x) { std::cout << "Base::print(int)\n"; }
 void print(double x) { std::cout << "Base::print(double)\n"; }
protected:
 double m_value {};
private:
 int m_id {};
};

class Derived: public Base {
public:
 Derived(double cost = 0.0, int id = 0, double value = 0.0) : Base{ id, value } , m_cost{ cost } {}
 double getCost() const { return m_cost; }
 double getValue() const { return m_cost + m_value; }
 // Adding to existing functionality
 void identify() const {
 std::cout << "More Functionality! (Derived)\n";
 Base::identify();
 }
 using Base::print; // Adding all Base::print() functions eligible for overload resolution
 void print(double x) { std::cout << "Derived::print(double)"; }
private:
 double m_cost{};
};

When a member function (like print) is called on a
derived class object, the compiler first looks to see if
any function with that name exists in the derived class.
If so, the function overload resolution process is used
to determine whether there is a match in the derived
class. If not, the compiler walks up the inheritance
chain, checking each parent class in turn in the same
way to find a match.

Now, by using “using Base::print;”
we are telling the compiler that
all Base functions named print
should be visible in Derived,
which will cause them to be
eligible all together for overload
resolution to find the best match.

Amin Fakhari, Spring 2024 MEC510 • Ch10: Inheritance & Virtual Functions P10

Inheritance

Inheritance
Virtual Function Polymorphism

Virtual Function & Polymorphism
Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function, Abstract Classes, Interface Classes

Calling Inherited Functions (cont.)

int main() {
 Base base {};
 base.identify();

 Derived derived{ 1.3, 5, 10.0};
 std::cout << "Id: " << derived.getId() << '\n';
 std::cout << "Cost: " << derived.getCost() << '\n';
 std::cout << "Value: " << derived.getValue() << '\n';

 derived.identify();

 derived.print(5); // calls Base::print(int), which is the best matching function visible in Derived

 // or you can always specify which one to call:
 derived.Base::print(5.0);
 derived.Derived::print(5.0);
}

Amin Fakhari, Spring 2024 MEC510 • Ch10: Inheritance & Virtual Functions P11

Inheritance

Inheritance
Virtual Function Polymorphism

Virtual Function & Polymorphism
Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function, Abstract Classes, Interface Classes

Deleting Functions in Derived Class

You can mark member functions as
deleted in the derived class, which
ensures they cannot be called at all
through a derived object.

#include <iostream>
class Base {
private:
 int m_value {};
public:
 Base(int value) : m_value { value } {}
 int getValue() const { return m_value; }
};

class Derived : public Base {
public:
 Derived(int value) : Base { value } {}
 int getValue() const = delete; // mark this function as inaccessible
};

int main() {
 Derived derived { 7 };
 // The following won't work because getValue() has been deleted!
 // std::cout << derived.getValue();

 // We can still call the Base::getValue() function directly
 std::cout << derived.Base::getValue();
}

Amin Fakhari, Spring 2024 MEC510 • Ch10: Inheritance & Virtual Functions P12

Inheritance

Inheritance
Virtual Function Polymorphism

Virtual Function & Polymorphism
Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function, Abstract Classes, Interface Classes

Preventing Inheritance of a Class

class Base final {
 // Class members
};

// This will cause a compilation error
class Derived : public Base {
 // Class members
};

When final is used with a class, it prevents other classes from inheriting from it.

Note: If you do not intend your class to be inherited from, mark your class as final. This will
prevent other classes from inheriting from it in the first place, without imposing any other
use restrictions on the class itself.

Amin Fakhari, Spring 2024 MEC510 • Ch10: Inheritance & Virtual Functions P13

Inheritance

Inheritance
Virtual Function Polymorphism

Virtual Function & Polymorphism
Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function, Abstract Classes, Interface Classes

Virtual Function and
Polymorphism

Amin Fakhari, Spring 2024 MEC510 • Ch10: Inheritance & Virtual Functions P14

Inheritance

Inheritance
Virtual Function Polymorphism

Virtual Function & Polymorphism
Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function, Abstract Classes, Interface Classes

Virtual Function and Polymorphism

A Virtual Function is a special type of member function (declared in the base class using the
virtual keyword) that you expect to be redefined (overridden) in derived classes and, when
called, resolves to the most-derived version of the function for the actual type of the object
being referenced or pointed to (rather than the type of the reference or pointer itself).

• The function in the derived class must have the same signature (name, parameter types,
and whether it is const) and also return type as the base version of the function. Such
functions are called overrides.

Polymorphism refers to the ability of an entity to have multiple forms (the term
“polymorphism” literally means “many forms”):

• Compile-time Polymorphism (static binding) resolves by the compiler, and it includes
function overload resolution and template resolution.

• Runtime Polymorphism (or dynamic binding) resolves at runtime, and it includes
virtual function resolution.

❖ When you use a virtual function, you enable runtime polymorphism, which allows you
to call derived class methods through a base class pointer or reference.

Amin Fakhari, Spring 2024 MEC510 • Ch10: Inheritance & Virtual Functions P15

Inheritance

Inheritance
Virtual Function Polymorphism

Virtual Function & Polymorphism
Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function, Abstract Classes, Interface Classes

Virtual Function and Polymorphism

#include <iostream>

class Base {
public:
 virtual void show() {
 std::cout << "Base class show function called." << std::endl;
 }
 void display() {
 std::cout << "Base class display function called." << std::endl;
 }
};

class Derived : public Base {
public:
 void show() override {
 std::cout << "Derived class show function called." << std::endl;
 }
 void display() {
 std::cout << "Derived class display function called." << std::endl;
 }
};

• Use the virtual keyword on virtual functions in a base class.
• Use the override specifier (but not the virtual keyword) on

override functions in derived classes. int main() {

 // ==== Using References (Recommended) ====
 Derived derivedObj1;
 Base& baseRef {derivedObj1};

 // Virtual function, binded at runtime
 baseRef.show();

 // Non-virtual function, binded at compile time
 baseRef.display();

 // ==== Using Pointers ====
 Derived derivedObj2;
 Base* basePtr {&derivedObj2};

 // Virtual function, binded at runtime
 basePtr->show();

 // Non-virtual function, binded at compile time
 basePtr->display();
}

Amin Fakhari, Spring 2024 MEC510 • Ch10: Inheritance & Virtual Functions P16

Inheritance

Inheritance
Virtual Function Polymorphism

Virtual Function & Polymorphism
Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function, Abstract Classes, Interface Classes

Preventing Overriding of a Virtual Function

When final is used with a virtual member function, it prevents derived classes from
overriding that function.

class Base {
public:
 virtual void someFunction() final {
 // Function implementation
 }
};

class Derived : public Base {
public:
 // This will cause a compilation error
 void someFunction() override {
 // Function implementation
 }
};

Amin Fakhari, Spring 2024 MEC510 • Ch10: Inheritance & Virtual Functions P17

Inheritance

Inheritance
Virtual Function Polymorphism

Virtual Function & Polymorphism
Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function, Abstract Classes, Interface Classes

Virtual Destructors

Using a Virtual Destructor in a Base class is crucial when you are working with polymorphism
and dynamic memory allocation (new/delete) to ensuring proper cleanup and avoid resource
leaks and undefined behavior. It ensures that the Derived class destructor is called properly
when an object is deleted through a base class pointer or reference.

class Base {
public:
 virtual void show() {
 std::cout << "Base class show function called." << std::endl;
 }

 void display() {
 std::cout << "Base class display function called." << std::endl;
 }

 // Virtual destructor
 virtual ~Base() {
 std::cout << "Base class destructor called." << std::endl;
 }
 // or use Default virtual destructor
 // virtual ~Base() = default;
};

class Derived : public Base {
public:
 void show() override {
 std::cout << "Derived class show function called." << std::endl;
 }

 void display() {
 std::cout << "Derived class display function called." << std::endl;
 }

 // Destructor
 ~Derived() {
 std::cout << "Derived class destructor called." << std::endl;
 }
 // or use Default destructor
 // ~Derived() = default;
};

Amin Fakhari, Spring 2024 MEC510 • Ch10: Inheritance & Virtual Functions P18

Inheritance

Inheritance
Virtual Function Polymorphism

Virtual Function & Polymorphism
Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function,
Abstract Classes, and

Interface Classes

Amin Fakhari, Spring 2024 MEC510 • Ch10: Inheritance & Virtual Functions P19

Inheritance

Inheritance
Virtual Function Polymorphism

Virtual Function & Polymorphism
Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function & Abstract Classes

C++ allows you to create a special kind of virtual function called a Pure Virtual Function
that has no body in the base class and is made by adding “= 0” to the end of the virtual
function prototype.

• A pure virtual function simply acts as a placeholder that is meant to be redefined
(overridden) by derived classes.

• A class containing at least one pure virtual function is called an Abstract Class and can
not be instantiated.

• A class that inherits pure virtual functions must concretely define them or it will also be
considered abstract (and can not be instantiated).

class Base {
public:
 virtual void pureVirtualFunction() = 0; // Pure virtual function
};

Amin Fakhari, Spring 2024 MEC510 • Ch10: Inheritance & Virtual Functions P20

Inheritance

Inheritance
Virtual Function Polymorphism

Virtual Function & Polymorphism
Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function & Abstract Classes
#include <iostream>
class Base { // This is an abstract base class
public:
 Base(int number) : m_number{ number } {}
 int getNumber() const { return m_number; }
 virtual void pureVirtualFunction() = 0; // Pure virtual function
 virtual ~Base() = default;
protected:
 int m_number {};
};
class Derived : public Base {
public:
 Derived(int number):Base{number}{}
 void pureVirtualFunction() override {
 std::cout << "Implementation of pure virtual function in Derived class" << std::endl;
 }
};
int main() {
 // Base b; // Error: cannot declare variable 'b' to be of abstract type 'Base'
 Derived d{2};
 d.pureVirtualFunction();
 std::cout << d.getNumber() << std::endl;
 // or
 Derived d2{2};
 Base& baseRef {d2};
 d2.pureVirtualFunction();
}

Amin Fakhari, Spring 2024 MEC510 • Ch10: Inheritance & Virtual Functions P21

Inheritance

Inheritance
Virtual Function Polymorphism

Virtual Function & Polymorphism
Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function, Abstract Classes, Interface Classes

Interface Classes

An Interface Class is an abstract class that has no data members, and all of its member
functions are pure virtual.

• It is designed to be used as a Base class but is not intended to be instantiated on its own.
• Interfaces are useful when you want to define the functionality that derived classes must

implement but leave the details of how the derived class implements that functionality
entirely up to the derived class. By using interface classes, you can ensure that different
classes adhere to a common interface, making your code more modular and easier to
maintain.

• Interface classes are often named beginning with a capital I.

Amin Fakhari, Spring 2024 MEC510 • Ch10: Inheritance & Virtual Functions P22

Inheritance

Inheritance
Virtual Function Polymorphism

Virtual Function & Polymorphism
Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function, Abstract Classes, Interface Classes

Interface Classes

#include <iostream>
class Interface {
public:
 // Pure virtual function
 virtual void someFunction() = 0;
 virtual ~Interface() {}
};
// Derived class that implements the interface
class Implementation : public Interface {
public:
 // Implementing the pure virtual function
 void someFunction() override {
 std::cout << "Implementation of someFunction" << std::endl;
 }
};
int main() {
 // Interface obj; // This will give a compilation error as Interface cannot be instantiated
 Implementation obj;
 obj.someFunction();

 // or
 Interface& interfaceRef{obj};
 obj.someFunction();
}

Amin Fakhari, Spring 2024 MEC510 • Ch10: Inheritance & Virtual Functions P23

Inheritance

Inheritance
Virtual Function Polymorphism

Virtual Function & Polymorphism
Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function, Abstract Classes, Interface Classes

Interface Classes

class IShape {
public:
 virtual ~IShape() {} // Virtual destructor
 virtual void draw() = 0; // Pure virtual function
 virtual double area() = 0; // Pure virtual function
};

class Circle : public IShape {
private:
 double radius;
public:
 Circle(double r) : radius(r) {}

 void draw() override {
 // Implementation of draw for Circle
 std::cout << "Drawing Circle" << std::endl;
 }

 double area() override {
 // Implementation of area for Circle
 return 3.14159 * radius * radius;
 }
};

class Square : public IShape {
private:
 double side;
public:
 Square(double s) : side(s) {}

 void draw() override {
 // Implementation of draw for Square
 std::cout << "Drawing Square" << std::endl;
 }

 double area() override {
 // Implementation of area for Square
 return side * side;
 }
};

Amin Fakhari, Spring 2024 MEC510 • Ch10: Inheritance & Virtual Functions P24

Inheritance

Inheritance
Virtual Function Polymorphism

Virtual Function & Polymorphism
Pure Virtual Function, Abstract Classes, Interface Classes

Pure Virtual Function, Abstract Classes, Interface Classes

	Contents
	Slide 1: Ch10: Inheritance & Virtual Functions

	Inheritance
	Slide 2: Inheritance
	Slide 3: Inheritance
	Slide 5: Constructors & Initialization of Derived Classes
	Slide 6: Order of Construction for Inheritance Chains
	Slide 7: Inheritance & Access Specifiers
	Slide 8: Different Kinds of Inheritance: public, protected, private
	Slide 9: Multiple Inheritance
	Slide 10: Multiple Inheritance: Mixins
	Slide 12: Calling Inherited Functions
	Slide 13: Calling Inherited Functions (cont.)
	Slide 14: Deleting Functions in Derived Class
	Slide 15: Preventing Inheritance of a Class

	Virtual Function & Polymorphism
	Slide 16: Virtual Function and Polymorphism
	Slide 17: Virtual Function and Polymorphism
	Slide 19: Virtual Function and Polymorphism
	Slide 20: Preventing Overriding of a Virtual Function
	Slide 21: Virtual Destructors

	Pure Virtual Function, Abstract Classes, Interface Classes
	Slide 22: Pure Virtual Function, Abstract Classes, and Interface Classes
	Slide 23: Pure Virtual Function & Abstract Classes
	Slide 25: Pure Virtual Function & Abstract Classes
	Slide 26: Interface Classes
	Slide 27: Interface Classes
	Slide 28: Interface Classes

