
Ch11: Multi Threading

Amin Fakhari, Spring 2024 P1

Multi Threading

Amin Fakhari, Spring 2024 MEC510 • Ch11: Multi Threading P2

Multi Threading

Multi Threading

Threads (std::thread)

In C++, a thread is a basic unit of CPU utilization. It is a way for a program to perform
multiple tasks simultaneously or in parallel, improving the efficiency and performance.

#include <iostream>
#include <thread>
// Function that performs Task 1
void computeTask1(int n) {
 std::cout << "Computing Task 1: " << n << std::endl;
}
// Function that performs Task 2
void computeTask2(double n) {
 std::cout << "Computing Task 2: " << n << std::endl;
}
int main() {
 std::thread t1{computeTask1, 7};
 std::thread t2{computeTask2, 4.4};

 // Wait for both threads to finish
 t1.join();
 t2.join();

 std::cout << "Both tasks have finished executing." << std::endl;
}

A thread is created using std::thread
(defined in thread header) and initialized
with name of a function and its input
arguments. Each thread starts executing
the function immediately after creation.

Example of creating two threads.

Note: std::thread is recommended
when the functions do not return a
value (i.e, void).

Amin Fakhari, Spring 2024 MEC510 • Ch11: Multi Threading P3

Multi Threading

Multi Threading

Tasks (std::async)

If the functions return a value, std::async (defined in future header) is recommended.

#include <iostream>
#include <future>
// Function that performs Task 1
int computeTask1(int n) {
 std::cout << "Computing Task 1: " << n << std::endl;
 return n*n;
}
// Function that performs Task 2
double computeTask2(double n) {
 std::cout << "Computing Task 2: " << n << std::endl;
 return n*n;
}
int main() {
 auto t1 = std::async(std::launch::async, computeTask1, 7);
 auto t2 = std::async(std::launch::async, computeTask2, 4.4);

 // Wait for both threads to finish and get the results
 auto result1 = t1.get();
 auto result2 = t2.get();

 std::cout << "Both tasks have finished executing." << std::endl;
}

Policy std::launch::async ensures the
function runs on a new thread (but
std::launch::deferred defers the execution
of the function until get() is called.)

auto is std::future<int>.
auto is std::future<double>.

auto is int.

auto is double.

std::async(policy, function, arguments)

Amin Fakhari, Spring 2024 MEC510 • Ch11: Multi Threading P4

Multi Threading

Multi Threading

	Contents
	Slide 1: Ch11: Multi Threading

	Multi Threading
	Slide 2: Multi Threading
	Slide 3: Threads (std::thread)
	Slide 4: Tasks (std::async)

