
Ch2: Introduction to
Classes

Amin Fakhari, Spring 2024 P1

Classes, Objects, Data
Members, and Member

Functions

Amin Fakhari, Spring 2024 MEC510 • Ch2: Introduction to Classes P2

Classes, Objects, Data Members, and Member Functions Initializing Objects with Constructors Data Validation UML Diagram

Sample Program: A Simple Bank-Account Class

// Creating and manipulating an Account object.
#include <iostream>
#include <string>
#include "Account.h"

int main() {
 Account myAccount; // create Account object myAccount

 // show that the initial value of myAccount's name is the empty string
 std::cout << "Initial account name is: " << myAccount.getName();

 // prompt for and read name
 std::cout << "\nPlease enter the account name: ";
 std::string theName;
 std::getline(std::cin, theName); // read a line of text
 myAccount.setName(theName); // put theName in myAccount

 // display the name stored in object myAccount
 std::cout << "Name in object myAccount is: "
 << myAccount.getName() << std::endl;
}

// Account class that contains a name data member
// and member functions to set and get its value.
#include <string> // enable program to use C++ string data type

class Account {

public:
 // member function that sets the account name in the object
 void setName(std::string accountName) {
 name = accountName; // store the account name
 }

 // member function that retrieves the account name from the object
 std::string getName() const {
 return name; // return name's value to this function's caller
 }

private:
 std::string name; // data member containing account holder's name
}; // end class Account

Class Account defined in the header Account.h.cpp source-code file

►

Amin Fakhari, Spring 2024 MEC510 • Ch2: Introduction to Classes P3

Classes, Objects, Data Members, and Member Functions Initializing Objects with Constructors Data Validation UML Diagram

https://onlinegdb.com/3733gfpeo

Headers

#include "Account.h"

• In an #include directive, a C++ Standard Library header is placed in angle brackets <>
(without .h) and a user-defined header is placed in double quotes "" (with .h). This
double quotes tell the compiler that header is in the same folder as .cpp source file,
rather than the C++ Standard Library.

• Headers help to reduce the complexity of code and give you the benefit of reusing the
classes and functions that are declared in header files to different .cpp files. File
extension of headers is .h and they are included (via #include) wherever (in the source-
code file or another headers) needed.

• There are two types of headers: C++ Standard Library headers or User-defined headers.

• It is a bad programming practice to use “using directives” or “using declarations” in
headers.

Amin Fakhari, Spring 2024 MEC510 • Ch2: Introduction to Classes P4

Classes, Objects, Data Members, and Member Functions Initializing Objects with Constructors Data Validation UML Diagram

Structure of a Class

class ClassName {

public:

protected:

private:

};

Data Members
(Object Attributes)

Member Functions
(Object Operations)

For reusability, place each class definition
in a separate header (.h) file.

• By convention, the class name begins
with an uppercase letter, and names of
member functions and data members
follows the camelCase rule.

int main() {
 ClassName calssObject1;
 ClassName classObject2;
 …
}

(By convention, place
data members last in
the class’s body.)

(This will be
discussed later.)

Constructor (optional)
(for custom object initialization)

Classes cannot execute by themselves.
A driver program is needed to execute

a class by creation of objects of the
class (instantiation).

Class should be placed directly here or
written in a header file and included here.

“;” here

Access Specifier

Access Specifier

Access Specifier

Amin Fakhari, Spring 2024 MEC510 • Ch2: Introduction to Classes P5

Classes, Objects, Data Members, and Member Functions Initializing Objects with Constructors Data Validation UML Diagram

Data Type string & Function getline

• The default value for a string variable is the empty string (i.e., "").

• This variable declaration creates a string variable to hold a string of characters.

• Class string and global function getline are defined in the C++ Standard Library header
<string> and belongs to namespace std. Thus, we should use std:: and define:

#include <string>

std::string theName;

• Global function getline receives a line of text from the user (std::cin), including white-
space characters (i.e., a space or a tab, but not a newline), and places it in a string
variable (theName).

• Note that std::cin >> theName; cannot be used because when reading a string, std::cin
stops at the first white-space character.

std::getline(std::cin, theName);

►

Amin Fakhari, Spring 2024 MEC510 • Ch2: Introduction to Classes P6

Classes, Objects, Data Members, and Member Functions Initializing Objects with Constructors Data Validation UML Diagram

https://onlinegdb.com/zGbszwd3_8

Object and Data Member

Account myAccount;

std::string name;

• Data Members are attributes of an object, which are stored in it. The object carries
these attributes with it throughout its lifetime.

• If there are many object of a class, each object has its own attributes (copy of the class’s
data members).

• Member functions can manipulate the attributes of each object separately.

• To use a class, an object of the class should be first created. This process is called
instantiation. An object is then referred to as an instance of its class.

• A class creates a new data type (a user-defined data type).
• You can reuse a class many times to build many objects.

Amin Fakhari, Spring 2024 MEC510 • Ch2: Introduction to Classes P7

Classes, Objects, Data Members, and Member Functions Initializing Objects with Constructors Data Validation UML Diagram

Member Functions and Their Callers

void setName(std::string accountName) {
 name = accountName;
}

std::string getName() const {
 return name;
}

return type functionName
Function
Header:

return
}

functionName ,…,argument value 1 argument value 𝑛calssObject . ()

(type parameter 1 ,…, type parameter 𝑛)

value to be returned

Function
Body:

Caller:

copy copy

myAccount.setName(theName); myAccount.getName()

Statement(s);

dot operator

{const

(optional, to make a
member function

“read-only”)

(for calling a member function)

Amin Fakhari, Spring 2024 MEC510 • Ch2: Introduction to Classes P8

Classes, Objects, Data Members, and Member Functions Initializing Objects with Constructors Data Validation UML Diagram

Member Functions and Their Callers (cont.)

• Variables declared in a particular function’s body are Local Variables which can be used only in that
function. When a function terminates, the values of its local variables are lost. Parameters of a
function also are local variables of that function.

• The return type specifies the type of data the member function returns to its caller after performing
its task. If a function does not return any information to its caller, its type must be void.

• If a function does not require any parameter to perform a task, its parameter list must be empty as ().

• Declaring a member function with const to the right of the parameter list make the member function
"read-only“ and force the compiler to issue a compilation error if that function modify the data
members. This prevent accidental modification of the data members in some member functions like
get member functions.

• The argument types in the member function call must be consistent (not necessarily identical) with
the types of the corresponding parameters in the member function’s definition.

• Typically, you cannot call a member function of a class until you create an object of that class (static
member functions are an exception, that will be covered later).

Amin Fakhari, Spring 2024 MEC510 • Ch2: Introduction to Classes P9

Classes, Objects, Data Members, and Member Functions Initializing Objects with Constructors Data Validation UML Diagram

Access Specifiers: private and public

• There are 3 types of access specifiers: private, public, protected, followed by a colon (:).

• public: Data members or member functions listed after public (and before the next access specifier if
there is one) are accessible to other functions in the program (such as main()) and member functions
of other classes (if there are any).

• private: Data members or member functions listed after private (and before the next access specifier
if there is one) are accessible only to the member functions of that class (or its “friends”) and they are
encapsulated (hidden) from other functions in the program (such as main()) and member functions of
other classes (if there are any).

• Once you list an access specifier, everything from that point has that access until you list another
access specifier.

• Generally, data members should be private and member functions public.

• By default, everything in a class is private, unless you specify otherwise.

Amin Fakhari, Spring 2024 MEC510 • Ch2: Introduction to Classes P10

Classes, Objects, Data Members, and Member Functions Initializing Objects with Constructors Data Validation UML Diagram

Sample Program: Room Class

#include <iostream>
class Room {
public:
 int length;
 int width;
 int height;
 int calculateArea() {
 return length * width;
 }
 int calculateVolume() {
 return length * width * height;
 }
};

int main() {
 Room room1;
 room1.length = 42;
 room1.width = 30;
 room1.height = 19;
 std::cout << "Area of Room = "
 << room1.calculateArea() << std::endl;
 std::cout << "Volume of Room = "
 << room1.calculateVolume() << std::endl;
}

►

►

#include <iostream>
class Room {
public:
 void setData(int len, int wdth, int hgt) {
 length = len;
 width = wdth;
 height = hgt;
 }
 int calculateArea() const {
 return length * width;
 }
 int calculateVolume() const {
 return length * width * height;
 }
private:
 int length;
 int width;
 int height;
};

int main() {
 Room room1;
 room1.setData(42, 30, 19);
 std::cout << "Area of Room = " << room1.calculateArea() << std::endl;
 std::cout << "Volume of Room = " << room1.calculateVolume() << std::endl;
}(Bad Practice)

(Best Practice)

Amin Fakhari, Spring 2024 MEC510 • Ch2: Introduction to Classes P11

Classes, Objects, Data Members, and Member Functions Initializing Objects with Constructors Data Validation UML Diagram

https://onlinegdb.com/u1VGwC3POM
https://onlinegdb.com/iGfO2u2p0

Initializing Objects with
Constructors

Amin Fakhari, Spring 2024 MEC510 • Ch2: Introduction to Classes P12

Classes, Objects, Data Members, and Member Functions Initializing Objects with Constructors Data Validation UML Diagram

Sample Program: A Simple Bank-Account Class with a
Constructor that Initializes the Account Name

// Using the Account constructor to initialize the name data
// member at the time each Account object is created.
#include <iostream>
#include "Account.h"

int main() {
 // create two Account objects
 Account account1{"Jane Green"};
 Account account2{"John Blue"};

 // display initial value of name for each Account
 std::cout << "account1 name is: " << account1.getName() << std::endl;
 std::cout << "account2 name is: " << account2.getName() << std::endl;
}

// Account class with a constructor that initializes the account name.
#include <string>

class Account {

public:
 // constructor initializes data member name with parameter accountName
 explicit Account(std::string accountName):name{accountName} {
 // empty body
 }

 // function to set the account name
 void setName(std::string accountName) {
 name = accountName;
 }

 // function to retrieve the account name
 std::string getName() const {
 return name;
 }

private:
 std::string name; // account name data member
}; // end class Account

Class Account defined in the header Account.h.cpp source-code file

►

Amin Fakhari, Spring 2024 MEC510 • Ch2: Introduction to Classes P13

Classes, Objects, Data Members, and Member Functions Initializing Objects with Constructors Data Validation UML Diagram

https://onlinegdb.com/c03mO7j8i

Constructors

A special member function called Constructor can be defined in a class for initialization of each
object of the class once it is created. This is an ideal way to initialize objects’ data members.

explicit Account(std::string accountName):name{accountName} {
 // empty body
 }

Account account1{"Jane Green"};
Account account2{"John Blue"};

typeexplicit ClassName : dataMember1{⋅}, dataMember2{⋅},… type

// body of constructor

 dataMember3 = ⋅ ; // <- Normal assignment

}

() {p1, p2, …

ClassName classObject{a1,a2,…}

parameter list member-initializer list
In class definition:

In main() function:

Best Practice: Initialize
the data members in

the order they are
declared in the class.

Some functions of
parameters p1, p2, …

Amin Fakhari, Spring 2024 MEC510 • Ch2: Introduction to Classes P14

Classes, Objects, Data Members, and Member Functions Initializing Objects with Constructors Data Validation UML Diagram

Constructors

• The member-initializer list executes before the
constructor’s body executes.

• Data members in member-initializer list are
initialized in the order they are declared in the
class definition. Thus, the best practice is to
place the arguments in member-initializer list in
the order they are declared in the class.

class Foo{
public:
 explicit Foo(int x):m1{x * x}, m2{m1 + x} { }
 …
private:
 int m1;
 int m2;
};

int main() {
 Foo foo{3};
 ...
}

• Normally, constructors are public.
• The constructor must have the same name as the class.
• Constructors returns nothing; thus, we do not specify a return type (not even void).
• It is a good practice to initialize all data members in constructor, although it is not

necessary.
• Constructors cannot be declared const (because initializing an object modifies it).
• Using explicit is prefered for single-parameter constructors and multi-parameter

constructors with default values.

Amin Fakhari, Spring 2024 MEC510 • Ch2: Introduction to Classes P15

Classes, Objects, Data Members, and Member Functions Initializing Objects with Constructors Data Validation UML Diagram

Constructors

• You can perform all initializations in the constructor’s body. However, it’s more efficient
to do it with member initializers as much as possible.

typeexplicit ClassName type

// body of constructor
 dataMember1{p1};
 dataMember2{p2};
 dataMember3{p3};

}

() {p1, p2, …
class Foo{
public:
 explicit Foo(int x){
 m1 = x * x;
 m2 = m1 + x;
 }
private:
 int m1;
 int m2;
};

int main() {
 Foo foo{3};
 ...
}

• If you define a constructor for a class, you will not be able to create an Account object
using "Account account1;", unless the custom constructor you define has an empty
parameter list.

Amin Fakhari, Spring 2024 MEC510 • Ch2: Introduction to Classes P16

Classes, Objects, Data Members, and Member Functions Initializing Objects with Constructors Data Validation UML Diagram

Data Validation

Amin Fakhari, Spring 2024 MEC510 • Ch2: Introduction to Classes P17

Classes, Objects, Data Members, and Member Functions Initializing Objects with Constructors Data Validation UML Diagram

Sample Program: A Simple Bank-Account Class with Data
Validation

// function returns the account balance
 int getBalance() const {
 return balance;
 }

 // function that sets the name
 void setName(std::string accountName) {
 name = accountName;
 }

 // function that returns the name
 std::string getName() const {
 return name;
 }
private:
 std::string name; // account name data member
 int balance{0}; // data member with default initial value
}; // end class Account

Class Account defined in the header Account.h

// Account class with name and balance data members, and a
// constructor and deposit function that each perform validation.
#include <string>

class Account {
public:
 // Account constructor with two parameters
 Account(std::string accountName, int initialBalance)
 : name{accountName} { // assign accountName to data member name

 // validate that the initialBalance is greater than 0; if not,
 // data member balance keeps its default initial value of 0
 if (initialBalance > 0) { // if the initialBalance is valid
 balance = initialBalance; // assign it to data member balance
 }
 }

 // function that deposits (adds) only a valid amount to the balance
 void deposit(int depositAmount) {
 if (depositAmount > 0) { // if the depositAmount is valid
 balance = balance + depositAmount; // add it to the balance
 }
 }

►

Amin Fakhari, Spring 2024 MEC510 • Ch2: Introduction to Classes P18

Classes, Objects, Data Members, and Member Functions Initializing Objects with Constructors Data Validation UML Diagram

https://onlinegdb.com/EcNRmpkEK

Sample Program: A Simple Bank-Account Class with Data
Validation (cont.)

// Displaying and updating Account balances.
#include <iostream>
#include "Account.h"

int main()
{
 Account account1{"Jane Green", 50};
 Account account2{"John Blue", -7};

 // display initial balance of each object
 std::cout << "account1: " << account1.getName() << " balance is $"
 << account1.getBalance();
 std::cout << "\naccount2: " << account2.getName() << " balance is $"
 << account2.getBalance();

 std::cout << "\n\nEnter deposit amount for account1: "; // prompt
 int depositAmount;
 std::cin >> depositAmount; // obtain user input
 std::cout << "adding " << depositAmount << " to account1 balance";
 account1.deposit(depositAmount); // add to account1's balance

.cpp source-code file

// display balances
 std::cout << "\n\naccount1: " << account1.getName()
 << " balance is $" << account1.getBalance();
 std::cout << "\naccount2: " << account2.getName()
 << " balance is $" << account2.getBalance();

 std::cout << "\n\nEnter deposit amount for account2: "; // prompt
 std::cin >> depositAmount; // obtain user input
 std::cout << "adding " << depositAmount << " to account2 balance";
 account2.deposit(depositAmount); // add to account2 balance

 // display balances
 std::cout << "\n\naccount1: " << account1.getName()
 << " balance is $" << account1.getBalance();
 std::cout << "\naccount2: " << account2.getName()
 << " balance is $" << account2.getBalance() << std::endl;
}

Amin Fakhari, Spring 2024 MEC510 • Ch2: Introduction to Classes P19

Classes, Objects, Data Members, and Member Functions Initializing Objects with Constructors Data Validation UML Diagram

Validation and Presentation Control of private data Using
Set and Get Member Functions

To reduce errors, while increasing the robustness, security and usability of the programs:

• Set functions can be programmed to validate their arguments and reject any attempts to
modify private data members to invalid values (e.g., a negative body temperature).

• Get functions can be programmed to present the private data in a different form, while
the actual data representation remains hidden from the user (e.g., presenting a pass/fail
instead of raw numeric data).

Account(std::string accountName, int initialBalance):name{accountName}{
 if (initialBalance > 0) {
 balance = initialBalance;
 }
}

void deposit(int depositAmount) {
 if (depositAmount > 0) {
 balance = balance + depositAmount;
 }
}

Validation in
member function

Validation in
constructor

int balance{0};

This is called
in-class initializer.

Amin Fakhari, Spring 2024 MEC510 • Ch2: Introduction to Classes P20

Classes, Objects, Data Members, and Member Functions Initializing Objects with Constructors Data Validation UML Diagram

Constructor vs Set Member Functions

#include <iostream>

int main() {
 MyClass myNumbers{1,2,3};
 std::cout << "Sum is: " << myNumbers.getSum() << std::endl;

 myNumbers.setY(10);
 std::cout << "Sum is: " << myNumbers.getSum() << std::endl;

 myNumbers.setNumbers(5,6,7);
 std::cout << "Sum is: " << myNumbers.getSum() << std::endl;
}

class MyClass {
public:
 MyClass (int X, int Y, int Z):x{X},y{Y},z{Z}{
 }
 void setY(int Y){
 y = Y;
 }
 void setNumbers(int X, int Y, int Z){
 x = X;
 y = Y;
 z = Z;
 }
 int getSum() {
 return x + y + z;
 }
private:
 int x, y, z;
};

• Constructors are called automatically once an object is created whereas calling Set
member functions is always optional.

• Initialization by constructors are done only once
whereas by using Set member functions you can
change a few or all the attributes of the objects
anytime.

►

Amin Fakhari, Spring 2024 MEC510 • Ch2: Introduction to Classes P21

Classes, Objects, Data Members, and Member Functions Initializing Objects with Constructors Data Validation UML Diagram

https://onlinegdb.com/Xwq8z-Jc3

UML Class Diagram

Amin Fakhari, Spring 2024 MEC510 • Ch2: Introduction to Classes P22

Classes, Objects, Data Members, and Member Functions Initializing Objects with Constructors Data Validation UML Diagram

UML Class Diagram

UML (Unified Modeling Language) class diagrams are used to summarize a class’s attributes
and operations in concise, graphical, programming-language-independent manner, before
implementing in specific programming languages.

In the UML, each class is modeled in a class diagram as a rectangle with three compartments:

class’s attributes (data members in C++)

access modifier
(- for private, + for public)

class’s operations (member functions in C++)

class name centered in boldface type

attribute type

Top compartment

Middle
compartment

Bottom
compartment

return type

(void)

parameter
type

parameter
name

Amin Fakhari, Spring 2024 MEC510 • Ch2: Introduction to Classes P23

Classes, Objects, Data Members, and Member Functions Initializing Objects with Constructors Data Validation UML Diagram

	Contents
	Slide 1: Ch2: Introduction to Classes

	Classes, Objects, Data Members, and Member Functions
	Slide 2: Classes, Objects, Data Members, and Member Functions
	Slide 4: Sample Program: A Simple Bank-Account Class
	Slide 6: Headers
	Slide 7: Structure of a Class
	Slide 8: Data Type string & Function getline
	Slide 10: Object and Data Member
	Slide 12: Member Functions and Their Callers
	Slide 14: Member Functions and Their Callers (cont.)
	Slide 15: Access Specifiers: private and public
	Slide 17: Sample Program: Room Class

	Initializing Objects with Constructors
	Slide 19: Initializing Objects with Constructors
	Slide 20: Sample Program: A Simple Bank-Account Class with a Constructor that Initializes the Account Name
	Slide 21: Constructors
	Slide 22: Constructors
	Slide 23: Constructors

	Data Validation
	Slide 27: Data Validation
	Slide 28: Sample Program: A Simple Bank-Account Class with Data Validation
	Slide 29: Sample Program: A Simple Bank-Account Class with Data Validation (cont.)
	Slide 30: Validation and Presentation Control of private data Using Set and Get Member Functions
	Slide 32: Constructor vs Set Member Functions

	UML Diagram
	Slide 33: UML Class Diagram
	Slide 34: UML Class Diagram

