
Ch4: for, do...while,
switch

Amin Fakhari, Spring 2024 P1

Logical Operators

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P2

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

Logical Operators

The if, if…else, while, do…while, and for statements each require a condition to determine
how to continue a program’s flow of control. While relational and equality operators can
be used to test whether a particular condition is true or false, they can only test one
condition at a time.

Logical Operators provide us with the capability to test multiple simple conditions.
C++ has 3 logical operators:

- && (Logical AND)
- || (Logical OR)
- ! (Logical NOT)

• C++ evaluates to zero (false) or nonzero (true) all expressions that include relational
operators, equality operators, or logical operators.

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P3

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

Logical AND (&&) Operator

Truth Table

This binary operator is used to test whether if and only if both operands are true.

(expression 1) && (expression 2)

#include <iostream>
int main() {
 std::cout << "Enter an integer number: ";
 int value;
 std::cin >> value;

 if (value > 10 && value < 20)
 std::cout << "Your value is between 10 and 20\n";
 else
 std::cout << "Your value is not between 10 and 20";
}

if (value > 10 && value < 20 && value != 16)
 std::cout << “ 10<value<20, but not 16!";►

Example:

Testing more than 2 conditions:

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P4

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/b_D9vhaWy

Logical OR (||) Operator

This binary operator is used to test whether either or both of two conditions is true.

(expression 1) || (expression 2)

Truth Table
#include <iostream>
int main() {
 std::cout << "Enter an integer number: ";
 int value;
 std::cin >> value;

 if (value == 0 || value == 1)
 std::cout << "You picked 0 or 1\n";
 else
 std::cout << "You did not pick 0 or 1";
}

if (value == 0 || value == 1 || value == 2 || value == 3)
 std::cout << "You picked 0, 1, 2, or 3!";►

Testing more than 2 conditions:

Example:

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P5

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/qmzdwPLyW

Logical NOT (!) Operator

The parentheses around the condition are
needed because the NOT operator has a higher
precedence than the relational operators. If
logical NOT is intended to operate on the result
of other operators, use parentheses.

Truth Table

This unary operator (!) can be used to flip a condition or Boolean value from true to false,
or false to true.

!(expression)

#include <iostream>
int main() {
 int x{5};
 int y{7};
 if (!(x > y))
 std::cout << x << " is not greater than " << y << '\n';
 else
 std::cout << x << " is greater than " << y << '\n';

 if (!x > y) // not the same as (!(x > y)), !x evaluates to 0
 std::cout << x << " is not greater than " << y << '\n';
 else
 std::cout << x << " is greater than " << y << '\n';
} ►

Example:

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P6

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/bohUE5Cp8w

Remarks

• In most cases, logical NOT can be avoided by expressing the condition differently with an appropriate
relational or equality operator. For example:

!(x == y) x != y

• De Morgan’s law:

• In general, logical AND has higher precedence than logical OR, thus, logical AND operators will be
evaluated ahead of logical OR operators.

value1 || value2 && value3 value1 || (value2 && value3) (value1 || value2) && value3

When mixing logical AND and logical OR in a single expression, explicitly parenthesize each operation
to ensure they evaluate how you intend.

!(x && y) !x || !y

!x && !y!(x || y)

!(x > y) x <= y

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P7

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

Short-Circuit Evaluation

This feature prevent the
possibility of division by zero.

• Both && and || operators are evaluated from left to right.
• Short-Circuit Evaluation is a feature of && and || logical operators in which the second

argument (right-hand side) is executed or evaluated only if the first argument (left-hand
side) does not suffice to determine the value of the expression.

• That is, when the first argument of the && function evaluates to false, the overall value
must be false; and when the first argument of the || function evaluates to true, the
overall value must be true.

• This is done to avoid unnecessary calculation for optimization purposes.

#include <iostream>
int main() {
 int x{0};
 if ((x != 0) && (10/x == 2)) {
 std::cout << "if's body!\n";
 }
 std::cout << x;
} ►

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P8

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/PqSTJnJBy

Sample Program: Truth Table

By default, bool values are displayed as 1 and 0.
We can use stream manipulator boolalpha (a sticky
manipulator) to specify that the value of each bool
expression should be displayed as either the word
“true” or the word “false.”

Use logical operators to create truth tables.
#include <iostream>
int main() {
 std::cout << std::boolalpha;
 // create truth table for && (logical AND) operator
 std::cout << "Logical AND (&&)"
 << "\nfalse && false: " << (false && false)
 << "\nfalse && true: " << (false && true)
 << "\ntrue && false: " << (true && false)
 << "\ntrue && true: " << (true && true) << "\n\n";
 // create truth table for || (logical OR) operator
 std::cout << "Logical OR (||)"
 << "\nfalse || false: " << (false || false)
 << "\nfalse || true: " << (false || true)
 << "\ntrue || false: " << (true || false)
 << "\ntrue || true: " << (true || true) << "\n\n";
 // create truth table for ! (logical NOT) operator
 std::cout << "Logical NOT (!)"
 << "\n!false: " << (!false)
 << "\n!true: " << (!true) << std::endl;
} ►

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P9

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/k9YHqsp0_

for Iteration Statement

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P10

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

for Iteration Statement

for statements repeat an action (or group of actions) in their bodies while a condition
remains true. When the condition is false, the iteration terminates, and the first statement
after the body of for will execute. If the condition is initially false, the action (or group of
actions) will not execute. Conditions are usually formed by using the relational and
equality operators.

for (declaration/initialization; condition; increment/decrement) {
 statement;
 …
 statement;
}
statement(s);

declaration & initialization;
while (condition) {
 statement(s);
 increment/decrement;
}
statement(s);

(2) (6)(1)

(5)

(3.a) if true

(3.b) if false

(4)

Corresponding while statement:

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P11

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

Example: Using for and while to Display Numbers
from 1 to 10

#include <iostream>
int main() {
 unsigned int counter{1};
 while (counter <= 10) {
 std::cout << counter << " ";
 ++counter;
 }
}

#include <iostream>
int main() {
 for (unsigned int counter{1}; counter <= 10; ++counter) {
 std::cout << counter << " ";
 }
}

•while can be used in most (but not all) cases in place of for. Typically, for statements are used for
counter-controlled iteration and while statements for sentinel-controlled iteration.

►

►for Statement’s
Header:

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P12

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/03ObnmE2y
https://onlinegdb.com/sLwxgxvSj

Expressions in a for Header

• If a for statement’s control variable is declared in the initialization section of the for’s
header, it can be used only in that for’s body, not beyond it (variable’s scope).

• If the program declares/initializes the control
variable before the loop, declaration/initialization
can be omitted.

#include <iostream>
int main() {
 unsigned int counter{1};
 for (; counter <= 10;) {
 std::cout << counter << " ";
 ++ counter;
 }
}

• If the program calculates the increment/decrement
in the loop’s body or if no increment/decrement is
needed, this expression can be omitted.

►

• If the loop-continuation condition is omitted, C++ assumes that the condition is always
true, thus, creating an infinite loop.

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P13

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/7NgbBrcjmB

Expressions in a for Header (cont.)

i = i + 1
i += 1
++i
i++

i = i - 1
i -= 1
--i
i--

• The increment/decrement expression in a for acts as if it were a standalone statement at
the end of the for’s body. Therefore, the following increment/decrement expressions are
equivalent in a for statement:

or

#include <iostream>
int main() {
 for (int i{10}; i >= 0; i -= 1) {
 std::cout << i << " ";
 }
}

Can we use
unsigned int here? ►

(preferred)

• While using decrement expression, the loop counts
downward. In this case, using unsigned int may
result in an infinite loop.

• Placing a semicolon immediately to the right of the right parenthesis of a for header
makes that for’s body an empty statement. This is normally a logic error.

#include <iostream>
#include<climits>
int main() {
 unsigned int i{1};
 std::cout << i << "\n";
 i = -1; // A wrap-around to the max value
 std::cout << i << "\n";
 std::cout << "UINT_MAX: " << UINT_MAX;
} ►

Reason:

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P14

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/b610Q86M00
https://onlinegdb.com/WV9reueBJ

Expressions in a for Header (cont.)

• Arithmetic expressions can be placed everywhere in a for statement’s header.

• If a program must modify the control variable’s value in the loop’s body, use while rather
than for.

int y{10};
int x{2};
for (int j = x; j <= 4 * x * y; j += y / x)

• Using an incorrect relational operator or an incorrect final value of a loop counter in the
loop-continuation condition of for statement can cause a common logic error called an
off-by-one error. For example:

for (unsigned int i{1}; i <= 10; ++i)

for (unsigned int i{1}; i < 11; ++i)

for (unsigned int i{1}; i < 10; ++i)

for (unsigned int i{0}; i < 10; ++i)
(10 iterations)

(9 iterations)

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P15

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

Sample Program: Compound-Interest Calculations
(Floating-Point-Based Calculations)

#include <iostream>
#include <iomanip>
#include <cmath> // for pow function
int main() {
 // set floating-point number format
 std::cout << std::fixed << std::setprecision(2);
 double principal{1000}; // initial amount before interest
 double rate{0.05}; // interest rate
 std::cout << "Initial principal: " << principal << "\n";
 std::cout << " Interest rate: " << rate << "\n";
 // display headers
 std::cout << "\nYear" << std::setw(20) << "Amount on deposit" << "\n";
 // calculate on deposit for each of ten years
 for (unsigned int year{1}; year <= 10; year++) {
 double amount{principal * std::pow(1 + rate, year)};
 // display the year and the amount
 std::cout << std::setw(4) << year << std::setw(20) << amount << "\n";
 }
}

A person invests $1,000 in a savings
account yielding 5% annual interest
rate. Assuming that all the interest is
left on deposit, calculate and print
the amount of money in the account
at the end of each year for 10 years.
Use the following formula:

𝑎 = 𝑝 1 + 𝑟 𝑛

𝑝: original amount invested (i.e., the
principal)
𝑟: annual interest rate (e.g., use 0.05 for
5%)
𝑛: number of years
𝑎: amount on deposit at the end of the
𝑛th year.

• Standard Library Function pow(x, y) from header <cmath> calculates the value of 𝑥𝑦.

►

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P16

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/p8zJVJj-6

Formatting with setw and Justification with left, right

#include <iostream>
#include <iomanip>
int main() {
 std::cout << "Default positioning:\n"
 << std::setw(9) << "Print" << '\n';

 std::cout << "Left positioning:\n" << std::left
 << std::setw(9) << "Print" << '\n';

 std::cout << "Right positioning:\n" << std::right
 << std::setw(9) << "Print" << '\n';
}

Default positioning:
Print

Left positioning:
Print v
Right positioning:

Print

setw(n) is a parameterized stream manipulator
which specifies that the next value output should
appear in a field width of at least n character
positions.

• If the output value is less than n character positions
wide, the value is right justified in the field by default.

• If the output value is more than n character positions
wide, the field width is extended with additional
character positions to the right to accommodate the
entire value.

• To indicate that values should be output left justified, simply output stream
manipulator left.

• Right justification can be restored by outputting stream manipulator right.

• setw is defined in <iomanip> header file and left, right are defined in <iostream> header file.

►

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P17

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/D5KIds7XS

UML Activity Diagram for for Statement

#include <iostream>
int main() {
 for (int counter{1}; counter <= 10; counter++) {
 std::cout << counter << " ";
 }
 std::cout << std::endl;
}

Example:

►

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P18

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/03ObnmE2y

Comma Operator

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P19

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

Comma as a Separator and Operator

int a{1}, b{2}, c;

• Comma as a Separator is used to separate multiple variables in a variable declarations,
multiple elements in array declaration and initialization, and multiple arguments/
parameters in function calls and definitions, enum declarations, and constructs.

• Comma as an Operator between the expressions allows to evaluate multiple expressions
wherever a single expression is allowed. It guarantees that a list of expressions evaluates
from left to right (and returns the value/type of the rightmost expression, if required).

void setNumbers(int X, int Y, int Z)

int a{1}, b{2}, c{3}; // Comma as a Separator
int i = (a, b); // Comma as an Operator, Result: i=2
int j = (a, b, c); // Comma as an Operator, Result: j=3
int k = (a += 2, a + b); // Comma as an Operator, Result: k=5
int l = a, b; // evaluates as "(l=a), b", i.e., l gets assigned
 // the value of a, and b is evaluated and discarded.

#include <iostream>
int main() {
 int x{ 1 };
 int y{ 2 };
 std::cout << (++x, ++y) << '\n';
 // increment x and y, evaluates to the right operand
} ►

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P20

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/qfeBQifcX

Applications of Comma Operator

- Application in for Statements: It can be used to allow multiple initialization expressions
and/or multiple increment/decrement expressions by comma-separated lists.

if (condition) {
 x = 2;
 y = 3;
}

for (int lower{0}, upper{10}; lower < upper; ++lower, --upper){
 … // statements involving lower and upper
}

- Application in Avoiding a Block and Its Associated
Braces:

if (condition)
 x = 2, y = 3;

- Application in Condition: It can be used within a condition (of an if, while, do…while, or
for) to allow auxiliary computations, e.g., doing arithmetic operations or calling a function
and using the result by a comma-separated list.

if (y = f(x), y > x) {
 ... // statements involving x and y
}

if ((y = f(x)) > x) {
 ... // statements involving x and y
}

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P21

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

Sample Program: Summing Even Integers

Problem: Using a for statement,
write a program to sum the even
integers from 2 to 20 and print
the result.

// Summing integers with the for statement.
#include <iostream>
int main() {
 unsigned int total{0};
 // total even integers from 2 through 20
 for (unsigned int number{2}; number <= 20; number += 2) {
 total += number;
 }
 std::cout << "Sum is " << total << std::endl;
}

#include <iostream>
int main() {
 unsigned int total{0};
 for (unsigned int number{2}; number <= 20; total += number, number += 2){
 }
 std::cout << "Sum is " << total << std::endl;
}

You could merge the
statement’s body

into the increment
portion by using a
comma operator.
Although it is not
the best practice.

►

►

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P22

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/n0hbluK1Z
https://onlinegdb.com/cNKhCjoPsY

do…while Iteration Statement

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P23

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

do…while Iteration Statement

do...while statements are similar to the while statements, however, the do...while statements
test the loop-continuation condition after executing the loop’s body; thus, the body always
executes at least once. When the condition is false, the iteration terminates, and the first
statement after the body of do...while will execute. Conditions are usually formed by using
the relational and equality operators.

do {
 statement;
 ...
 statement;
 } while (condition);

#include <iostream>
int main() {
 unsigned int counter{1};

 do {
 std::cout << counter << " ";
 ++counter;
 } while (counter <= 10);

 std::cout << std::endl;
}

Example: Using a
do…while to output
the numbers 1–10:

• Not providing in the body of a do...while statement an action that eventually causes the condition to
become false results in a logic error called an infinite loop (the loop never terminates).

“;” here.

►

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P24

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/Jbp-1TcDL

do…while Iteration Statement

Note: Since scope of a variable declared in a block {} is just within the block, a variable
declared in body of a do…while cannot be used in the loop condition, which is outside that
scope.

#include <iostream>
int main() {
 int i{0};
 int j;
 do {
 j = i * 2;
 std::cout << j << " ";
 i++;
 } while (j < 100);
}

#include <iostream>
int main() {
 int i{0};
 do {
 int j;
 j = i * 2;
 std::cout << j << " ";
 i++;
 } while (j < 100);
}

j declared outside
do…while‘s body.
Thus, it can be
used in condition.

► ►

✓✘

j declared inside
do…while‘s body.
Thus, it cannot be
used in condition.

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P25

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/sA7z8OFqF
https://onlinegdb.com/KDA454bh0

UML Activity Diagram for do…while Statement

#include <iostream>
int main() {
 unsigned int counter{1};

 do {
 std::cout << counter << " ";
 ++counter;
 } while (counter <= 10);

 std::cout << std::endl;
}

Example:

►

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P26

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/Jbp-1TcDL

switch Multiple-Selection
Statement

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P27

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

switch Multiple-Selection Statement

switch Multiple-Selection Statement selects among many different actions (or groups of
actions), depending on the value of a variable or expression.

switch (an expression or variable) {
 case label1:
 statement(s);
 break;
 case label2:
 statement(s);
 break;
 …
 default:
 statement(s);
 break;
}

switch’s controlling expression/variable is evaluated to produce a value.
• If the expression’s value is equal to the value after any of the case labels, the statements after

the matching case label are executed.
• If no matching value can be found and a default case exists, the statements after the default

case are executed instead, otherwise, execution continues after the end of the switch block.

switch statement does not
require braces ({}) around
multiple statements in a
case.

break statement at the end of a
case causes control to exit the
switch statement immediately.

break statement is not required
for the last case (or the optional
default case, when it appears last).

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P28

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

switch vs if…else

#include <iostream>
int main() {
 int x;
 std::cout << "Enter a Number: ";
 std::cin >> x;
 if (x == 1)
 std::cout << "One";
 else if (x == 2)
 std::cout << "Two";
 else if (x == 3)
 std::cout << "Three";
 else
 std::cout << "Unknown";
}

#include <iostream>
int main() {
 int x;
 std::cout << "Enter a Number: ";
 std::cin >> x;
 switch (x) {
 case 1:
 std::cout << "One";
 break;
 case 2:
 std::cout << "Two";
 break;
 case 3:
 std::cout << "Three";
 break;
 default:
 std::cout << "Unknown";
 break;
 }
}

x is evaluated up to three times,
which is inefficient.

x is evaluated only once, which is more efficient.

►

►

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P29

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/7hiBNppeX
https://onlinegdb.com/KXKF2u9KJ

Remarks

• The controlling expression/variable must evaluate to a signed or unsigned integral type
(bool, char, int, long, long long, or enumerated types that evaluates to a constant integer
value), but not floating-point types or strings.

• The value after the case labels must either match the type of the controlling expression
/variable or must be convertible to that type.

• There is no practical limit to the number of case labels you can have, but all case labels in
switch statement must be unique.

switch (x) {
 case 54:
 …
 case 54: // error: already used value 54!
 …
 case '6': // error: '6' converts to integer value 54, which is already used
 …
}

• The default label is optional, and there can only be one default label per switch statement.
By convention, the default case is placed last in the switch statement.

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P30

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

Remarks

• When break statement is omitted for a case, each
time a match occurs, the statements for that case
and subsequent cases execute until a break
statement or the end of the switch is encountered.
This is called “falling through” to the statements in
subsequent cases.

#include <iostream>
int main() {
 char n{'B'};
 switch (n) {
 case 'A':
 std::cout << 'A' << "\n"; // Skipped
 case 'B': // Match!
 std::cout << 'B' << "\n"; // Execution begins here
 std::cout << 'B' << "\n";
 case 'C':
 std::cout << 'C' << "\n"; // This is also executed
 break;
 case 'D':
 std::cout << 'D' << "\n"; // Skipped
 break;
 default:
 std::cout << 'E' << "\n"; // Skipped
 break;
 }
} ►

• switch statement does not provide a mechanism
for testing ranges of values. Therefore, every value
you need to test must be listed in a separate case
label.

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P31

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/M7d8RIVHO

ASCII Character Set

The digits at the left of the table are the left digits of the decimal equivalents (0–127) of the character codes, and the
digits at the top of the table are the right digits of the character codes. For example, the character code for “F” is 70,
and the character code for “&” is 38.

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P32

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

Sample Program: Using a switch Statement in Member
Function of a Class

class Day {
public:
 void set_data() {
 std::cout<<"Enter number of day: ";
 std::cin>>day;
 }
 void display_day() {
 switch (day) {
 case 1:
 std::cout<<"MONDAY";
 break;
 case 2:
 std::cout<<"TUESDAY";
 break;
 case 3:
 std::cout<<"WEDNESDAY";
 break;
 case 4:
 std::cout<<"THURSDAY";
 break;

#include<iostream>
#include"Day.h"
int main() {
 Day d;
 d.set_data();
 d.display_day();
}

case 5:
 std::cout<<"FRIDAY";
 break;
 case 6:
 std::cout<<"SATURDAY";
 break;
 case 7:
 std::cout<<"SUNDAY";
 break;
 default:
 std::cout<<"INVALID INPUT";
 break;
 }
 }
private:
 int day;
};

Day.h file main.cpp file

►

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P33

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/PkNFwoa_F

Sample Program: Using a switch Statement to Count
Letter Grades

// Using a switch statement to count letter grades.
#include <iostream>
#include <iomanip>

int main() {
 int total{0}; // sum of grades
 unsigned int gradeCounter{0}; // number of grades entered
 unsigned int aCount{0}; // count of A grades
 unsigned int bCount{0}; // count of B grades
 unsigned int cCount{0}; // count of C grades
 unsigned int dCount{0}; // count of D grades
 unsigned int fCount{0}; // count of F grades

 std::cout << "Enter the integer grades in the range 0-100.\n"
 << "Type the end-of-file indicator to terminate input:\n"
 << " On UNIX/Linux/Mac OS X type <Ctrl> d then press Enter\n"
 << " On Windows type <Ctrl> z then press Enter\n";

 int grade;

// loop until user enters the end-of-file indicator
 while (std::cin >> grade) {
 total += grade; // add grade to total
 ++gradeCounter; // increment number of grades

 // increment appropriate letter-grade counter
 switch (grade / 10) {
 case 10: // grade was 100
 case 9: // grade was between 90 and 99
 ++aCount;
 break; // exits switch
 case 8: // grade was between 80 and 89
 ++bCount;
 break; // exits switch
 case 7: // grade was between 70 and 79
 ++cCount;
 break; // exits switch
 case 6: // grade was between 60 and 69
 ++dCount;
 break; // exits switch
 default: // grade was less than 60
 ++fCount;
 break; // optional; exits switch anyway
 } // end switch
 } // end while

Problem: Calculate the class average of a set of numeric
grades entered by the user, and uses a switch statement
to determine the number of students who received an A,
B, C, D, or F.

►

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P34

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/OazlUPqyJ

Sample Program: Using a switch Statement to Count
Letter Grades (cont.)

// set floating-point number format
 std::cout << std::fixed << std::setprecision(2);

 // display grade report
 std::cout << "\nGrade Report:\n";

 // if user entered at least one grade...
 if (gradeCounter != 0) {
 // calculate average of all grades entered
 double average{static_cast<double>(total) / gradeCounter};

 // output summary of results
 std::cout << "Total of the " << gradeCounter << " grades entered is "
 << total << "\nClass average is " << average
 << "\nNumber of students who received each grade:"
 << "\nA: " << aCount << "\nB: " << bCount << "\nC: " << cCount
 << "\nD: " << dCount << "\nF: " << fCount << std::endl;
 }
 else { // no grades were entered, so output appropriate message
 std::cout << "No grades were entered" << std::endl;
 }
}

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P35

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

UML Activity Diagram for switch Statement

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P36

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

break and continue
Statements

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P37

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

break Statement

The break statement, when executed in a while, for, do…while, or switch, causes immediate
exit from that loop, and execution continues with the first statement after the control
statement.
• Common uses of the break statement are to escape early from a loop or to skip the

remainder of a switch.

#include <iostream>
int main() {
 for (unsigned int count{1}; count <= 10; ++count) { // loop 10 times
 if (count == 5) {
 break; // terminates loop if count is 5
 }
 std::cout << count << " ";
 }
 std::cout << "\nBroke out of loop at count = 5" << std::endl;
} ►

1 2 3 4

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P38

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/fePqytqZ5

continue Statement

The continue statement, when executed in a while, for, or do…while, skips the remaining
statements in the loop body and proceeds with the next iteration of the loop.
• In while and do…while statements, after the continue statement executes, the program

evaluates the loop-continuation test immediately.
• In a for statement, after the continue statement executes, the increment/decrement

expression executes, then the program evaluates the loop-continuation test.

#include <iostream>
int main() {
 for (unsigned int count{1}; count <= 10; ++count) { // loop 10 times
 if (count == 5) {
 continue; // skip remaining code in loop body if count is 5
 }
 std::cout << count << " ";
 }
 std::cout << "\nUsed continue to skip printing 5" << std::endl;
} ►

1 2 3 4 6 7 8 9 10

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P39

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/5KidMwMUA

while does not execute in the same manner as for

#include <iostream>
int main() {
 unsigned int count{0};
 while (count <= 9) {
 ++count;
 if (count == 5) {
 continue;
 }
 std::cout << count << " ";
 }
}

#include <iostream>
int main() {
 for (unsigned int count{1}; count <= 10; ++count) {
 if (count == 5) {
 continue;
 }
 std::cout << count << " ";
 }
}

#include <iostream>
int main() {
 unsigned int count{1};
 while (count <= 10) {
 ++count;
 if (count == 5) {
 continue;
 }
 std::cout << count << " ";
 }
}

#include <iostream>
int main() {
 unsigned int count{1};
 while (count <= 10) {
 if (count == 5) {
 continue;
 }
 std::cout << count << " ";
 ++count;
 }
}

1 2 3 4 6 7 8 9 10

1 2 3 4 6 7 8 9 10

2 3 4 6 7 8 9 10 11infinite loop!

►

► ►

►

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P40

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/yG_TWPVA8
https://onlinegdb.com/1cQihrhsBq
https://onlinegdb.com/8pdR6inw4
https://onlinegdb.com/7XpL_8AXU

Constants

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P41

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

Literal Constants

Literal Value Examples Default Literal Type

integer value 5, 0, -3 int

Boolean value true, false bool

floating point value 1.2, 0.0, 3.4 double (not float!)

character 'a', '\n' char

C-style string "Hello, world!" const char*

Literal Constants are unnamed values inserted
directly into the code. All literals have a type. The
type of a literal is deduced from the literal’s value
by compiler.

• If the default type of a literal is not as desired, you can change the type of a literal by adding a suffix:

Data type Literal Suffix Meaning

integral u or U unsigned int

integral l or L long

integral ul, uL, Ul, UL, lu, lU, Lu, or LU unsigned long

integral ll or LL long long

integral ull, uLL, Ull, ULL, llu, llU, LLu, or LLU unsigned long long

integral z or Z The signed version of std::size_t (C++23)

integral uz or UZ std::size_t (C++23)

floating point f or F float

floating point l or L long double

string s std::string

string sv std::string_view

• Suffixes are not
case sensitive.

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P42

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

Literal Constants

#include <iostream>

int main() {
 std::cout << 5 << '\n'; // 5 (no suffix) is type int (by default)
 std::cout << 5u << '\n'; // 5u is type unsigned int
 std::cout << 5L << '\n'; // 5L is type long
 std::cout << 5.0 << '\n'; // 5.0 (no suffix) is type double (by default)
 std::cout << 5.0f << std::endl; // 5.0f is type float
 float f{4.1f}; // use 'f' suffix so the literal is a float and matches variable type of float
 double d{4.1}; // type double matches the literal type double
} ►

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P43

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/Z6YIgAb87y

const Variables

A variable whose value can not be changed is called a constant variable. Defining a variable
as a constant (using const keyword in the variable’s declaration) helps ensure that this value
is not accidentally changed.

• Constant variables must be initialized when declaring them, and then, that value can not
be changed, e.g., via assignment.

#include <iostream>
int main() {
 std::cout << "Enter your age: ";
 int age{};
 std::cin >> age;
 const int constAge {age}; // initialize const variable using non-const value
 // int const constAge {age}; // "east const" style, okay but not preferred
 age = 5; // age is non-const, so we can change its value
 constAge = 6; // error: constAge is const, so we cannot change its value
} ►

const var_type var_name var_type const var_nameor

(preferred style)

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P44

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/N_4pxjx8_

Compile-time Constants

• A Compile-time Constant is a constant whose value is known at compile-time. Examples:
• Literals (e.g., 1, 2.3, ‘A’, and “Hello, world!”).
• A const variable only if its initializer is a constant expression.

#include <iostream>
int main() {
 const int x { 3 }; // x is a compile-time const
 const int y { 4 }; // y is a compile-time const
 const int z { x + y }; // x + y is a constant expression, so z is compile-time const
 const int a { 1 + 2 }; // 1 + 2 is a constant expression, so a is compile-time const
}

An expression that all the values in
it are known at compile-time, and
it is evaluated by the compiler at
compile-time.

int x{3+4};

3+4 is a constant expression, and a
modern compiler will replace it with
the resulting value 7 at compile-time.

For example, in

Depending on the initializer, const variables could end up as either a compile-time const or
a runtime const.

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P45

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

Run-time Constants

Runtime Constants are const variable whose initialization values are not known until
run-time (i.e., they are initialized with a non-constant or run-time expression).

#include <iostream>
int getNumber() {
 std::cout << "Enter a number: ";
 int y{};
 std::cin >> y;
 return y;
}
int main() {
 const int x{ 3 }; // x is a compile time constant
 const int y{ getNumber() }; // y is a runtime constant
 const int z{ x + y }; // x + y is a runtime expression
 std::cout << z << '\n'; // a runtime expression
}

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P46

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

constexpr Variables

There are a few cases where C++ requires a compile-time constant instead of a run-time
constant.

By using the constexpr (short for “constant expression”) keyword instead of const in a
variable’s declaration, we can ensure that the variable is a compile-time constant. Thus, if the
initialization value of a constexpr variable is not a constant expression, the compiler will error.

#include <iostream>
int five() {
 return 5;
}
int main() {
 constexpr double gravity { 9.8 }; // ok: 9.8 is a constant expression
 constexpr int a { 4 + 5 }; // ok: 4 + 5 is a constant expression
 constexpr int b { a}; // ok: a is a constant expression
 std::cout << "Enter your age: ";
 int age{};
 std::cin >> age;
 constexpr int myAge { age }; // compile error: age is not a compile-time constant expression
 constexpr int f { five() }; // compile error: return value of five() is not a compile-time constant expression
} ►

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P47

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/AZElIkHSu

Type Deduction
(auto keyword)

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P48

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

Type Deduction

Because C++ is a strongly-typed language, we are required to provide an explicit type for
all objects. Type Deduction (also sometimes called Type Inference) is a feature that allows
the compiler to deduce the type of an object from the object’s initializer. To use type
deduction, the auto keyword is used in place of the variable’s type.

int add(int x, int y) {
 return x + y;
}
int main() {
 auto d{ 5.0 }; // 5.0 is a double literal, so d will be type double
 auto i{ 1 + 2 }; // 1 + 2 evaluates to an int, so i will be type int
 auto x{ i }; // i is an int, so x will be type int too
 auto sum{ add(5, 6) }; // add() returns an int, so sum's type will be deduced to int

 const int a{ 5 }; // a has type const int
 auto b{ a }; // b will be type int (const is dropped)
 const auto c{ a }; // c will be type const int (const is reapplied)

 auto z1; // Error: The compiler is unable to deduce the type of z1
 auto z2{ }; // Error: The compiler is unable to deduce the type of z2
} ►

Type deduction will drop the
const qualifier from deduced
types. If you want a deduced
type to be const, you must
use the const keyword in
conjunction with the auto
keyword.

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P49

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/iZc8AD4sX

Type Deduction Using Literal Suffixes

#include <iostream>

int main() {
 auto x1{0}; // int (by default)
 auto x2{0L}; // long
 auto x3{0LL}; // long long
 auto x4{0.0f}; // float
 auto x5{0.0}; // double (by default)
 auto x6{0.0L}; // long double
 std::cout << "x1 is " << sizeof(x1) << " bytes\n";
 std::cout << "x2 is " << sizeof(x2) << " bytes\n";
 std::cout << "x3 is " << sizeof(x3) << " bytes\n";
 std::cout << "x4 is " << sizeof(x4) << " bytes\n";
 std::cout << "x5 is " << sizeof(x5) << " bytes\n";
 std::cout << "x6 is " << sizeof(x6) << " bytes\n";
} ►

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P50

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/cq1ot6lhM

Type Deduction for String Literals

If you want the type deduced from a string literal to be std::string or std::string_view, you
must use the s or sv literal suffixes:

#include <string>
#include <string_view> // Since C++17
int main() {
 auto a { "Hello" }; // a will be type const char*, not std::string

 using namespace std::literals; // easiest way to access the s and sv suffixes, since C++14
 auto a1 { "Hello"s }; // "Hello"s is a std::string literal, so a1 will be deduced as a std::string

 // Since C++17:
 auto a2 { "Hello"sv }; // "Hello"sv is a std::string_view literal, so a2 will be deduced as a std::string_view
} ►

Amin Fakhari, Spring 2024 MEC510 • Ch4: for, do...while, switch P51

Logical Operators for Statement Comma Operator do…while Statement switch Statement break, continue Constants auto

https://onlinegdb.com/E0w0zP2sE

	Contents
	Slide 1: Ch4: for, do...while, switch

	Logical Operators
	Slide 2: Logical Operators
	Slide 3: Logical Operators
	Slide 4: Logical AND (&&) Operator
	Slide 5: Logical OR (||) Operator
	Slide 6: Logical NOT (!) Operator
	Slide 8: Remarks
	Slide 10: Short-Circuit Evaluation
	Slide 12: Sample Program: Truth Table

	for Statement
	Slide 14: for Iteration Statement
	Slide 15: for Iteration Statement
	Slide 17: Example: Using for and while to Display Numbers from 1 to 10
	Slide 18: Expressions in a for Header
	Slide 19: Expressions in a for Header (cont.)
	Slide 21: Expressions in a for Header (cont.)
	Slide 23: Sample Program: Compound-Interest Calculations (Floating-Point-Based Calculations)
	Slide 24: Formatting with setw and Justification with left, right
	Slide 28: UML Activity Diagram for for Statement

	Comma Operator
	Slide 29: Comma Operator
	Slide 30: Comma as a Separator and Operator
	Slide 31: Applications of Comma Operator
	Slide 33: Sample Program: Summing Even Integers

	do…while Statement
	Slide 34: do…while Iteration Statement
	Slide 35: do…while Iteration Statement
	Slide 36: do…while Iteration Statement
	Slide 38: UML Activity Diagram for do…while Statement

	switch Statement
	Slide 39: switch Multiple-Selection Statement
	Slide 40: switch Multiple-Selection Statement
	Slide 41: switch vs if…else
	Slide 42: Remarks
	Slide 44: Remarks
	Slide 45: ASCII Character Set
	Slide 46: Sample Program: Using a switch Statement in Member Function of a Class
	Slide 48: Sample Program: Using a switch Statement to Count Letter Grades
	Slide 49: Sample Program: Using a switch Statement to Count Letter Grades (cont.)
	Slide 50: UML Activity Diagram for switch Statement

	break, continue
	Slide 52: break and continue Statements
	Slide 53: break Statement
	Slide 54: continue Statement
	Slide 55: while does not execute in the same manner as for

	Constants
	Slide 57: Constants
	Slide 58: Literal Constants
	Slide 59: Literal Constants
	Slide 61: const Variables
	Slide 62: Compile-time Constants
	Slide 64: Run-time Constants
	Slide 65: constexpr Variables

	auto
	Slide 66: Type Deduction (auto keyword)
	Slide 67: Type Deduction
	Slide 69: Type Deduction Using Literal Suffixes
	Slide 70: Type Deduction for String Literals

