
Ch6: References and
Pointers

Amin Fakhari, Spring 2024 P1

Lvalue References

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P2

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

Lvalues and Rvalues

Lvalues (left values) expressions are those that evaluate to variables or other identifiable
objects that persist beyond the end of execution of the expression. They can be used on an
assignment operator’s left or right side and come in two subtypes:
• modifiable lvalue whose value can be modified,
• non-modifiable lvalue whose value cannot be modified.

Rvalues (right values) expressions are those that evaluate to literals or the returned value
of functions and operators that are discarded at the end of execution of the expression.
They can be used on only an assignment operator’s right side, but not vice versa.

Note: An assignment operation requires the left operand of the assignment to be a
modifiable lvalue expression, and the right operand to be an rvalue expression, thus, x = 5
is valid but 5 = x is not.

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P3

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

Lvalues and Rvalues

#include <iostream>

int return5() {
 return 5;
}

int main() {
 int x{ 5 }; // 5 is an rvalue expression
 const double d{ 1.2 }; // 1.2 is an rvalue expression

 int y{ x }; // x is a modifiable lvalue expression
 const double e { d }; // d is a non-modifiable lvalue expression
 int z{ return5() }; // return5() is an rvalue expression (since the result is returned by value)

 int w{ x + 1 }; // x + 1 is an rvalue expression
 int q{ static_cast<int>(d) }; // the result of static casting d to an int is an rvalue expression
} ►

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P4

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

https://onlinegdb.com/Qfnke3gl7

Lvalue Reference (or Reference)

A Lvalue Reference (commonly called a Reference) is an alias for an existing object (or
variable). Once a reference has been defined, any operation on the reference is applied to
the object (or variable) being referenced.

• To declare an lvalue reference type, an
ampersand (&) is used in the type declaration.

int // a normal int type
int& // an lvalue reference to an int object
double& // an lvalue reference to a double object

• To create an lvalue reference variable, we simply define a variable with an lvalue reference
type to read and modify the value of the object being referenced.

#include <iostream>
int main() {
 int x{5}; // x is a normal integer variable
 int& ref{x}; // or "int &ref{x};“. ref is an lvalue reference variable that can now be used as an alias for variable x
 std::cout << x << ", " << ref << "\n"; // prints 5, 5 the value of x and the value of x via ref
 x = 6; // x now has value 6
 std::cout << x << ", " << ref << "\n"; // prints 6, 6 the value of x and the value of x via ref
 ref = 7; // the object being referenced (x) now has value 7
 std::cout << x << ", " << ref << "\n"; // prints 7, 7 the value of x and the value of x via ref
}

Note: The value of x can
be changed through
either x or ref.

►

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P5

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

https://onlinegdb.com/MkkEwTl5G

Lvalue Reference (or Reference)

• Lvalue references must be bound to (or initialized with) a modifiable lvalue.
• Lvalue references cannot be bound to non-modifiable lvalues or rvalues (because it

would allow us to modify a const variable through the non-const reference).
• The type of the reference must match the type of the referent (modifiable lvalue).
• Once initialized, a reference cannot be reassigned as aliases to other variables.
• Reference variables follow the same scoping and duration rules that normal variables do.

int main() {

 int x{ 5 };
 int& ref{ x }; // valid: lvalue reference bound to a modifiable lvalue

 const int y{ 5 };
 int& ref1{ y }; // invalid: can't bind to a non-modifiable lvalue
 int& ref2{ 0 }; // invalid: can't bind to an r-value

 double z{ 6.0 };
 int& ref3{ z }; // invalid: reference to int cannot bind to double variable
} ►

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P6

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

https://onlinegdb.com/zna_6EBaQ

Lvalue Reference to const

• By using the const keyword when declaring an lvalue reference, we can create a reference to
non-modifiable lvalues to access but not modify them.

• Lvalue reference to const can also bind to a modifiable lvalue. In such a case, we can use the
reference to access the lvalue, but because reference is const, we can not modify the value of
the lvalue through the reference. However, we still can modify the value of the lvalue directly.

#include <iostream>
int main() {
 const int x { 5 }; // x is a non-modifiable lvalue
 const int& ref1 { x }; // okay: ref1 is a an lvalue reference to a const value

 std::cout << ref1 << "\n"; // okay: we can access the const object
 ref1 = 6; // error: we can not modify a const object

 int y { 5 }; // y is a modifiable lvalue
 const int& ref2 { y }; // okay: we can bind a const reference to a modifiable lvalue

 std::cout << ref2 << "\n"; // okay: we can access the object through our const reference
 ref2 = 7; // error: we can not modify an object through a const reference
 y = 6; // okay: y is a modifiable lvalue, we can still modify it through the original identifier
} ►

Best Practice: Favor
lvalue references to
const unless you need
to modify the object
being referenced
through the reference.

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P7

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

https://onlinegdb.com/ZO5KC_ZAc

Lvalue Reference to const

We can initialize an lvalue reference to const with an rvalue. When this happens, a
temporary object is created and initialized with the rvalue, and the reference to const is
bound to that temporary object. The lifetime of the temporary object is extended to match
the lifetime of the reference.

#include <iostream>
int main() {
 const int& ref{ 5 }; // A temporary object holding value 5 is created
 // and ref is bound to it (5 is an rvalue)

 std::cout << ref << "\n"; // Prints 5
} // Both ref and the temporary object die here ►

Summary:
• Lvalue references can only bind to modifiable lvalues.
• Lvalue references to const can bind to modifiable lvalues, non-modifiable lvalues, and

rvalues. This makes them a much more flexible type of reference.

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P8

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

https://onlinegdb.com/dyNN4TeFQ

Passing Arguments by
Reference

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P9

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

Passing Arguments to Functions

Two ways to pass arguments to functions are pass-by-value and pass-by-reference.

• With pass-by-value:
• A copy of the argument’s value is made and passed to the called function.
• Changes to the copy in the called function do not affect the original variable’s

value in the caller.
• Disadvantage is that if a large data item is being passed, copying that data can

take a considerable amount of execution time and memory space.

• With pass-by-reference:
• The caller gives the called function the ability to access the caller’s data directly.
• It is good for performance reasons, because it can eliminate the pass-by-value

overhead of copying large amounts of data.

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P10

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

Pass-by-Value

#include <iostream>
#include <string>
void printValue(int y) {
 std::cout << y << '\n';
} // y is destroyed here
void printValue(std::string y) {
 std::cout << y << '\n';
} // y is destroyed here
int main() {
 int x{2};
 printValue(x); // x is passed by value (copied) into parameter y (inexpensive)
 std::string s{"Hello, world!"}; // s is a std::string
 printValue(s); // s is passed by value (copied) into parameter y (expensive)
} ►

• Fundamental types are cheap to copy, however, most of the types provided by the
standard library (such as std::string) are class types that are usually expensive to copy.

• One way to avoid making an expensive copy of an argument when calling a function and
make the program more efficient is to use pass-by-reference instead of pass-by-value.

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P11

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

https://onlinegdb.com/83CaCLL7ZQ

Pass-by-Reference
(reference to non-const)

When using pass by reference, we declare a function parameter as a reference type. When the function
is called, each reference parameter is bound to the appropriate argument in the caller. Because the
reference acts as an alias for the argument, no copy of the argument is made.

#include <iostream>
#include <string>
void printValue(std::string& y) { // y is bound to a modifiable lvalue (s)
 std::cout << y << '\n';
} // y is destroyed here
void printValue(int& y) { // y is bound to a modifiable lvalue
 std::cout << y++ << '\n’; // this modifies the actual object x
} // y is destroyed here
int main() {
 std::string s{"Hello, world!"}; // s is a modifiable lvalue
 printValue(s); // s is passed by reference
 int x{ 5 }; // x is a modifiable lvalue
 printValue(x); // x is passed by reference
 std::cout << x << '\n'; // x has been modified
 const int z{ 5 }; // z is a non-modifiable lvalue
 printValue(z); // error: z is a non-modifiable lvalue
 printValue(5); // error: 5 is an rvalue
} ►

When using pass by reference to non-
const,
• any changes made to the reference

parameter in the function will affect
the original value of the argument.

• only modifiable lvalue arguments
are acceptable.

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P12

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

https://onlinegdb.com/9KnzS1bggm

Pass-by-Reference
(reference to const)

A reference to const can (1) bind to modifiable lvalues, non-modifiable lvalues, and rvalues
(i.e., any type of argument) (2) guarantee that the function can not change the value being
referenced (in most cases, we don’t want our functions modifying the value of arguments).

#include <iostream>

void printValue(const int& y) { // y is a const reference
 std::cout << y << '\n';
 // ++y; // not allowed: y is const
}

int main() {
 int x{ 5 };
 printValue(x); // ok: x is a modifiable lvalue

 const int z{ 5 };
 printValue(z); // ok: z is a non-modifiable lvalue

 printValue(5); // ok: 5 is a literal rvalue
} ►

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P13

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

https://onlinegdb.com/fBdmf1S6x

Mixing Pass-by-Value and Pass-by-Reference

A function with multiple parameters can determine whether each parameter is passed by
value or passed by reference individually.

Best Practices:
• Favor passing by const reference over passing by non-const reference unless you have a specific

reason to do otherwise (e.g., the function needs to change the value of an argument).
• Prefer pass-by-value for objects that are cheap to copy (e.g., fundamental types, enumerated types),

and pass-by-const-reference for objects that are expensive to copy (e.g., class types including
std::string, std::array, std::vector). If you’re not sure whether an object is cheap or expensive to copy,
favor pass-by-const-reference.

#include <iostream>
#include <string>
void printValue(int a, int& b, const std::string& c);
int main() {
 int x{ 5 };
 const std::string s{ "Hello, world!" };
 printValue(15, x, s);
}
void printValue(int a, int& b, const std::string& c) {
 std::cout << a << ", " << b << ", " << c << "\n";
}

As always, the function
prototype and header
must agree.

►

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P14

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

https://onlinegdb.com/NgQFn0Ew6

Pointers

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P15

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

Address-of Operator (&)

When the code is executed, a piece of memory from RAM will be assigned to variable x. The
address-of operator (&) returns the memory address of its operand (Memory addresses are
typically printed as hexadecimal values). For objects that use more than one byte of
memory, address-of will return the memory address of the first byte used by the object.

#include <iostream>
int main() {
 int x{ 5 };
 int& ref { x }; // ref is an lvalue reference to x
 std::cout << x << '\n';
 std::cout << ref << '\n';
 std::cout << &x << '\n'; // print the memory address of variable x
}

The & symbol has different meanings depending on context:
• When following a type name, & denotes an lvalue reference: int& ref.
• When used in a unary context in an expression, & is the address-of operator: std::cout << &x.
• When used in a binary context in an expression, & is the Bitwise AND operator: std::cout << x & y.

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P16

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

Dereference Operator (*)

The dereference operator (*) returns the value at a given memory address as an lvalue:

#include <iostream>
int main() {
 int x{ 5 };
 int& ref { x }; // ref is an lvalue reference to x (when used with a type, & means lvalue reference)
 std::cout << x << '\n';
 std::cout << ref << '\n';
 std::cout << &x << '\n'; // print the memory address of variable x
 std::cout << *(&x) << '\n'; // print the value at the memory address of variable x
 // (parentheses not required, but make it easier to read)
}

The address-of operator (&) and dereference operator (*) work as opposites: address-of
gets the address of an object and dereference gets the object at an address.

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P17

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

Pointers & Initialization

A pointer is an object that holds a memory address (typically of another variable) as its value.

• Note that this asterisk is part of the declaration syntax for
pointers, not a use of the dereference operator. When
declaring a pointer type, place the asterisk next to the
type name.

#include <iostream>
int main() {
 int x { 5 }; // normal variable
 int& ref { x }; // an lvalue reference to an int value (bound to x)
 int* ptr; // an uninitialized pointer to an int value (holds a garbage address)
 int* ptr2{}; // a null pointer
 int* ptr3{ &x }; // a pointer initialized with the address of variable x
 std::cout << *ptr3 << '\n'; // use dereference operator to access the value at the address that ptr3 is holding}

• A pointer that has not been initialized contains a garbage address and dereferencing it
will result in undefined behavior. Because of this, you should always initialize your
pointers to a known value.

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P18

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

Pointer Initialization

Much like the type of a reference has to match the type of object being referred to, the
type of the pointer has to match the type of the object being pointed to:

int main() {
 int i{ 5 };
 double d{ 7.0 };
 int* iPtr{ &i }; // ok: a pointer to an int can point to an int object
 int* iPtr2 { &d }; // not okay: a pointer to an int can't point to a double object
 double* dPtr{ &d }; // ok: a pointer to a double can point to a double object
 double* dPtr2{ &i }; // not okay: a pointer to a double can't point to an int object
}

Initializing a pointer with a literal value is disallowed:

int* ptr{ 5 }; // not okay
int* ptr{ 0x0012FF7C }; // not okay, 0x0012FF7C is treated as an integer literal

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P19

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

Pointers & Lvalue References
#include <iostream>
int main() {
 int x{ 5 };
 int& ref { x };
 int* ptr { &x }; // ptr initialized with address of variable x
 std::cout << x; // print x's value (5)
 std::cout << ref; // use the reference to print x's value (5)
 std::cout << *ptr << '\n'; // use the pointer to print x's value (5)

 ref = 6; // use the reference to change the value of x
 std::cout << x;
 std::cout << ref; // use the reference to print x's value (6)
 std::cout << *ptr << '\n'; // use the pointer to print x's value (6)

 *ptr = 7; // use the pointer to change the value of x (ptr is dereferenced here)
 std::cout << x;
 std::cout << ref; // use the reference to print x's value (7)
 std::cout << *ptr << '\n'; // use the pointer to print x's value (7)

 int y{ 8 };
 // int& ref { y }; // not allowed!
 ptr = &y; // // change ptr to point at y
 std::cout << "x = " << x << '\n'; // print x's value (7)
 std::cout << "y = " << y << '\n'; // print y's value (8)
 std::cout << "ref = " << ref << '\n'; // (7)
 std::cout << "*ptr = " << *ptr << '\n'; // (8)
}

Pointers and References both provide a way
to indirectly access another object. However,
with pointers, we need to explicitly get the
address to point at, and we have to explicitly
dereference the pointer to get the value.
With references, the address-of and
dereference happens implicitly.

We can use assignment with pointers in two
different ways:
• To change what the pointer is pointing at

(by assigning the pointer a new address),
• To change the value being pointed at (by

assigning the dereferenced pointer a new
value).

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P20

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

Pointers & Lvalue References

• References must be initialized; pointers are not required to be initialized (but should be).
• References are not objects, pointers are.
• References can not be reseated (changed to reference something else), pointers can change what

they are pointing at.
• References must always be bound to an object; pointers can point to nothing.
• References are “safe” (outside of dangling references), pointers are inherently dangerous.

#include <iostream>
int main() {
 int x{ 5 };
 int* ptr{ &x };
 std::cout << *ptr << '\n'; // valid
 {
 int y{ 6 };
 ptr = &y;
 std::cout << *ptr << '\n'; // valid
 } // y goes out of scope, and ptr is now dangling
 // undefined behavior from dereferencing a dangling pointer
 std::cout << *ptr << '\n';
}

Much like a dangling reference, a dangling
pointer is a pointer that is holding the
address of an object that is no longer valid
(e.g., because it has been destroyed).
Dereferencing a dangling pointer will lead
to undefined behavior, as you are trying to
access an object that is no longer valid.

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P21

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

Null Pointers

Besides a memory address, there is one additional value that a pointer can hold: a null
value. A null value (often shortened to null) is a special value that means something has
no value. When a pointer is holding a null value, it means the pointer is not pointing at
anything. Such a pointer is called a null pointer.

• The nullptr keyword represents
a null pointer literal. We can
use nullptr to explicitly initialize
or assign a pointer a null value.

#include <iostream>
int main() {
 int* ptr {}; // ptr is a null pointer, and is not holding an address
 int x { 5 };
 ptr = &x; // ptr now pointing at object x (no longer a null pointer)

 int* ptr2 { nullptr }; // using nullptr to initialize a pointer to be a null pointer

 int value { 5 };
 int* ptr3 { &value }; // ptr3 is a valid pointer
 ptr3 = nullptr; // Can assign nullptr to make the pointer a null pointer

 // std::cout << *ptr3 << '\n'; // Dereference the null pointer
}

• Dereferencing a null pointer
results in undefined behavior

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P22

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

Checking for Null Pointers

We can avoid dereferencing a null pointer by using a conditional to ensure a pointer is
non-null before trying to dereference it.

#include <iostream>
int main() {
 int x { 5 };
 int* ptr { &x };

 // Assume ptr is some pointer that may or may not be a null pointer
 if (ptr == nullptr) // explicit test for equivalence
 std::cout << *ptr << '\n'; // okay to dereference
 else
 ;// do something else that doesn't involve dereferencing ptr (print an error message, etc...)

 // or
 if (ptr) // implicit conversion to Boolean (if ptr is not a null pointer)
 std::cout << *ptr << '\n'; // okay to dereference
 else
 ;// do something else that doesn't involve dereferencing ptr (print an error message, etc...)

 int* ptr2 {};
 std::cout << "ptr2 is " << (ptr2 == nullptr ? "null\n" : "non-null\n"); // explicit test for equivalence
 std::cout << "ptr2 is " << (ptr2 ? "non-null\n" : "null\n"); // implicit conversion to Boolean
}

Pointers can implicitly
convert to Boolean values:
a null pointer converts to
Boolean value false, and a
non-null pointer converts
to Boolean value true.

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P23

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

Favor References Over Pointers

Conditionals can only be used to differentiate null pointers from non-null pointers. There is
no convenient way to determine whether a non-null pointer is pointing to a valid object, or
it is dangling (pointing to an invalid object). When an object is destroyed, any pointers to
the destroyed object will be left dangling. It is the programmer's responsibility to detect
these cases and ensure those pointers are subsequently set to nullptr.

Pointers have the additional abilities of being able to change what they are pointing at,
and to be pointed at null. However, these pointer abilities are also inherently dangerous: A
null pointer runs the risk of being dereferenced, and the ability to change what a pointer is
pointing at can make creating dangling pointers easier.

Best Practice: Favor references over pointers unless the additional capabilities provided by
pointers are needed.

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P24

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

Pointer to const value

A pointer to a const value is a (non-const) pointer that points to a constant value. To
declare a pointer to a const value, use the const keyword before the pointer’s data type.

Because a pointer to const
is not const itself (it just
points to a const value), we
can change what the
pointer is pointing at by
assigning the pointer a new
address.

int main() {
 const int x{ 5 }; // const
 // int* ptr { &x }; // compile error: cannot convert from const int* to int*

 const int* ptr { &x }; // okay: ptr is pointing to a "const int"

 // *ptr = 6; // not allowed: we can't change a const value

 const int y{ 6 };
 ptr = &y; // okay: ptr now points at const int y

 int z{ 5 }; // non-const
 const int* ptr2 { &z }; // ptr points to a "const int"
 // *ptr2 = 6; // not allowed: ptr points to a "const int" so we can't change the value through ptr
 z = 6; // allowed: the value is still non-const when accessed through non-const identifier x
}

A pointer to const can also point to non-const variables. A pointer to const treats the value being
pointed to as constant, regardless of whether the object at that address was initially defined as const
or not.

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P25

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

const pointers

We can also make a pointer itself constant. A const pointer is a pointer whose address can
not be changed after initialization. To declare a const pointer, use the const keyword after
the asterisk in the pointer declaration.

int main() {
 int x{ 5 };
 int y{ 6 };

 int* const ptr { &x }; // okay: the const pointer is initialized to the address of x
 // ptr will always point to x
 // ptr = &y; // error: once initialized, a const pointer can not be changed.

 *ptr = 6; // okay: the value being pointed to is non-const
}

Because the value being pointed to is non-
const, it is possible to change the value being
pointed to via dereferencing the const pointer

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P26

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

const pointer to a const value

It is possible to declare a const pointer to a const value by using the const keyword both
before the type and after the asterisk. A const pointer to a const value can not have its
address changed, nor can the value it is pointing to be changed through the pointer. It can
only be dereferenced to get the value it is pointing at.

int main() {
 int value { 5 };
 const int* const ptr { &value }; // a const pointer to a const value
}

int main() {
 int v{ 5 };

 int* ptr0 { &v }; // points to an "int" but is not const itself, so this is a normal pointer.
 const int* ptr1 { &v }; // points to a "const int" but is not const itself, so this is a pointer to a const value.
 int* const ptr2 { &v }; // points to an "int" and is const itself, so this is a const pointer (to a non-const value).
 const int* const ptr3 { &v }; // points to a "const int" and is const itself, so this is a const pointer to a const value.

 // if the const is on the left side of the *, the const belongs to the value
 // if the const is on the right side of the *, the const belongs to the pointer
}

Recap:

Amin Fakhari, Spring 2024 MEC510 • Ch6: References and Pointers P27

References

References
Passing by Reference

Passing by Reference
Pointers

Pointers

	Contents
	Slide 1: Ch6: References and Pointers

	References
	Slide 2: Lvalue References
	Slide 3: Lvalues and Rvalues
	Slide 4: Lvalues and Rvalues
	Slide 5: Lvalue Reference (or Reference)
	Slide 7: Lvalue Reference (or Reference)
	Slide 8: Lvalue Reference to const
	Slide 9: Lvalue Reference to const

	Passing by Reference
	Slide 10: Passing Arguments by Reference
	Slide 11: Passing Arguments to Functions
	Slide 12: Pass-by-Value
	Slide 13: Pass-by-Reference (reference to non-const)
	Slide 15: Pass-by-Reference (reference to const)
	Slide 16: Mixing Pass-by-Value and Pass-by-Reference

	Pointers
	Slide 17: Pointers
	Slide 18: Address-of Operator (&)
	Slide 19: Dereference Operator (*)
	Slide 20: Pointers & Initialization
	Slide 22: Pointer Initialization
	Slide 23: Pointers & Lvalue References
	Slide 24: Pointers & Lvalue References
	Slide 25: Null Pointers
	Slide 27: Checking for Null Pointers
	Slide 28: Favor References Over Pointers
	Slide 29: Pointer to const value
	Slide 30: const pointers
	Slide 31: const pointer to a const value

