
Ch9: Classes, Operator
Overloading

Amin Fakhari, Spring 2024 P1

Classes

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P2

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

class and struct

While C++ provides a number of fundamental data types (e.g., char, int, long, float, double,
etc.) that are often sufficient for solving relatively simple problems, it can be difficult to
solve complex problems using just these types. One of C++’s more useful features is the
ability to define your own data types (using enum, struct, and class) that better correspond
to the problem being solved.

struct DateStruct {
 int year {};
 int month {};
 int day {};
};

DateStruct today { 2020, 10, 14 };

class DateClass {
public:
 int m_year {};
 int m_month {};
 int m_day {};
};

DateClass today { 2020, 10, 14 };

In C++, the main difference between struct and class is that struct has public members by
default and class has private members by default.

Best Practice: Use the struct keyword for data-only structures. Use the class keyword for
objects that have both data and functions.

• By convention, class
names should begin with
an upper-case letter.

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P3

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

Member Functions

In addition to holding data, classes can also contain functions. Functions defined inside of
a class are called member functions (or sometimes methods). Member functions can be
defined inside or outside of the class definition.
Just like members of a struct, members (data member and member functions) of a class
are accessed using the member selection operator “.”.

#include <iostream>
class DateClass {
public:
 int m_year {};
 int m_month {};
 int m_day {};
 void print() {
 std::cout << m_year << '/' << m_month << '/' << m_day;
 }
};
int main() {
 DateClass today { 2023, 04, 01 };
 today.m_day = 16;
 today.print();
} ►

Note: With normal non-member functions
(i.e., global functions), a function cannot call
a function that is defined “below” it, without
a forward declaration. With member
functions, this limitation does not apply.

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P4

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/LuLgMCPVAe

Common C++ Standard Library classes

std::string, std::vector, and std::array are all class types. Therefore, when you create an
object of any of these types, you are instantiating a class object. Moreover, when you call a
function using these objects, you are calling a member function.

#include <string>
#include <array>
#include <vector>
#include <iostream>

int main() {
 std::string s { "Hello, world!" }; // instantiate a string class object
 std::array<int, 3> a { 1, 2, 3 }; // instantiate an array class object
 std::vector<double> v { 1.1, 2.2, 3.3 }; // instantiate a vector class object
 std::cout << "length: " << s.length() << '\n'; // call a member function
} ►

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P5

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/Lm_vgOdL0I

Defining Member Functions Outside Class Definition

C++ provides a way to separate the “declaration” portion of the member functions and constructors
from the “definition” portion. To do so, simply define the functions of the class as if they were normal
functions outside the class but prefix the class name to the function using the scope resolution
operator (::) (same as for a namespace). The prototypes of the functions still exist inside the class
definition.

#include "Date.h"
// Date constructor
Date::Date(int year, int month, int day) {
 setDate(year, month, day);
}
// Date member function
void Date::setDate(int year, int month, int day) {
 m_month = month;
 m_day = day;
 m_year = year;
}

class Date {
public:
 Date(int year, int month, int day);
 void setDate(int year, int month, int day);
 int getYear() { return m_year; }
 int getMonth() { return m_month; }
 int getDay() { return m_day; }
private:
 int m_year;
 int m_month;
 int m_day;
}; #include<iostream>

#include "Date.h"
int main(){
 Date d{2023, 4, 16};
 std::cout << "Date: " << d.getMonth() << "/" << d.getDay() << "/" << d.getYear();
}

►

Date.h Date.cpp

main.cpp

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P6

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/XNpw2zD2h

Defining Member Functions Outside Class Definition
(Another Example)

#include<iostream>
class Calc {
public:
 Calc(int value=0): m_value{value} {}

 int add(int value) {
 m_value += value;
 return m_value;
 }
 int sub(int value) {
 m_value -= value;
 return m_value;
 }
 int mult(int value) {
 m_value *= value;
 return m_value;
 }

 int getValue() { return m_value; }
private:
 int m_value{};
}; ► ►

constructor
with a member
initialization list

#include "Calc.h"
Calc::Calc(int value): m_value{value} {}
int Calc::add(int value) {
 m_value += value;
 return m_value;
}
int Calc::sub(int value) {
 m_value -= value;
 return m_value;
}
int Calc::mult(int value) {
 m_value *= value;
 return m_value;
}

Calc.cpp

class Calc {
public:
 Calc(int value=0);
 int add(int value);
 int sub(int value);
 int mult(int value);

 int getValue() {
 return m_value;
 }
private:
 int m_value{};
};

Calc.h

#include<iostream>
#include "Calc.h"

int main(){
 Calc x{3};
 std::cout << x.add(3);
}

main.cpp

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P7

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/NDarVHaSD
https://onlinegdb.com/nOVo75g62

Anonymous Class Objects

In certain cases, we need an object only temporarily. This is done by creating objects like
normal, but omitting the variable name.

#include <iostream>
class Cents {
public:
 Cents(int cents) : m_cents {cents} {}
 int getCents() const { return m_cents; }
private:
 int m_cents{};
};
Cents add(const Cents& c1, const Cents& c2) {
 Cents sum{ c1.getCents() + c2.getCents() };
 return sum;
}
int main() {
 Cents cents1{ 6 };
 Cents cents2{ 8 };
 Cents sum{ add(cents1, cents2) };
 std::cout << "I have " << sum.getCents() << " cents.\n";
}

#include <iostream>
class Cents {
public:
 Cents(int cents) : m_cents { cents } {}
 int getCents() const { return m_cents; }
private:
 int m_cents{};
};
Cents add(const Cents& c1, const Cents& c2) {
 return { c1.getCents() + c2.getCents() };
}
int main() {
 std::cout << "I have “
 << add(Cents{ 6 }, Cents{ 8 }).getCents()
 << " cents.\n";
}

Cents cents1{6};
Cents cents2{8};

Cents{6};
Cents{8};

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P8

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

Constructors

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P9

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

Constructors

When all members of a class (or struct) are public, we can initialize the them directly using
list-initialization. However, as soon as we make any member variables private, we cannot
initialize classes in this way, and we must use Constructors.

A constructor is a special kind of class member function that is automatically called when
an object of that class is created. Unlike normal member functions, constructors must have
the same name as the class and no return type (not even void).

C++ allows more than one constructor. The other constructors must have different
parameters.

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P10

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

Default Constructors

A constructor that takes no parameters (or has parameters that all have default values) is called a
default constructor. The default constructor is called if no user-provided initialization values are
provided.

#include <iostream>
class Fraction {
public:
 Fraction() { // default constructor
 m_numerator = 0;
 m_denominator = 1;
 }
 int getNumerator() { return m_numerator; }
 int getDenominator() { return m_denominator; }
 double getValue() { return static_cast<double>(m_numerator) / m_denominator; }
private:
 int m_numerator {};
 int m_denominator {};
};
int main() {
 Fraction frac{}; // calls Fraction() default constructor; or "Fraction frac;"" (not preferred)
 std::cout << frac.getNumerator() << '/' << frac.getDenominator() << '\n';
} ►

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P11

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/dVVcjfqit

Parameterized Constructors

Constructors can also be declared with parameters to initialize data members. You can define as many
constructors as you want, as long as each has a unique signature (due to function overloading)

#include <iostream>
class Fraction {
public:
 Fraction() { // default constructor
 m_numerator = 0;
 m_denominator = 1;
 }
 // Constructor with two parameters, one parameter having a default value
 Fraction(int numerator, int denominator=1) {
 m_numerator = numerator;
 m_denominator = denominator;
 }
 int getNumerator() { return m_numerator; }
 int getDenominator() { return m_denominator; }
 double getValue() { return static_cast<double>(m_numerator) / m_denominator; }
private:
 int m_numerator {};
 int m_denominator {};
};

int main() {
 Fraction fiveThirds{ 5, 3 }; // List initialization, calls Fraction(int, int)
 Fraction six{ 6 }; // calls Fraction(int, int) constructor, second parameter uses default value of 1
}

►

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P12

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/2McIOTiSP

Reducing Constructors

#include <iostream>
class Fraction {
public:
 // Default constructor
 Fraction(int numerator=0, int denominator=1) {
 m_numerator = numerator;
 m_denominator = denominator;
 }
 int getNumerator() { return m_numerator; }
 int getDenominator() { return m_denominator; }
 double getValue() { return static_cast<double>(m_numerator) / m_denominator; }
private:
 int m_numerator {};
 int m_denominator {};
};
int main() {
 Fraction zero{}; // will call Fraction(0, 1) or "Fraction zero;"
 Fraction six{ 6 }; // will call Fraction(6, 1)
 Fraction fiveThirds{ 5, 3 }; // will call Fraction(5, 3)
}

The rules around defining and calling functions that have default parameters apply to
constructors too.

►

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P13

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/ZLLf4HuoF

Implicit Constructor

• If your class has no constructors, C++ will automatically generate a public default constructor called
an implicit constructor.

class Date {
public:
 Date(int year, int month, int day) {
 m_year = year;
 m_month = month;
 m_day = day;
 }
 // No implicit constructor provided because we already defined our own constructor
private:
 int m_year{};
 int m_month{};
 int m_day{};
};
int main() {
 Date date{}; // error: default constructor doesn't exist, and the compiler won't generate one
 Date today{ 2023, 1, 1 }; // today is initialized to Jan 1, 2023
}

class Date {
private:
 int m_year{};
 int m_month{};
 int m_day{};
 // No user-provided constructors,
 // the compiler generates a default constructor.
};
int main() {
 Date date{};
}

• If your class has any other constructors, the implicitly
generated constructor will not be provided.

►

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P14

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/xwS9byZ26

Implicit Constructor (cont.)

If your class has another constructor and you want to allow default construction, you can (1) explicitly
define a default constructor, (2) add default arguments to every parameter of a constructor with
parameters, or (3) use the default keyword to tell the compiler to create a default constructor.

class Date {
public:
 // Tell the compiler to create a default constructor, even if there are other constructors.
 Date() = default;
 Date(int year, int month, int day) {
 m_year = year;
 m_month = month;
 m_day = day;
 }
private:
 int m_year;
 int m_month;
 int m_day;
};
int main() {
 Date date{}; // date is zero-initialized
 Date today{ 2020, 10, 14 }; // today is initialized to Oct 14th, 2020
} ►

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P15

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/D-mkWWjPgv

Classes Containing Class Members

A class may contain other class objects as member variables. By default, when the outer class is
constructed, the member variables will have their default constructors called. This happens
before the body of the constructor executes.

#include <iostream>
class A {
public:
 A() {
 std::cout << "A\n";
 }
};
class B {
public:
 B() {
 std::cout << "B\n";
 }
private:
 A m_a; // B contains A as a member variable
};
int main() {
 B b;
} ►

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P16

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/VI2wVpIwe

Initializing const Data Members

class Something {
public:
 Something() {
 m_value = 1; // error: const vars can not be assigned to
 }
private:
 const int m_value;
};

We can initialize class data members in the constructor using the assignment operator.
However, some types of data (e.g., const and reference variables) must be initialized on
the line they are declared.

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P17

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

Initializing const Data Members

• To solve this problem, C++
provides a method for
initializing data members
(rather than assigning values
to them after they are
created) via a member
initializer list.

#include <iostream>
class MyClass {
public:
 MyClass(int a, double b, char c='c'):m_a{a}, m_b{b}, m_c{c} {
 // No need for assignment here
 }
 void print() {
 std::cout << "MyClass(" << m_a << ", " << m_b << ", " << m_c << ")\n";
 }
private:
 const int m_a {};
 double m_b {};
 char m_c {};
};
int main() {
 std::cout << "Enter an integer: ";
 int x{};
 std::cin >> x;
 MyClass myObject{ x, 2.2 }; // a = 1, b=2.2, c gets default value 'c'
 myObject.print();
}

• Note: You can use default
parameters to provide a
default value in case the
user didn’t pass one in.

►

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P18

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/UDGMdSrDZ

Initializing Data Member That Are Classes

#include <iostream>

class A {
public:
 A(int x = 0) { std::cout << "A: " << x << '\n'; }
};

class B {
private:
 A m_a {};
public:
 B(int y):m_a{ y - 1 } { // call A(int) constructor to initialize member m_a
 std::cout << "B: " << y << '\n';
 }
};

int main() {
 B b{ 5 };
} ►

Using member initializer
lists, we can initialize data
member that are classes.

Best practice: In general, use
member initializer lists to
initialize your data members
instead of assignment.

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P19

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/Fahg9mqKU

Member Initialization

When writing a class that has multiple constructors, having to specify default values for all
members in each constructor results in redundant code. It is possible to give class data
members (those that don’t use the static keyword) a default initialization value directly.

#include <iostream>
class Rectangle {
public:
 void print() {
 std::cout << "length: " << m_length << ", width: " << m_width << '\n';
 }
private:
 double m_length{ 1.0 }; // m_length has a default value of 1.0
 double m_width{ 1.0 }; // m_width has a default value of 1.0
};

int main() {
 Rectangle x{}; // x.m_length = 1.0, x.m_width = 1.0
 x.print();
} ►

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P20

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/UIxllNQ77

Member Initialization (cont.)

#include <iostream>
class Rectangle {
public:
 Rectangle(double length, double width):m_length{length}, m_width{width} {
 // m_length and m_width are initialized by the constructor
 }
 Rectangle(double length):m_length{length} {
 // m_length is initialized by the constructor.
 // m_width's default value (1.0) is used.
 }
 Rectangle() = default;
 void print() {
 std::cout << "length: " << m_length << ", width: " << m_width << '\n';
 }
private:
 double m_length{1.0};
 double m_width{1.0};
};

int main() {
 Rectangle x{2.0, 3.0};
 x.print();
 Rectangle y{4.0};
 y.print();
 Rectangle z{}; // There will be an error without default constructor "Rectangle() = default;"
 z.print();
}

►

Best Practice: Initialize all
member variables on creation
of the object via either a
constructor or default member
initialization.

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P21

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/ylrdK4hhe

Overlapping and Delegating Constructors

Assume that you have a class with multiple constructors that have overlapping
functionality. However, having duplicate code is something to be avoided as much as
possible

class Foo {
public:
 Foo() {
 // code to do A
 }
 Foo(int value) {
 // code to do A
 // code to do B
 }
};

Two method for the issue:
1) Delegating constructors
2) Using a member function for setup

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P22

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

1) Delegating Constructors

Constructors are allowed to call other constructors from the same class from the member
initializer list. This process is called Delegating Constructors.

#include <iostream>
#include <string>
class Employee {
public:
 Employee(int id=0, std::string name=""):m_id{id}, m_name{name} {
 std::cout << "Employee " << m_name << " created.\n";
 }
 // Use a delegating constructor to minimize redundant code
 Employee(std::string name):Employee{0, name} {
 }
private:
 int m_id{};
 std::string m_name{};
};

class Foo {
public:
 Foo() {
 // code to do A
 }

 Foo(int value): Foo{} {
 // code to do B
 }

};

Note: A constructor that delegates to another constructor is not allowed to do any
member initialization itself. Thus, your constructors can delegate or initialize, but not both.

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P23

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

2) Using a Member Function for Setup

In this method, we create a private setup() member function to handle various setup tasks that we
need, and both of our constructors call setup().

#include <iostream>
class Foo {
public:
 Foo() {
 setup();
 }
 Foo(int value) : m_value { value } { // we must initialize m_value since it's const
 setup();
 }
private:
 const int m_value {0};
 void setup() { // setup is private so it can only be used by our constructors
 // code to do some common setup tasks (e.g., open a file or database)
 std::cout << "Setting things up...\n";
 }
};
int main() {
 Foo a;
 Foo b{ 5 };
} ►

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P24

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/2-pGHXNx9

Destructors

#include<iostream>
class Test {
public:
 Test() {
 std::cout<<"\n Constructor executed";
 }
 ~Test() {
 std::cout<<"\n Destructor executed";
 }
};
int main() {
 Test t;
} ►

A destructor is another special kind of class member
function that is executed when an object of that class
is destroyed. Whereas constructors are designed to
initialize a class, destructors are designed to help
clean up.

• The destructor must have the same name as
the class, preceded by a tilde (~).

• The destructor can not take arguments.
• The destructor has no return type.
• A class can only have a single destructor.

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P25

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/2PVJP8EuaT

Const Class Objects &
Member Functions

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P26

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

Const Class Objects

Instantiated class objects can be made const by using the const keyword. Initialization is
done via class constructors (default or parameterized). Once a const class object has been
initialized via constructor, any attempt to modify the member variables of the object is
disallowed.

class Something {
public:
 Something(): m_value{0} { }
 void setValue(int value) { m_value = value; }
 int getValue() { return m_value ; }

private:
 int m_value {};
};

int main() {
 const Something something{}; // calls default constructor
 something.setValue(5); // compiler error: violates const
}

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P27

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

Const Member Functions

A const member function is a member function that guarantees it will not modify the
object or call any non-const member functions (as they may modify the object). To make a
const member function, we simply append the const keyword to the function prototype,
after the parameter list, but before the function body.

class Something {
public:
 Something(): m_value{0} { }
 void resetValue() { m_value = 0; }
 void setValue(int value) { m_value = value; }
 int getValue() const { return m_value; }
private:
 int m_value {};
};

class Something {
public:
 Something(): m_value{0} { }
 void resetValue() { m_value = 0; }
 void setValue(int value) { m_value = value; }
 int getValue() const;
private:
 int m_value {};
};

int Something::getValue() const {
 return m_value;
}

For member functions defined outside of the class
definition, the const keyword must be used on
both the function prototype in the class definition
and on the function definition.

Note: Constructors cannot be marked as const.
This is because constructors need to be able to
initialize their member variables.

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P28

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

Const Objects via Pass-by-Const-Reference

Note: We cannot call non-const member functions on const objects. Thus, in this example, since date
is treated as a const object, we must make getYear(), getMonth(), and getDay() const.

#include<iostream>
class Date {
public:
 Date(int year, int month, int day) {
 setDate(year, month, day);
 }
 void setDate(int year, int month, int day) {
 m_year = year;
 m_month = month;
 m_day = day;
 }
 int getYear() const { return m_year; }
 int getMonth() const { return m_month; }
 int getDay() const { return m_day; }
private:
 int m_year {};
 int m_month {};
 int m_day {};
};

void printDate(const Date& date) {
 std::cout << date.getYear() << '/'
 << date.getMonth() << '/'
 << date.getDay() << '\n';
}

int main() {
 Date date{2024, 4, 23};
 printDate(date);
}

►

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P29

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/anlGe7vFU

Operator Overloading

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P30

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

Friend Functions

A friend function is a function that can access the private members of a class as though it
was a member of that class. In all other regards, the friend function is just like a normal
function. To declare a friend function, simply use the friend keyword in front of the
prototype of the function you wish to be a friend of the class.

#include <iostream>
class Value {
public:
 Value(int value) : m_value{ value } {}
 friend bool isEqual(const Value& value1, const Value& value2);
private:
 int m_value{};
};
bool isEqual(const Value& value1, const Value& value2) {
 return (value1.m_value == value2.m_value);
}
int main() {
 Value v1{ 5 };
 Value v2{ 6 };
 std::cout << std::boolalpha << isEqual(v1, v2);
}

- A friend function may be either a
normal function, or a member
function of another class.

- Declaration of the friend function
can be done in the private or
public section of the class.

►

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P31

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/YsmLJGYmU

Friend Functions: Multiple Friends

A function can be a friend of
more than one class at the
same time.

#include <iostream>
class Humidity;
class Temperature {
public:
 Temperature(int temp=0) : m_temp {temp} { }
 friend void printWeather(const Temperature& temperature, const Humidity& humidity);
private:
 int m_temp {};
};
class Humidity {
public:
 Humidity(int humidity=0) : m_humidity {humidity} { }
 friend void printWeather(const Temperature& temperature, const Humidity& humidity);
private:
 int m_humidity {};
};
void printWeather(const Temperature& temperature, const Humidity& humidity) {
 std::cout << "The temperature is " << temperature.m_temp <<
 " and the humidity is " << humidity.m_humidity << '\n';
}
int main() {
 Humidity hum{10};
 Temperature temp{12};
 printWeather(temp, hum);
}

This is a class prototype
that tells the compiler that
we are going to define a
class called Humidity in the
future.

►

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P32

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/-Eyr6cYUN

Friend Classes
#include <iostream>
class Storage {
public:
 Storage(int nValue, double dValue) : m_nValue{nValue}, m_dValue{dValue} {}
 friend class Display; // Make the Display class a friend of Storage
private:
 int m_nValue {};
 double m_dValue {};
};
class Display {
public:
 Display(bool displayIntFirst) : m_displayIntFirst{displayIntFirst} {}
 void displayItem(const Storage& storage) {
 if (m_displayIntFirst)
 std::cout << storage.m_nValue << ' ' << storage.m_dValue << '\n';
 else // display double first
 std::cout << storage.m_dValue << ' ' << storage.m_nValue << '\n';
 }
private:
 bool m_displayIntFirst;
};
int main() {
 Storage storage{5, 6.7};
 Display display{false};
 display.displayItem(storage);
} ►

It is also possible to make an entire
class a friend of another class. This
gives all of the member functions of
the friend class access to the
private members of the other class.

- If class A is a friend of B, that does
not mean B is also a friend of A.

- If class A is a friend of B, and B is
a friend of C, that does not mean
A is a friend of C.

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P33

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/PIdU2wFM6W

Operator Overloading

In C++, operators are implemented as functions. By using function overloading on the
operator functions, you can define your own versions of the operators that work with
different data types (including classes that you have written).

x + y  operator+(x, y)

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P34

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

Overloading Operators Using Friend Functions

#include <iostream>
class Cents {
public:
 Cents(int cents) : m_cents{ cents } { }
 friend Cents operator+(const Cents& c1, const Cents& c2);
 friend Cents operator-(const Cents& c1, const Cents& c2);
 int getCents() const { return m_cents; }
private:
 int m_cents {};
};
Cents operator+(const Cents& c1, const Cents& c2) {
 return c1.m_cents + c2.m_cents;
}
Cents operator-(const Cents& c1, const Cents& c2) {
 return c1.m_cents - c2.m_cents;
}
int main() {
 Cents cents1{ 6 };
 Cents cents2{ 2 };
 Cents centsSum{ cents1 + cents2 };
 std::cout << "I have " << centsSum.getCents() << " cents.\n";
} ►

Overloading the multiplication
operator (*) and the division operator
(/) is as easy as defining functions for
operator* and operator/, respectively.

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P35

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/vG2GPi574

Overloading Operators for Operands of Different Types

Whenever we overload
binary operators for
operands of different
types, we actually need
to write two functions,
one for each case.

#include <iostream>
class Cents {
public:
 Cents(int cents) : m_cents{ cents } { }
 friend Cents operator+(const Cents& c1, int value);
 friend Cents operator+(int value, const Cents& c1);
 int getCents() const { return m_cents; }
private:
 int m_cents {};
};
Cents operator+(const Cents& c1, int value) {
 return c1.m_cents + value;
}
Cents operator+(int value, const Cents& c1) {
 return c1.m_cents + value; // or "return c1 + value;" which calls
 // operator+(Cents, int), the other overloaded operator
}
int main() {
 Cents c1{ Cents{ 4 } + 6 };
 Cents c2{ 6 + Cents{ 4 } };
 std::cout << "I have " << c1.getCents() << " cents.\n";
 std::cout << "I have " << c2.getCents() << " cents.\n";
} ►

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P36

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/XZToljuaT

Overloading Operators Using Normal Functions

#include <iostream>

class Cents {
public:
 Cents(int cents) : m_cents{ cents } { }
 int getCents() const { return m_cents; }
private:
 int m_cents {};
};

Cents operator+(const Cents& c1, const Cents& c2) {
 // we don't need direct access to private members here
 return Cents{ c1.getCents() + c2.getCents() };
}

int main() {
 Cents cents1{ 6 };
 Cents cents2{ 8 };
 Cents centsSum{ cents1 + cents2 };
 std::cout << "I have " << centsSum.getCents() << " cents.\n";
}

Similarly, we can overload
operators (-), (*), and (/).►

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P37

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/UC9nprkMR

Overloading Operator <<

#include <iostream>

class Point {
public:
 Point(double x=0.0, double y=0.0, double z=0.0) : m_x{x}, m_y{y}, m_z{z} {}
 friend std::ostream& operator<< (std::ostream& out, const Point& point);
private:
 double m_x{};
 double m_y{};
 double m_z{};
};

// std::ostream is the type for object std::cout
std::ostream& operator<< (std::ostream& out, const Point& point) {
 out << "Point(" << point.m_x << ", " << point.m_y << ", " << point.m_z << ')';
 return out; // return std::ostream so we can chain calls to operator<<
}

int main() {
 Point point1{2.0, 3.5, 4.0};
 Point point2{6.0, 7.5, 8.0};
 std::cout << point1 << '\n' << point2 << '\n';
} ►

Any time we want our
overloaded binary
operators to be chainable,
the left operand should be
returned (by reference).

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P38

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/3PGrfZsNi

Overloading Operator >>

#include <iostream>
class Point {
public:
 Point(double x=0.0, double y=0.0, double z=0.0) : m_x{x}, m_y{y}, m_z{z} {}
 friend std::ostream& operator<< (std::ostream& out, const Point& point);
 friend std::istream& operator>> (std::istream& in, Point& point);
private:
 double m_x{};
 double m_y{};
 double m_z{};
};
// std::ostream is the type for object std::cout
std::ostream& operator<< (std::ostream& out, const Point& point) {
 out << "Point(" << point.m_x << ", " << point.m_y << ", " << point.m_z << ')';
 return out;
}
// std::istream is the type for object std::cin
std::istream& operator>> (std::istream& in, Point& point) {
 in >> point.m_x;
 in >> point.m_y;
 in >> point.m_z;
 return in;
}

int main() {
 std::cout << "Enter a point: ";
 Point point;
 std::cin >> point;
 std::cout << "You entered: " << point << '\n';
}

►

Amin Fakhari, Spring 2024 MEC510 • Ch9: Classes, Operator Overloading P39

Classes

Classes
Constructors

Constructors
Const Class Objects Member Functions

Const Class Objects & Member Functions
Operator Overloading

Operator Overloading

https://onlinegdb.com/KYYUMI12g

	Contents
	Slide 1: Ch9: Classes, Operator Overloading

	Classes
	Slide 2: Classes
	Slide 3: class and struct
	Slide 5: Member Functions
	Slide 9: Common C++ Standard Library classes
	Slide 11: Defining Member Functions Outside Class Definition
	Slide 12: Defining Member Functions Outside Class Definition (Another Example)
	Slide 14: Anonymous Class Objects

	Constructors
	Slide 15: Constructors
	Slide 16: Constructors
	Slide 17: Default Constructors
	Slide 18: Parameterized Constructors
	Slide 19: Reducing Constructors
	Slide 20: Implicit Constructor
	Slide 21: Implicit Constructor (cont.)
	Slide 23: Classes Containing Class Members
	Slide 24: Initializing const Data Members
	Slide 25: Initializing const Data Members
	Slide 26: Initializing Data Member That Are Classes
	Slide 27: Member Initialization
	Slide 28: Member Initialization (cont.)
	Slide 29: Overlapping and Delegating Constructors
	Slide 30: 1) Delegating Constructors
	Slide 31: 2) Using a Member Function for Setup
	Slide 32: Destructors

	Const Class Objects & Member Functions
	Slide 34: Const Class Objects & Member Functions
	Slide 35: Const Class Objects
	Slide 36: Const Member Functions
	Slide 37: Const Objects via Pass-by-Const-Reference

	Operator Overloading
	Slide 38: Operator Overloading
	Slide 39: Friend Functions
	Slide 41: Friend Functions: Multiple Friends
	Slide 42: Friend Classes
	Slide 43: Operator Overloading
	Slide 45: Overloading Operators Using Friend Functions
	Slide 46: Overloading Operators for Operands of Different Types
	Slide 47: Overloading Operators Using Normal Functions
	Slide 49: Overloading Operator <<
	Slide 50: Overloading Operator >>

