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Robotics

Robotics is an interdisciplinary field which integrates computer science, mechanical 
engineering, electrical engineering, information engineering, bioengineering, computer 
engineering, control engineering, software engineering, mathematics, etc.

The goal of robotics is to design machines that can assist humans or replicate human 
actions.
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Robotics

https://link.springer.com/book/10.1007/978-3-319-32552-1

- Fixed-Base Robots (e.g., Serial or Open-Chain Manipulators, Parallel Manipulators)
- Mobile Robots
    - Ground Robots (e.g., Wheeled Robots, Legged Robots)
    - Submarine Robots
    - Aerial Robots

• Classifications of robots based on structure:

►►
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https://link.springer.com/book/10.1007/978-3-319-32552-1
https://www.dropbox.com/s/d2bmwz8fvbrp9kt/RobotMotionSimulation.mp4
https://www.dropbox.com/s/d86nzv4usowpn2o/LBR_iiwa_Teaching_by_Demonstration.mp4


Vectors and Gradient
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Basic Notation

ℝ

ℝ+, ℝ++

𝑥

∀

∈

∃

⟹

⟺

𝑓: 𝒟 → ℛ

∶=

ሶ𝑥
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Coordinate-Free Vector and Point

A coordinate-free vector v is a geometric quantity with a length and a direction.

Given a reference frame, vector v can be moved to a position such that the base of 
the arrow is at the origin without changing the orientation. Then, the vector v can be 
represented by its coordinates in the reference frame and denoted as 𝒗.

• v refers to a physical quantity in the underlying space.
• 𝒗 is a representation of v that depends on the choice of coordinate frame.

• A point p denotes a point in the physical space.
• A point p can be represented by as a vector from frame origin to p.
• 𝒑 denotes the coordinate of a point p , which depends on the choice of 
reference frame.
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Vector

𝒙 ∈ ℝ𝑛:

ℝ𝑛: 𝑛-dimensional real space 
(Euclidian Space)

(an 𝑛-dimensional real vector in the column format)

𝒙𝑇:
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Vector Norm

General Definition: Given 𝒙 ∈ ℝ𝑛, vector norm 𝒙 ∈ ℝ+ is defined such that
• 𝒙 > 0 when 𝒙 ≠ 𝟎 and 𝒙 = 0 iff 𝒙 = 𝟎.
• 𝑘𝒙 = 𝑘 𝒙 , ∀𝑘 ∈ ℝ.
• 𝒙 + 𝒚 ≤ 𝒙 + 𝒚 , ∀𝒚 ∈ ℝ𝑛.

❖ The 𝑝-norm (or ℓ𝑝-norm) of 𝒙 for 𝑝 ∈ ℝ, 𝑝 ≥ 1 is defined as 𝒙 𝑝 ≔ ෍

𝑖=1

𝑛

𝑥𝑖
𝑝

1/𝑝

𝒙 ∞ ≔ max
𝑖

𝑥𝑖Special case:

𝒙 2 = 𝒙 = 𝒙𝑇𝒙e.g. (Euclidean Norm)

Schwartz Inequality: 𝒙𝑇𝒚 ≤ 𝒙 𝟐 𝒚 2 ∀𝒙, 𝒚 ∈ ℝ𝑛

Unit Vector: ෝ𝒙 = 𝒙/ 𝒙 2 , ෝ𝒙 2 = ෝ𝒙𝑇ෝ𝒙 = 1
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Dot Product or Scalar Product or Inner Product

Dot Product or Scalar Product or Inner Product of two vectors 𝒙 ∈ ℝ𝑛, 𝒚 ∈ ℝ𝑛 is a scalar 
defined as

𝒚

𝒙

< 𝒙, 𝒚 >= 𝒙 ⋅ 𝒚 = ෍

𝑖=1

𝑛

𝑥𝑖𝑦𝑖 = 𝒙𝑇𝒚 = 𝒚𝑇𝒙

Orthogonal Vectors:

(Algebraic Definition)

(Geometric Definition) < 𝒙, 𝒚 >= 𝒙 ⋅ 𝒚 = 𝒙 2 𝒚 2 cos 𝜃

(0 ≤ 𝜃 ≤ 𝜋)
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Applications of Dot Product

(1) Finding angle formed between two given vectors 𝒑 ∈ ℝ𝑛, 
𝒒 ∈ ℝ𝑛 (or intersecting lines):

(2) Finding projection of a vector 𝒑 ∈ ℝ𝑛 on a given axis or 
directed line:

𝛌: unit vector of line 𝐿

𝒑

𝒑

𝒒
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Cross Product or Vector Product

Cross product of 𝒙, 𝒚 ∈ ℝ3 (in the Euclidean space) is defined as a vector 𝒗 = 𝒙 × 𝒚 ∈ ℝ3 
that is orthogonal to both 𝒙 and 𝒚 (𝒗 ⊥ 𝒙, 𝒗 ⊥ 𝒚), with a direction given by the right-hand 
rule and a magnitude equal to the area of the parallelogram that the vectors span.

𝒙

𝒚

𝒗 = 𝒙 × 𝒚

𝜃

𝒗 = 𝒙 × 𝒚 = 𝑥1𝐢 + 𝑥2𝐣 + 𝑥3𝐤 × 𝑦1𝐢 + 𝑦2𝐣 + 𝑦3𝐤

Matrix notation

𝒗 = 𝒙 × 𝒚 =
𝐢 𝐣 𝐤

𝑥1 𝑥2 𝑥3

𝑦1 𝑦2 𝑦3

Coordinate notation

(0 ≤ 𝜃 ≤ 𝜋)𝒗 2 = 𝒙 2 𝒚 2 sin 𝜃

𝒙

𝒚

𝒗

𝒙 = 𝑥1, 𝑥2, 𝑥3 , 𝒚 = 𝑦1, 𝑦2, 𝑦3

Amin Fakhari, Fall 2024 MEC529 • Ch1: A Review of Linear Algebra P13

Intro.

Intro.
Vectors  Gradient

Vectors & Gradient
Matrices  Jacobian

Matrices & Jacobian
Linear Transformation

Linear Transformation
Pseudo-Inverse

Pseudo-Inverse
Eigenvalue, Eigenvector, SVD

Eigenvalue, Eigenvector, SVD
Ax=y

Ax=y



Gradient

For a scalar function 𝑓: ℝ𝑛 → ℝ which is differentiable with respect to the elements 𝑥𝑖 of 
𝒙 ∈ ℝ𝑛, its gradient with respect to 𝒙 is an 𝑛-dimensional column vector 𝛁𝒙𝑓 ∈ ℝ𝑛 as:

𝛁𝒙𝑓 𝒙 =
𝜕𝑓

𝜕𝒙

𝑇

=

𝜕𝑓 𝒙

𝜕𝑥1

⋮
𝜕𝑓 𝒙

𝜕𝑥𝑛

(nabla symbol and 
pronounced "del") 𝑓(𝑥1, 𝑥2) = − cos2 𝑥1  + cos2 𝑥2

2

The gradient depicted as a projected vector field 
and shows the direction and rate at which a 
function increases the fastest at a given point.

ሶ𝑓 𝒙 =
𝑑

𝑑𝑡
𝑓 𝒙 𝑡 =

𝜕𝑓

𝜕𝒙

𝑑𝒙

𝑑𝑡
=

𝜕𝑓

𝜕𝒙
ሶ𝒙 = 𝛁𝒙

𝑇𝑓 𝒙 ሶ𝒙

- If 𝒙(𝑡) is a differentiable function with respect to 𝑡:

(Chain Rule)
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Matrices and Jacobian
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Matrix

𝑨 ∈ ℝ𝑚×𝑛 (an 𝑚 by 𝑛 dimensional real matrix)

Matrix-vector multiplication 𝑨𝒙 as linear combination of columns of 𝑨:

𝑨𝑇 ∈ ℝ𝑛×𝑚

Tall, Wide (Fat), and Square Matrices:
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Particular Matrices

Skew-symmetric Matrix:

Symmetric Matrix:

Square Matrix:

- Upper Triangular
- Lower Triangular
- Diagonal
        - Identity Matrix
- Null Matrix

Partitioned Matrix: A matrix whose elements are matrices (blocks) of proper dimensions.
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Matrix Operations

Trace of a square matrix 𝑨 ∈ ℝ𝑛×𝑛:   tr 𝑨

𝑪 = 𝑨 + 𝑩

𝑪 = 𝑨𝑩

Sum of matrices:

Singular and Nonsingular Matrices:

Product of matrices:

Determinant of a square matrix 𝑨 ∈ ℝ𝑛×𝑛:   det 𝑨

Symmetric and skew-symmetric part of a square matrix 𝑨:

𝑘-order minors and 𝑘-order principal minors of a square matrix 𝑨 ∈ ℝ𝑛×𝑛:
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Matrix Operations (cont.)

Rank of a matrix 𝑨 ∈ ℝ𝑚×𝑛:   rank 𝑨

Inverse of a square matrix 𝑨 ∈ ℝ𝑛×𝑛: 𝑨−1

Orthogonal Matrix:

Derivative of 𝑨 𝑡 ∈ ℝ𝑚×𝑛:
𝑑

𝑑𝑡
𝑨 𝑡 = ሶ𝑨 𝑡

Derivative of 𝑨−1 𝑡 ∈ ℝ𝑛×𝑛:

Linearly Independent Vectors 𝒙𝑖 ∈ ℝ𝑚, 𝑖 = 1, … , 𝑛

Amin Fakhari, Fall 2024 MEC529 • Ch1: A Review of Linear Algebra P19

Intro.

Intro.
Vectors  Gradient

Vectors & Gradient
Matrices  Jacobian

Matrices & Jacobian
Linear Transformation

Linear Transformation
Pseudo-Inverse

Pseudo-Inverse
Eigenvalue, Eigenvector, SVD

Eigenvalue, Eigenvector, SVD
Ax=y

Ax=y



Cross Product as a Matrix-Vector Multiplication

𝒙 × 𝒚 =

0 −𝑥3 𝑥2

𝑥3 0 −𝑥1

−𝑥2 𝑥1 0

𝒙

𝑦1

𝑦2

𝑦3

= 𝒙 𝒚

The matrix 𝒙 ∈ ℝ3×3 is a skew-symmetric matrix representation of 𝒙. 𝒙 = − 𝒙 𝑇

Cross product 𝒙 × 𝒚 (𝒙, 𝒚 ∈ ℝ3) can be thought of as a multiplication of a vector by a 3 × 3 
skew-symmetric matrix as

• 𝒙 𝒚 = − 𝒚 𝒙

𝒙 = 𝑥1, 𝑥2, 𝑥3 , 

𝒚 = 𝑦1, 𝑦2, 𝑦3
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Jacobian

For a vector function 𝒇: ℝ𝑛 → ℝ𝑚 whose elements 𝑓𝑖 are differentiable with respect to the 
elements 𝑥𝑖 of 𝒙 ∈ ℝ𝑛, its Jacobian with respect to 𝒙 is matrix 𝑱𝒇 ∈ ℝ𝑚×𝑛 as:

𝑱𝒇 𝒙 =
𝜕𝒇 𝒙

𝜕𝒙
=

𝜕𝑓1 𝒙

𝜕𝒙
𝜕𝑓2 𝒙

𝜕𝒙
⋮

𝜕𝑓𝑚 𝒙

𝜕𝒙

ሶ𝒇 𝒙 =
𝑑

𝑑𝑡
𝒇 𝒙 𝑡 =

𝜕𝒇

𝜕𝒙

𝑑𝒙

𝑑𝑡
=

𝜕𝒇

𝜕𝒙
ሶ𝒙 = 𝑱𝒇 𝒙 ሶ𝒙

- If 𝒙(𝑡) is a differentiable function with respect to 𝑡:

(Chain Rule)
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Linear Transformation

Amin Fakhari, Fall 2024 MEC529 • Ch1: A Review of Linear Algebra P22

Intro.

Intro.
Vectors  Gradient

Vectors & Gradient
Matrices  Jacobian

Matrices & Jacobian
Linear Transformation

Linear Transformation
Pseudo-Inverse

Pseudo-Inverse
Eigenvalue, Eigenvector, SVD

Eigenvalue, Eigenvector, SVD
Ax=y

Ax=y



Range/Column Space, Null Space, and Row Space

• The linear transformation (or linear map) between the vectors 𝒙 ∈ ℝ𝑛 and 𝒚 ∈ ℝ𝑚 can 
be defined as

𝒚 = 𝑨𝒙 𝑨 ∈ ℝ𝑚×𝑛

• The range space or column space (or range or image) of the transformation/matrix 𝑨 is 
the subspace generated by the linearly independent columns of matrix 𝑨.

Note: dim ℛ 𝑨 = rank 𝑨

ℛ 𝑨 = 𝒞 𝑨 = 𝒚: 𝒚 = 𝑨𝒙, 𝒙 ∈ ℝ𝑛 ⊆ ℝ𝑚

• The null space (or null) of the transformation/matrix 𝑨 is the subspace

𝒩 𝑨 = {𝒙: 𝑨𝒙 = 𝟎, 𝒙 ∈ ℝ𝑛} ⊆ ℝ𝑛

Note: dim ℛ 𝑨 + dim 𝒩 𝑨 = 𝑛

Therefore, if rank(𝑨) = 𝜌 ≤ min 𝑚, 𝑛 , then dim ℛ 𝑨 = 𝜌 and dim 𝒩 𝑨 = 𝑛 − 𝜌.

• The row space of 𝑨 is the same as the range/column space of 𝑨𝑇, i.e., ℛ 𝑨𝑇 .
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Range Space and Null Space of 𝑨 and 𝑨𝑇

𝒩 𝑨

𝒙 = 𝒙ℛ + 𝒙𝒩

ℝ𝑚

ℛ 𝑨

𝟎

𝒩 𝑨𝑇

𝟎

ℛ 𝑨𝑇
ℝ𝑛

dim 𝒩 𝑨 = 𝑛 − 𝜌
dim 𝒩 𝑨𝑇 = 𝑚 − 𝜌

dim ℛ 𝑨 = rank 𝑨 = 𝜌dim ℛ 𝑨𝑇 = rank 𝑨 = 𝜌

𝒙ℛ ∈ ℝ𝑛

𝑨𝒙 = 𝒚

𝒙𝒩 ∈ ℝ𝑛

𝒚 ∈ ℝ𝑚

𝑨𝒙ℛ = 𝒚

𝑨𝒙𝒩 = 𝟎

𝒩 𝑨 ⊥ ℛ 𝑨𝑇

ℛ 𝑨 ⊥ 𝒩 𝑨𝑇

𝒙𝑟
𝑇𝒙𝒩 = 0

(column space of 𝑨)(row space of 𝑨)

Consider the linear transformation 𝒚 = 𝑨𝒙 where 𝑨 ∈ ℝ𝑚×𝑛, 𝒙 ∈ ℝ𝑛 and 𝒚 ∈ ℝ𝑚.

ഥ𝒚 = 𝒚 + 𝒚𝒩

𝒚𝒩 ∈ ℝ𝑚

(unreachable)
𝒚𝑇𝒚𝒩 = 0

𝒙 𝒚𝑨

𝑨𝑇𝒚𝒩 = 𝟎
𝑨𝒙𝒩 = 𝟎
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Examples

𝑨 =
1 2 3
4 5 6

ℛ 𝑨 = Span
−0.3863
−0.9224

,
−0.9224
0.3863ℛ 𝑨𝑇 = Span

−0.4287
−0.5663
−0.7039

,
0.8060
0.1124

−0.5812

𝒩 𝑨 = Span
0.4082

−0.8165
0.4082

dim 𝒩 𝑨 = 1

dim 𝒩 𝑨𝑇 = 0

dim ℛ 𝑨 = dim ℛ 𝑨𝑇 = rank 𝑨 = 2

𝒩 𝑨𝑇 = ∅

𝑨 =
1 2
3 4
5 6

ℛ 𝑨 = Span
−0.2298
−0.5247
−0.8196

,
0.8835
0.2408

−0.4019
ℛ 𝑨𝑇 = Span

−0.6196
−0.7849

,
−0.7849
0.6196

𝒩 𝑨𝑇 = Span
0.4082

−0.8165
0.4082

𝒩 𝑨 = ∅

dim 𝒩 𝑨 = 0 dim 𝒩 𝑨𝑇 = 1

dim ℛ 𝑨 = dim ℛ 𝑨𝑇 = rank 𝑨 = 2
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Examples

𝑨 =
1 2 3
4 8 12

ℛ 𝑨 = Span
−0.2425
−0.9701ℛ 𝑨𝑇 = Span

−0.2673
−0.5345
−0.8018

𝒩 𝑨 = Span
0.9636

−0.1482
−0.2224

,
0

−0.8321
0.5547

dim 𝒩 𝑨 = 2 dim 𝒩 𝑨𝑇 = 1

dim ℛ 𝑨 = dim ℛ 𝑨𝑇 = rank 𝑨 = 1

𝒩 𝑨𝑇 = Span
−0.9701
0.2425

Note: According to a geometric interpretation, the matrix 𝑨 ∈ ℝ𝑚×𝑛 transforms the unit 
sphere in ℝ𝑛 defined by 𝒙 2 = 1 into the set of vectors 𝒚 = 𝑨𝒙 ∈ ℝ𝑚 which define an 
ellipsoid of dimension 𝜌 = rank 𝑨  in 𝒚 ∈ ℝ𝑚.
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Pseudo-Inverse
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Pseudo-Inverse

The inverse of a matrix 𝑨 can be defined as 𝑨−1 only when the matrix is square and 
nonsingular (full rank). However, the inverse operation can be extended to the case of 
non-square (and singular) matrices as Pseudo-Inverse or Moore–Penrose Inverse 𝑨+.

Note: The pseudoinverse 𝑨+ exists for any matrix 𝑨.

❖ If 𝑨 ∈ ℝ𝑚×𝑛 is not full rank, i.e., rank 𝑨 < min 𝑚, 𝑛 , a computationally simple and 
accurate way to compute pseudoinverse 𝑨+ is by using the Singular Value Decomposition.

❖ If 𝑨 ∈ ℝ𝑚×𝑛 is full rank, i.e., rank 𝑨 = min 𝑚, 𝑛 , then 𝑨+ ∈ ℝ𝑛×𝑚 can be given a 
particularly simple algebraic expression (see Special Cases in the next slides).

For 𝑨 ∈ ℝ𝑚×𝑛, a pseudoinverse is defined as a matrix 𝑨+ ∈ ℝ𝑛×𝑚 satisfying all of the 
following four criteria (Moore–Penrose conditions):

• 𝑨𝑨+𝑨 = 𝑨

• 𝑨+𝑨𝑨+ = 𝑨+

• 𝑨𝑨+ 𝑇 = 𝑨𝑨+

• 𝑨+𝑨 𝑇 = 𝑨+𝑨
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Special Case 1: Right Pseudo-Inverse

• If 𝑚 < 𝑛 (fat matrix) and rank 𝑨 = 𝑚 (equivalently, 𝑨 has linearly independent rows 
and 𝑨𝑨𝑇 is invertible):

𝑨+ = 𝑨𝑇 𝑨𝑨𝑇 −1        (right pseudo-inverse as 𝑨𝑨+ = 𝑰𝑚)

If 𝑾𝑟 ∈ ℝ𝑛×𝑛 is a positive definite matrix1, a weighted right pseudo-inverse is given by

𝑨+ = 𝑾𝑟
−1𝑨𝑇 𝑨𝑾𝑟

−1𝑨𝑇 −1

1 A square not necessarily symmetric matrix 𝑨 ∈ ℝ𝑛×𝑛 is Positive Definite (PD or 𝑨 > 0) if 𝒙𝑇𝑨𝒙 > 0 
for all nonzero 𝒙 ∈ ℝ𝑛.

Weighted Right Pseudo-inverse: 
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Special Case 2: Left Pseudo-Inverse

• If 𝑚 > 𝑛 (tall matrix) and rank 𝑨 = 𝑛 (equivalently, 𝑨 has linearly independent columns 
and 𝑨𝑇𝑨 is invertible):

𝑨+ = 𝑨𝑇𝑨 −1𝑨𝑇        (left pseudo-inverse as 𝑨+𝑨 = 𝑰𝑛)

If 𝑾𝑙 ∈ ℝ𝑚×𝑚 is a positive definite matrix, a weighted right pseudo-inverse is given by

𝑨+ = 𝑨𝑇𝑾𝑙𝑨 −1𝑨𝑇𝑾𝑙

Weighted Left Pseudo-inverse: 
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Remarks

• If 𝑨 is a square full-rank matrix, then 𝑨+ = 𝑨−1.
• 𝑨+𝑨 projects any vector onto the row space of 𝑨 or column space of 𝑨𝑇, i.e., ℛ 𝑨𝑇 .
• 𝑰𝑛 − 𝑨+𝑨 projects any vector onto the null space of 𝑨, i.e., 𝒩 𝑨 .
• 𝑨𝑨+ projects any vector onto the column space of 𝑨, i.e., ℛ 𝑨 .
• 𝑰𝑚 − 𝑨𝑨+ projects any vector onto the null space of 𝑨𝑇, i.e., 𝒩 𝑨𝑇 .
• The pseudo-inverse is very useful to invert a linear transformation 𝒚 = 𝑨𝒙.

𝒩 𝑨

ℝ𝑚

ℛ 𝑨

𝟎

𝒩 𝑨𝑇

𝟎

ℛ 𝑨𝑇
ℝ𝑛

𝒙ℛ

𝒙𝒩

𝒚

ഥ𝒚 = 𝒚 + 𝒚𝒩 ∈ ℝ𝑚

𝒚𝒩

𝒙 = 𝒙ℛ + 𝒙𝒩 ∈ ℝ𝑛

𝒙ℛ = 𝑨+𝑨𝒙

𝒙𝒩 = 𝑰𝑛 − 𝑨+𝑨 𝒙

𝒚 = 𝑨𝑨+ഥ𝒚

𝒚𝒩 = 𝑰𝑚 − 𝑨𝑨+ ഥ𝒚
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Eigenvalue, Eigenvector, and 
SVD
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Eigenvalues and Eigenvectors 

For each square matrix 𝑨 ∈ ℝ𝑛×𝑛 there exist 𝑛 eigenvalues (in general, complex numbers) 
denoted by 𝜆𝑖 𝑨 , 𝑖 = 1, … , 𝑛 that satisfy

det 𝑨 − 𝜆𝑖 𝑨 𝑰𝑛 = 0

• If 𝑨 = 𝑨𝑇, then 𝜆𝑖 𝑨 ∈ ℝ, 𝑖 = 1, … , 𝑛 (i.e., all eigenvalues are real) and the eigenvectors 
are always orthogonal, regardless of whether 𝑨 is full rank or not. 

(characteristic equation)

Eigenvectors 𝒖𝑖 associated with the eigenvalues 𝜆𝑖  satisfy 𝑨 − 𝜆𝑖𝑰 𝒖𝑖 = 𝟎,  𝑖 = 1, … , 𝑛.

If the vector resulting from the linear transformation 𝑨 ∈ ℝ𝑛×𝑛 on a vector 𝒖 has the same 
direction of 𝒖 (with 𝒖 ≠ 𝟎), then 𝑨𝒖 = 𝜆𝒖.

• For any 𝑨, if the eigenvectors 𝒖𝑖 are linearly independent, matrix 𝑼 formed by the 
column vectors 𝒖𝑖 is invertible and 𝚲 = 𝑼−1𝑨𝑼 where 𝚲 = diag 𝜆1, … , 𝜆𝑛 . If 𝑨 is 
symmetric, 𝑼 is orthogonal (𝑼𝑼𝑇 = 𝑼𝑇𝑼 = 𝑰) and 𝚲 = 𝑼𝑇𝑨𝑼.

 Eigendecomposition: 𝑨 = 𝑼𝚲𝑼−1 and if 𝑨 is symmetric 𝑨 = 𝑼𝚲𝑼𝑇.

• det(𝑨) = ς𝑖=1
𝑛 𝜆𝑖 • 𝜆 𝑨𝑇 = 𝜆 𝑨 • 𝜆 𝑨−1 = 1/𝜆 𝑨
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Singular Values and Condition Number 

For a nonsquare matrix it is not possible to define eigenvalues and eigenvectors. An 
extension of the eigenvalue concept can be obtained by Singular Values.

For 𝑨 ∈ ℝ𝑚×𝑛, matrices 𝑨𝑨𝑇 ∈ ℝ𝑚×𝑚 and 𝑨𝑇𝑨 ∈ ℝ𝑛×𝑛 are symmetric and positive semi-
definite (PSD), and, therefore, have (𝑚 for 𝑨𝑨𝑇 and 𝑛 for 𝑨𝑇𝑨) real and nonnegative 
eigenvalues. Moreover, they have always the same non-zero eigenvalues. The Singular 
Values for matrix 𝑨 are given by the square roots of the eigenvalues of 𝑨𝑨𝑇 (if 𝑚 < 𝑛) or 
𝑨𝑇𝑨 (if 𝑛 < 𝑚):

𝜎𝑖 = 𝜆𝑖  , 𝑖 = 1, … , min 𝑚, 𝑛

Notes:
• The number of singular values 𝜎𝑖 is always min 𝑚, 𝑛  and the number of non-zero 

singular values 𝜎𝑖 is equal to 𝜌 = rank 𝑨  (𝜎1 ≥ ⋯ ≥ 𝜎𝜌 > 0).

• According to a geometric interpretation, the matrix 𝑨 transforms the unit sphere in ℝ𝑛 
defined by 𝒙 = 1 into the set of vectors 𝒚 = 𝑨𝒙 which define an ellipsoid of 
dimension 𝜌 = rank 𝑨  in ℝ𝑚. The singular values 𝜎𝑖 are the lengths of the various axes 
of the ellipsoid.

• The Condition Number of matrix 𝑨 is defined as 𝜅 = 𝜎1/𝜎𝜌 (the eccentricity of the ellipsoid).
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Singular Value Decomposition (SVD)

The Singular Value Decomposition (SVD) of the matrix 𝑨 is then given by 𝑨 = 𝑼𝚺𝑽𝑇

• 𝑼 = 𝒖1, 𝒖2, … , 𝒖𝑚 ∈ ℝ𝑚×𝑚 is an orthogonal matrix (𝑼𝑼𝑇 = 𝑼𝑇𝑼 = 𝑰𝑚) that 𝒖𝑖 

(called left singular vectors) are eigenvectors of 𝑨𝑨𝑇 (𝑨𝑨𝑇𝒖𝑖 = 𝜆𝑖𝒖𝑖 = 𝜎𝑖
2𝒖𝑖).

• 𝑽 = [𝒗1, 𝒗2, … , 𝒗𝑛] ∈ ℝ𝑛×𝑛 is an orthogonal matrix (𝑽𝑽𝑇 = 𝑽𝑇𝑽 = 𝑰𝑛) that 𝒗𝑖 (called 

right singular vectors) are eigenvectors of 𝑨𝑇𝑨 (𝑨𝑇𝑨𝒗𝑖 = 𝜆𝑖𝒗𝑖 = 𝜎𝑖
2𝒗𝑖).

• 𝚺 =
𝑫 𝟎
𝟎 𝟎

∈ ℝ𝑚×𝑛 is a matrix where 𝑫 = diag 𝜎1, 𝜎2, … , 𝜎𝑟  and 𝜎1 ≥ ⋯ ≥ 𝜎𝜌 > 0.

❖ SVD is used to compute the (right or left) pseudoinverse 𝑨+, even if 𝑨 is not full rank.

𝑨+ = 𝑽𝚺+𝑼𝑇

𝚺+ = 𝑫+ 𝟎
𝟎 𝟎

, 𝑫+ = diag
1

𝜎1
,

1

𝜎2
, … ,

1

𝜎𝑟
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Solving 𝑨𝒙=𝒚
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Solving 𝑨𝒙 = 𝒚

❖ If 𝑨 is invertible, i.e., square and full rank, (i.e., rank 𝑨 = 𝑛 = 𝑚), then there is a 
unique solution 𝒙 as 𝒙 = 𝑨−1𝒚.

❖ If 𝑨 is not invertible, i.e., (1) 𝑨 is not square (𝑛 ≠ 𝑚) but full rank or (2) rank deficient 
rank 𝑨 < min 𝑚, 𝑛  (square or nonsquare), then 𝑨𝒙 = 𝒚 can still be solved (or 

approximately solved) for 𝒙 with the Moore–Penrose pseudoinverse 𝑨+ as 𝒙∗ = 𝑨+𝒚 
which minimizes the norm  𝑨𝒙 − 𝒚 2.

❖ Exact solution(s) exist if and only if 𝒚 ∈ ℛ 𝑨  or 𝑨𝑨+𝒚 = 𝒚, otherwise, the solution will 
be approximate with minimum error.

Consider 𝑨𝒙 = 𝒚 (where 𝑨 ∈ ℝ𝑚×𝑛 and 𝒚 ∈ ℝ𝑚 are given and 𝒙 ∈ ℝ𝑛 is unknown). 
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Solving 𝑨𝒙 = 𝒚
(Case 1)

• If 𝑚 < 𝑛 (fat matrix) and 𝑨 ∈ ℝ𝑚×𝑛 is full (row) rank, i.e., rank 𝑨 = 𝑚 or 𝒩 𝑨𝑇 = ∅ 
(this satisfies the solution existence condition 𝒚 ∈ ℛ 𝑨 ), infinite exact solutions exist. 
The solutions are in the form

𝒙 = 𝒙∗ + 𝑷𝒙0 = 𝑨+𝒚 + 𝑰𝑛 − 𝑨+𝑨 𝒙0 for arbitrary vector 𝒙0 ∈ ℝ𝑛

where 𝑨+ = 𝑨𝑇 𝑨𝑨𝑇 −1 and it is the right pseudo-inverse as 𝑨𝑨+ = 𝑰𝑚.

• The solution (1) is derived from this constrained 
linear optimization problem:

• Among all these solutions, 𝒙∗ = 𝑨+𝒚 ∈ ℛ 𝑨𝑇  minimizes 𝒙 2 (you can see this by setting 
𝒙0 = 𝟎 is the above optimization problem).

• Matrix 𝑷 = 𝑰𝑛 − 𝑨+𝑨 ∈ ℝ𝑛×𝑛 is null-space projection matrix where ℛ 𝑷 = 𝒩 𝑨 .
• The term 𝒙𝒩 = 𝑰𝑛 − 𝑨+𝑨 𝒙0 is the projection of 𝒙0 in 𝒩 𝑨  where 𝑨𝒙𝒩 = 𝟎.
• We can also use the weighted right pseudo-inverse as 𝑨+ = 𝑾𝑟

−1𝑨𝑇 𝑨𝑾𝑟
−1𝑨𝑇 −1. 𝑾𝑟 ∈

ℝ𝑛×𝑛 is a positive definite matrix.

 min
 𝒙

 
1

2
(𝒙 − 𝒙0)𝑇 𝒙 − 𝒙0

 subject to 𝑨𝒙 = 𝒚

particular solution homogeneous solution

(1)
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Solving 𝑨𝒙 = 𝒚
(Case 2)

where 𝑨+ = 𝑨𝑇𝑨 −1𝑨𝑇 and it is the left pseudo-inverse as 𝑨+𝑨 = 𝑰𝑛.

▪ If 𝒚 ∈ ℛ 𝑨  or 𝑨𝑨+𝒚 = 𝒚, then 𝒙 = 𝑨+𝒚 gives the unique exact solution.
▪ If 𝒚 ∉ ℛ 𝑨  or 𝑨𝑨+𝒚 ≠ 𝒚, then 𝒙 = 𝑨+𝒚 minimizes the norm of the error 𝑨𝒙 − 𝒚 2 

and gives an approximate solution 𝒙∗.

• The solution (1) is derived from this optimization problem: min
𝒙

1

2
𝑨𝒙 − 𝒚 𝑇 𝑨𝒙 − 𝒚

• If 𝑚 > 𝑛 (tall matrix) and 𝑨 ∈ ℝ𝑚×𝑛 is full (column) rank, i.e., rank 𝑨 = 𝑛 or 𝒩 𝑨 = ∅, 
when 𝒚 ∈ ℛ 𝑨 , a unique exact solution exists, and when 𝒚 ∉ ℛ 𝑨 , no exact solutions 
but an approximate solutions exist. In both cases, the solutions are in the form

𝒙 = 𝑨+𝒚 

• We can also use the weighted left pseudo-inverse as 𝑨+ = 𝑨𝑇𝑾𝑙𝑨 −1𝑨𝑇𝑾𝑙. 𝑾𝑙 ∈ ℝ𝑚×𝑚 
is a positive definite matrix.

(1)
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Solving 𝑨𝒙 = 𝒚
(Case 3: General Case) - (Method 1)

𝒙 = 𝑨+𝒚 + 𝑰𝑛 − 𝑨+𝑨 𝒙0

• If 𝑨 ∈ ℝ𝑚×𝑛 (square or non-square) is rank deficient (i.e., rank 𝑨 < min 𝑚, 𝑛 , 
𝒩 𝑨 ≠ ∅, and 𝒩 𝑨𝑇 ≠ ∅), when 𝒚 ∈ ℛ 𝑨 , infinite exact solutions exist, and when 
𝒚 ∉ ℛ 𝑨 , no exact solutions but infinite approximate solutions exist. In both cases, the 
solutions are in the form

for arbitrary vector 𝒙0 ∈ ℝ𝑛

and 𝑨+ is pseudo-inverse which is computed using the Singular Value Decomposition 
(SVD).

▪ If 𝒚 ∈ ℛ 𝑨  or 𝑨𝑨+𝒚 = 𝒚, exact solution 𝑨+𝒚 minimizes 𝒙 2 and 𝑰𝑛 − 𝑨+𝑨 𝒙0 
represents all vectors in 𝒩 𝑨 .

▪ If 𝒚 ∉ ℛ 𝑨  or 𝑨𝑨+𝒚 ≠ 𝒚, approximate solution 𝑨+𝒚 minimizes both 𝑨𝒙 − 𝒚 2 and 
𝒙 2 while all solutions 𝑨+𝒚 + 𝑰𝑛 − 𝑨+𝑨 𝒙0 minimize only 𝑨𝒙 − 𝒚 2.
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Solving 𝑨𝒙 = 𝒚
(Case 3: General Case) - (Method 2)

The Damped Least Squares (DLS) can be used to compute an approximate inverse or 
pseudoinverse of 𝑨 ∈ ℝ𝑚×𝑛, especially when 𝑨 is singular or near-singular: 

(right inverse)

• These two forms above (i.e., right and left inverses) are mathematically equivalent. For 
computational efficiency, use (1) when 𝑛 ≤ 𝑚 and use (2) when 𝑚 ≤ 𝑛 (which relates to 
which matrix 𝑨𝑇𝑨 or 𝑨 𝑨𝑇 is smaller).

• The addition of 𝜆𝑰𝑛 or 𝜆𝑰𝑚 ensures that the matrix is invertible even when 𝑨𝑇𝑨 or 𝑨 𝑨𝑇 
are singular or nearly singular.

𝑨𝐷
+  ≈ 𝑨𝑇𝑨 +  𝜆𝑰𝑛

−1𝑨𝑇

(left inverse)𝑨𝐷
+ ≈  𝑨𝑇 𝑨𝑨𝑇 +  𝜆𝑰𝑚

−1

(1)

(2)

𝜆 ∈ ℝ+ is the damping (regularization) parameter which introduces a trade-off between 
accuracy of the solution and numerical stability. A larger 𝜆 improves stability for very ill-
conditioned matrices but may reduce accuracy (i.e., away from true least squares solution). 
In general, choosing the optimal damping factor 𝜆 can be challenging.
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Solving 𝑨𝒙 = 𝒚
(Case 3: General Case) - (Method 2)

𝒙 ≈ 𝑨𝐷
+𝒚 + 𝑰𝑛 − 𝑨𝐷

+𝑨 𝒙0

Using Damped Least Squares (DLS), we can find approximate solutions 𝒙 to 𝑨𝒙 = 𝒚 in the 
form

for arbitrary vector 𝒙0 ∈ ℝ𝑛

The approximate particular solution 𝑨𝐷
+𝒚 minimizes 𝑨𝒙 − 𝒚 2 + 𝜆 𝒙 2 and the 

approximate homogeneous solution 𝑰𝑛 − 𝑨+𝑨 𝒙0 represents all vectors in 𝒩 𝑨 .

DLS Method vs SVD Method:
• DLS is simpler and computationally less expensive, making it ideal for real-time applications like 

robotics requiring quick, stable solutions, but the solutions are approximate, and it introduces a 
uniform bias.

• SVD provides a more comprehensive and flexible approach, providing a complete picture of the 
matrix's properties and allowing for selective treatment of singular values, leading to potentially 
more accurate solutions, but at the cost of higher computational effort. Moreover, SVD is more 
sensitive to small changes in the matrix and to ill-conditioning.

• The solution (1) is derived from this optimization problem:

min
𝒙

 
1

2
𝑨𝒙 − 𝒚 𝑇 𝑨𝒙 − 𝒚 +

1

2
𝜆 ሶ𝒙𝑇 ሶ𝒙

(1)
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