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Transformation Matrices
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Homogeneous Transformation Matrices

Rigid-body configuration can be represented by the pair (R, p) (R € SO(3), p € R3). We
can package (R, p) into a single 4 X 4 matrix as

r=[p 1

Transformation Matrix

This is an implicit representation of the C-space.

p:=p, =p°? =psP Another notation for p3P: Spg,
R:= R, Another notation for Rg),: °R,,
T:=Tyg, Another notation for T: °T},
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Special Euclidean Group SE(3)

The Special Euclidean Group SE(3), also known as the group of rigid-body motions or
homogeneous transformation matrices, is the set of all 4 X 4 real matrices T of the form

711 T2 T3 D1 T € SE(3)

_ lR Pl _ |21 T2z T23 P2 R € S0(3)
31 T32 T33 D3 3
0 0 0 1. PER

R p

SE(3)={T€]R4X4IT=[O D

| Res03),per?}

The special Euclidean group SE(2) is the set of all 3 X 3 real matrices T of the form

T12 p1] lCOS@ —sin 6 P1] T € SE(2)

[ 7”21 T2 P2l =|sinf cosf p, R € SO(2)
0 1 0 0 1 p € R?
0 € [0,2m)

-SE(2) isasubgroup of SE(3): SE(2) c SE(3)
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Properties of Transformation Matrices

SE(3) (or SE(2)) is a matrix (Lie) group (and the group operation e is matrix multiplication).

Closure: T,T, € SE(3)

Associative: (T,T,)T; =T,(T,T53) (butgenerally not commutative, T;T, # T,T,)
Identity: I, € SE(3) suchthatTl, =I1,T =T

Inverse: AT 1 eSEB)suchthatTT 1 =TT =1,

TT_1:= Vq p —1::|?(T _JQTp]
0 1 0 1

y
Note: T preserves both distances and angles. T(v w
y
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Uses of Transformation Matrices (1)

(1) Representing configuration (position and orientation) of a frame relative to another
frame.

Notation: T, is the configuration of {b} relative to {s}.

T, = lR(;b 119]
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Example

Amin Fakhari, Fall 2025 MEC529 ¢ Ch4: Rigid-Body Motions — Part 2 (Transformation) P7



Transformation Matrices Twist Exponential Coordinate Representation Unit Dual Quaternions Wrench Review

O00000e0000 000000000000 0000000 000 00000 0000

Uses of Transformation Matrices (2)

(2) Changing the reference frame of a vector or frame.

Subscript Cancellation Rule: T, vy, = Ta%v}g = Vq

T, Ty, = Ta/lrfT}ﬁc =Ty

T ,, can be viewed as a mathematical operator that
changes the reference frame from {b} to {a}.

RZb —RZngb
0 1

Note: T T, =1, or T, =Tz = [

Note: To calculate Tv, we append a “1” to v and it is called homogeneous coordinates
representation of v. v=_[v, v, v; 1]
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Example

A robot arm mounted on a wheeled mobile platform moving in a room, and a camera fixed
to the ceiling. The robot must pick up an object with body frame {e}. What is the
configuration of the object relative to the robot hand, T .., given T 33, T 4o, Tpc, and T 4?

(end-effector) P

(camera)

{d}

\{ (fixed frame)

(wheeled platform) {a}
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Uses of Transformation Matrices (3)

(3) Displacing (rotating and translating) a vector or frame.

T = (R,p) = (Rot(®, 6),p) = Trans(p)Rot(@, 6)

!

1

v

Trans(p) = [103 11’]

v

T can be viewed as a mathematical operator that rotates a frame
or vector about a unit axis @ = (&4, @,, @W3) by an amount 6 +
translating it by p.
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Uses of Transformation Matrices (3) (cont)

 Rotation of vector v about a unit axis @ (expressed in the same frame) by an amount 0
and translation of it by p (expressed in the same frame) is vector v’ expressed in the

same frame: . N
v" = Tv = Trans(p)Rot(@, §)v = Rot(@,0)v + p
b Interpretation
* Fixed-frame Transformation: b} 5
2. Translating {b’} by «~ ™ 1. Rotating {b} by 8 about @ in {s}
pin{s}toget{b'} (this can move {b} origin) to get {b'} A

v\ /‘ s} b
T ., =TT, = Trans(p)Rot(®, )T,

(pre-multiplication) Interpretation L
* Body-frame Transformation:
1. Translating {b} by ~— > 2. Rotating {b'} by 8 about .
pin{b}toget{b'} ®in{b'}toget{b"} Y {b}
4 L
T, =TgT = stTrans({))Rot(w, 0) . )

(post-multiplication) Interpretation
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Example

Find fixed-frame and body-frame transformations corresponding to @ = (0,0,1), 8 = 90°,
and p = (0,2,0).
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Twist
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Lie Algebra se(3)

 The set of all 4 X 4 matrices of the form

%l

where [w] € so(3) and v € R3 is called se(3).

w
» se(3) is the matrix representation of 6 X 1 vectors V = lv] € R®. Thus,

[V] = [[‘(‘;] 1(;] € se(3)

* se(3) is called the Lie algebra of the Lie group SE(3).

Notations:

* From 6 X 1 vector to 4 X 4 matrix representation: [V] or [V] (Bracket notation), V (* hat
notation), or V.

* From 4 X 4 matrix representation to 6 X 1 vector: [V]Y ((+)" vee notation or *)
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Spatial Velocity or Twist

A rigid body’s Spatial Velocity or Twist can be represented as a point in R® and defined as

V. = angular velocity of body expressed in frame {x} € RS
* = |linear velocity of origin of frame {x} on body (or its extention) expressed in frame {x}

v

expressed in {x}

point where velocity is computed

angular velocity of body B expressed in frame {x} 6
: . . . : . € R
linear velocity of point r on body B (or its extention) expressed in frame {x}

i

X

A general B:_ [
form: -
v

expressed in {x}
\%

B

Let’s find the twist V € R® of a moving body (or body
frame {b}) in terms of T, = T(t). Body Frame {b} is
instantaneously coincident with the body-attached

frame.
o-[1 #)
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Body Twist V,,

Similar to R"IR = [w,], let’s compute T~1T: (R:=Ry, ,T:=Ty)
T—lT — _RT _RTp_ [R p
L 0 1 110 O
_[RTR RTp]
:[ O ] 0 - vb € R3
_ [l@p] Dy [wp] € 50(3) 14 w %
0 O ] > T'T =[V,] = [[ 0”] ob € se(3)
v, = l(:)’b] c RO Vb. is defined as Body Twist
b (or spatial velocity in the body frame)

* [V,] € se(3) is the matrix representations of the body twists V;,, € R® associated with
the rigid-body configuration T € SE(3).

* VY, does not depend on the choice of the fixed frame {s},

Amin Fakhari, Fall 2025 MEC529 ¢ Ch4: Rigid-Body Motions — Part 2 (Transformation) P16



L

Stony Brook
University

Transformation Matrices Twist Exponential Coordinate Representation Unit Dual Quaternions Wrench Review

0000000000 00000000000 0000000 000 00000 0000

Spatial Twist V

Similar to RR™! = [w,], let’s compute TT1: (R=R,,,T=Tg)

R p] [RT —RTp]
0 ollo 1

_[RRT p- RRTp]
0

TT 1

:[ 0 ] Vs € R3
w] v S 3 .
= - OS Os [w;] € so(3) , TT-1=[V,]= [[(‘())s] 765 € se(3)

V; is defined as Spatial Twist

W 6
Vs = [vsl €R (or spatial velocity in the space frame)

* [V,] € se(3) is the matrix representations of the spatial twists V; € R® associated with
the rigid-body configuration T € SE(3).

* VY does not depend on the choice of the body frame {b}.
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Adjoint Map

R;b} i :;1_111 —_— [VS] = T[Vb]T‘l —

6% 6
R[w]RT = [R
v,] = [Rl@o]RT —Rlw]R"p + kv, WF = Re] - _ [[Rwy] - [pRwy + Rvy)
5 0 0 [w]p = —[plw 0 0
p,w € R3
R(Db
) Vo=l [ wa+va] [ IR R“ = [Adr]Y
Adjoint Map associated with T
Adr] =[ e Rl R ,
[PIR R or Adjoint Representation of T
* Therefore, PV, = [Adeb]Vb = Adr,, (V)

Similarly, Vb = [AdTbS]VS = AdTbS(VS)
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Adjoint Map Properties

* LetT,,T, € SE(3) and V = (w, V) € R®. Then,

|Adr |[Adr, |V = [Adr,r,|V  or  Adr,(Adr,(V)) = Adr,r, (V)

 Forany T € SE(3), [Adr]~! = [Ady-1]. Note that [Ady] is always invertible.

* For any two frames {c} and {d}, a twist represented in {c} as V.. is related to its
representation in {d} as V; by

V.= [Achd]vd Va = [Adec]vC

(changing the reference frame of a twist)
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Example

Consider a three-wheeled car with a single steerable front wheel, driving on a plane. The
angle of the front wheel of the car causes the car’s motion to be a pure angular velocity
2 rad/s about an axis out of the page at the point r in the plane. Find YV, and V,,.

re = (2, _1)0) yl)
ry = (2,—1.4,0) 7, T
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I\/ )
9:\“___—‘/,: A
:v,/\/‘ i Zb
e f»’ )
( Yb
~ ) (
5 lo
7 N
~Ys
Rs
I l2
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Screw Interpretation of a Twist

Any rigid-body velocity or twist V is equivalent to the instantaneous velocity 6 about some
screw axis S (i.e., rotating about the axis while also translating along the axis).

A screw axis S is represented by an arbitrary point g € R3
on the axis, a unit vector § € S? in the direction of the axis
(or angular velocity w), and a pitch h € R, (which is linear
velocity along the axis divided by angular velocity 8 about
the axis) as {q, S, h}. It also can be uniquely represented by
Pliicker Coordinates as {m, S, h} where m = q X §.

Thus, twist VY can be represented as

V= [(3] - lw X (—(:I)) +h“’] B [—39 Xi?"‘ hég] } [_g Xfﬁ_ h§]9
l

Due to rotation about § Due to translation along &
(which is in the plane orthogonal to §) (which is in the direction of §)
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Transformation Matrices Twist Exponential Coordinate Representation Unit Dual Quaternions Wrench Review g

0000000000 00000000000 0000000 000 00000 0000 Sy ek

Representation of Screw Axis

Now, instead of representing the screw axis § as {q, S, h} (where q is not unique), we
represent a “unit” screw axis (uniquely) as a vector as

S
S=[S“)]E]R%6 where P = §0 € RS Sw Sy €R3
v
* Finding S and {g, S, h} by having V:

e P
~ Pitch h is finite (h = 0 for pure rotation).
(a) If |lw|| # O (= rotation with/without translation along §):
83 h=sLs, = o v/l
_[Se] _ _ [w/ll®ll] _ s §=S,=ow/lloll, |IS,ll=1

S = S —V/||w||— __"X _|_h" < : -

v v/||wl| sSXq S 0 = ||w|| is interpreted as

B [ angular velocity when § = 1 ] angular velocity about §
linear velocity of origin when 6 = 1 KTO findq,use v —hw = -w X q

or(S,—hS, =—-S, Xq)

b) If |lw]|| = 0 (= pure translation along §):
(b) If o] =p 8 3) [ Pitch h is infinite, ||S,,|| =0

S 0 0

Sv /” ” U/”‘U” 3 < S Sy, =v/lvll, lIS,]l=1
0 0 6 = ||v|| is interpreted
~ |normalized linear velocity of origin] as linear velocity along §

N
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Screw Axis Properties

*¢ Since a screw axis S is just a normalized twist, the 4 X 4 matrix representation [S] of
S=(S,,5,) € RCis

[S] = [[S(;‘)] 'S(')”] € se(3)

V=S0ecR¢ = [V]=][S]0€se(3)

¢ Like twist PV, the screw axis S is represented in a frame (e.g., {b} or {s}). Therefore, for
any two frames {c} and {d}, a screw axis represented in {c} as S is related to its
representation in {d} as S  by:

Sc= [Achd]Sd Sq = [Adec]SC ’ ‘

(changing the reference frame of a screw axis)
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Example

What are the screw axis §; and S for J4 and J2 for the shown Kinova 4-DOF arm?

TJ2 AJ3

ZSA 2b‘
st {1 I\ ESs—— J4 | {b}
Al A@% —o—
9.8 mm Yb
275.5 mm 410.0 mm 207.3 mm 100.0 mm
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Exponential Coordinate
Representation of Rigid-Body
Motion
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Screw Motion

Instead of viewing a displacement as a rotation followed by a translation, both rotation
and translation can be performed simultaneously.

Planar example of a screw motion:
The displacement in Figure 1 (rotation @ + translation ®) can be viewed as a pure rotation

of f = 90° about a fixed-point s as shown in Figure 2.

Figure 1 fs.d) l Figure 2 ‘ l

{s,d}

Amin Fakhari, Fall 2025 MEC529 ¢ Ch4: Rigid-Body Motions — Part 2 (Transformation) P27
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Exponential Coordinates of Rigid-Body Motions

Chasles—Mozzi theorem states that every rigid-body displacement can be expressed as a
finite rotation @ and translation d about/along a fixed screw axis in space.

This theorem motivates a six-parameter representation of a configuration (or a
homogeneous transformation T € SE(3)) called the exponential coordinates as S8 € R®,

where § is the screw axis and 8 is the distance that must be traveled along the screw axis
to take a frame from the origin I, to T.

KNote: T is equivalent to the displacement obtained by rotating )
a frame from I, about §

* byanangle 8, or Constant Screw Motion:
* ataspeed @ = 1 rad/s for 8s, or A rotation 6 + a translation
« ataspeed § = 6 for 1s, or d about/along a fixed
* by constant twist V for 1s. screw axis S.
(Vt = 50)

[S ] [ ] (for rotation with/without
Sy § X q + h8] translation along 3)

S 0 . .
[Sv] [ ] (for pure translation along §)

g

J
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Exponential Coordinates of Rigid-Body Motions

As with rotations, we can define a matrix exponential (exp) and matrix logarithm (log).

For any transformation matrix T € SE(3), we can always find a screw axis S = (S,,,S,) € R®
(where ||S,, || = 1 for rotation with/without translation or §, = 0 and ||S,|| = 1 for pure
translation) and scalar 8 € R such that T = e!51°

exp: [S]16 € se(3) —» T € SE(3) : elSIP =T = (R,p)
log: Te€SEQB) — [S]0€se(3) : log(T)=[S]0

S0 € R® : Exponential coordinates of T € SE(3)
[S]0 = [SO] € se(3) : Matrix logarithm of T (inverse of the matrix exponential)

Note: T and S have the same base.
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Matrix Exponential

[ exp: [S]@ €se(3) —» T e SE(3) : elSI8 =T = (R, p)}

% Finding T = (R, p) by having§ = (S§,,S,) and 0:

(a)If S, + 0 (and ||S, || = 1) (i.e., rotation with/without translation):

e[sw:[e[s‘*’w G(H)Sv]:lR 4
l 0 1 0 1

Using Taylor
expansion

v
Use Rodrigues
Formula

G(0) =136 + (1 — cos0)[S,] + (6 —sinO)[S,,]* € R®*

(b)IfS, =0 (and ||S,|| = 1) (i.e., pure translation):

[13 S, e] [
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Matrix Exponential: Remark

* For a given transformation matrix Tg:

Fixed-frame Displacement is rotation by 8 about/along a screw axis S,
expressed in fixed frame {s} as:

Ty =e 15519 Tgp

Body-frame Displacement is rotation by 8 about/along a screw axis S},
expressed in body frame {b} as:

Ty = Tgpe 1516

(Ss = [Adr, |Sp)

Amin Fakhari, Fall 2025 MEC529 ¢ Ch4: Rigid-Body Motions — Part 2 (Transformation)
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Matrix Logarithm

[ log: T € SE(3) - [S]0 €se(3) : log(T) =[S]6 }

% Finding S = (§,,8,) and 6 € [0, ] by having T = (R, p):
(a)IftrR = 3 (or R = I3), thenset S, = 0, S, = p/lIpll, and 8 = ||pl.

(b) Otherwise, use the matrix logarithm log(R) = [S,,]6 to determine S, (this is @ in the
S0(3) algorithm) and 6 € [0, 7]. Then, S, is calculated as

S, = 61O
1 1 1 1 6
where  G71(8) = 51—~ [Su] + (5 _ Ecot§> 5,17 € RS

(0 is in radian)
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Example

The initial frame {b} and final frame {c} are given. Find the screw motion expressed in {s}
(S,,0) that displaces the frame at T, to T,.

cos30° —sin30° 0 1

T sin30°  cos30° 0 2

sb 0 0 1 0
0 0 0 1 |
b [ cos60° —sin60° 0 2
X1 7 sin60°  cos60° 0 1
{b} 2 0 0 1 0

C

A 0 0 0 1

(s} R

Amin Fakhari, Fall 2025
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Unit Dual Quaternions
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Dual Quaternion

In general, dual numbers are defined as d = a + €b where a and b are elements of an
algebraic field, and € is a dual unit with € = 0, € # 0. Similarly, a dual quaternion D is
defined as D = p + €q where p, q € H are quaternions.

* Addition and multiplication of two dual quaternions D; = p; + €q; and D, = p, + €q5:
D, + D, = (p1+p2)+e(q1+q3)
D.D, = (p,p2) + €(P192 + q1P2) # DD, (not commutative)

 Conjugateof D: D*=p*+€q* or Dt=p*—eq"

* Norm of D: ID|| = VDD* = \/pp* + e(pq* + qp*)
D*
* Inverse of D: D1 =
|D||?

The dual quaternion D = p + €q is a Unit Dual Quaternionif [|[D|| = 1, i.e., pp* = |Ipl| =1
(p is unit quaternion) and pq* + gp* = 0. Consequently, D™ = D*andp - q = 0.
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Unit Dual Quaternion

The homogeneous transformation T € SE(3) (i.e., the rotation R followed by the
translation p) can be also represented by a unit dual quaternion as

€
Dy =qr+€q, = qg +§qqu

0\ ~ . (6 : : : : :
where g = (cos (E) , @ sin (E)) € S3 is a unit quaternion representing rotation R, q4; € H
is a quaternion encoding translation, g, = (0,p) € H, and qg - q4 = 0.

Note: For pure rotation Dy = qi + €0 (or D = qi + €(0,0,0,0)) and pure translation
Dy =1+-q, (or Dy = (1,0,0,0) + - qp).

Note: If we are given a unit dual quaternion D, to convert it into the transformation
matrix T € SE(3), we convert the unit quaternion gy into a rotation matrix R € SO(3)
and the translation p € R3 is obtained from 2q4q5% = q, = (0, p).
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Unit Dual Quaternion

* The transformation of a point or vector p € R3 using unit dual quaternion D7 is
determined as

D, =Dr(1+¢€q,)D} =1+¢e(qrapaz* +aq,) < p' =Tp
* The screw displacements {m, S, h = d/0} can be expressed by the dual quaternions as
b oy Lan® 0 0, a_6d 0. 0 - ISI6
T—COS2 smz— COSZ,SSII'I2 € 2Sll’lz,zCOSZS smzm > = e
® = 0 + ed (dual number)

L = § + em (dual vector)

Note: 8 = 0, T corresponds to pure translation. In this case, L = § 4+ €0 where § is the unit
vector along the axis of translation.

* A power of the unit dual quaternion D is defined as

. TP TP 0 10 td 10 1d 0 16
T=c057+Lsm—= COS—,SsiIn— |+ €| ——SIn—,—CcoS—S +sin—m

2 2 2 2 22 2 2
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Wrench
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Spatial Force or Wrench

A rigid body’s Spatial Force or Wrench can be represented as a point in R® and defined as

B

expressed in {x} m f
F f moment applied to body expressed in frame {x} € RO (
* = |force applied to origin of frame {x} on body expressed in frame {x}

{s}

A general form:

point where force is applied

?Brf_ moment applied to body B + moment of force applied to point r on body B in {x} € RO
X force applied to point r on body B expressed in frame {x}

v

expressed in {x} f
m (' B

{s}
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Body Wrench F,

Stony Brook
University

Let m;, € R3 be a moment applied to the body expressed in {b} and f, € R3 be a force
applied to the body at the origin of frame {b} and expressed in {b}. Body Wrench F, is

defined as
my

{

=[]

General Case: If force f is applied at the point r of body B,
the body wrench in {b} will be:

B
By
b

Fr= € RS

where 1, € R3 is the position vector of point rin {b} and

r, X f?r is the moment created by force ffr about the
origin of {b}.
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Spatial Wrench F

The power is a coordinate-independent quantity, i.e., the power generated (or dissipated)
by a wrench F and twist V pair must be the same regardless of the frame in which it is

represented:
(V - F = power) VIF, = VI F, = power (Vy = |Ady, |Vs)
T
ViFs = ([AdTbs]vs) F
T
= VI|Ady, | F»
lSince this must hold for all VY
T B
Fs = |Adr, | Fp
spatial wrench body wrench
m + p X
Therefore: F, = [AdTb ]T fb] — [ms p fs]
s b fs
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Spatial Wrench F.: General Case

=, T = By ~Rplpb1| [+ S| B ()5
s bs b -

B, o
0 RSb b RSbffr
R B R ST R By B Br
_ |Rspmy + Rgppp X sbfb _|mg +rg X fs c R6

By By
Rsbfb fs

* In general, if we have the wrench in frame {d}, we can express it in another frame {d} as:

B f

Fer = [adr, | 7y it N
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niversity

Example

The robot hand shown is holding an apple with a mass of 0.1 kg in a gravitational field
g=10 m/s?. The mass of the hand is 0.5 kg, L;=10 cm, and L,=15 cm. What is the force
and torque measured by the six-axis force—torque sensor between the hand and the

robot arm?
L Lo
Yt Yh*
I g
o
\ )/\{f

force—torque sensor

NG

» Note: If more than one wrench acts on a rigid body, the total wrench
on the body is simply the vector sum of the individual wrenches,
provided that the wrenches are expressed in the same frame.
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Rigid-Body Motions

Rotations

Transformations

R € SO(3): 3 X 3 matrices
RTR = RR” = I, det(R) = 1

T € SE(3): 4 X 4 matrices
_[R P
= [0 1P
where R € SO(3),p € R3

R'=R"

T_l _ [RT _RTp]
0 1

Change of coordinate frame:
R,pRpc = Rye, RopPy = P
(Rab — Rl;c% — Rga)

Change of coordinate frame:
TopTye =Tue, TapPp = Pa
(Tap = Tha)
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Rigid-Body Motions

Rotations Transformations

Displacing a frame {b}:

T — [Rot((;b, ) p]

Rotating a frame {b}: 1

R = ROt((IA\), 9) st, — TTSb:

R,y = RRgy: A ) rotate 8 about @, = @ (moves {b} origin),
rotate 6 about w; = @ translate p in {s}
RSb’ = RSbR: i X st’ — stT:
rotate 6 about @, = @ translate p in {b}, rotate 8 about @ in new body
frame
. 5 « . A 3 7 o)) . e S(U 6
Unit rotation axisis @ € R~, Unit” screw axisis § = S € R®, where
n . v
where [|@]| = 1 either (i) [|S,, |l = 1 or (ii) IS, Il = 0, IS,]| = 1
For a screw axis {q, 8, h} with finite h,

$= o] = |- xqns
'S, —S X q+ hs

A/ L W] -
Angular velocity is w = w6 Twistis PV = [v =S50
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Rigid-Body Motions

Rotations Transformations

Forany w = (wq, w,, w3) € R3,

0 —wW w V= w R6 S = Sw ]R6,
[w] = | ws 0 ’ —cjl € so(3) Ly [”] E[ | o [Sv] <
—w, W 0 (V] = [ (;)) g] € se(3),
Properties: For any w, x € R, R € SO(3): S,] S
[w] = —[w]", [w]x = —[x]w, 5] = [ 0 Ov] € se(3)

[w][x] = ([x][@DT, R[w]R" = [Rw]

RR™! =[w], R"'R=[w,] (R :=Ry) TT ' =[V], T'T=[V,] (T=Tg)

dr] = [ e g€ R
Properties: [Ady] ™ = [Adp-1],
[AdT1][AdT2] = [AdT1T2]

Change of coordinate frame: Change of coordinate frame:
&)a = Rabd)bl w, = Rabwb Sa = [AdTab]Sbi Va = [AdTab]Vb
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Rigid-Body Motions

Rotations

Transformations

AN

wg = Rsb Wp

SS = [Adeb]Sb’ VS = [Adeb]vb

Exponential coordinate for R € SO(3):

Exponential coordinate for T € SE(3):

@6 € R” S6 € R®
exp: [@]0 € so(3) > R € SO(3) exp: [S]6 € Se(3)s—9> T € SE(3)
R = Rot(®, 0) = el®1® T = elS]
in 6[@] e elSol®  G(6)S
R =1I;+sin0[®] + (1 —cos0)[w] T:[ 0 : v

(Rodrigues’ formula for rotations)

G(O) =150 + (1 —cosO)[S,]+ (0 —sin O[S,]?

log: R € SO(3) = [w]0 € so(3)
log(R) = [w]6

log: T € SE(3) — [S]6 € se(3)
log(T) = [S]6

Moment change of coordinate frame:
m, = R;ym,,

Wrench change of coordinate frame:
F, = [m“] =[ady, |'F
a fa Tpa b
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