Ch4: Rigid-Body Motions – Part 2 (Transformation)

Amin Fakhari, Fall 2025

Transformation Matrices

Transformation Matrices

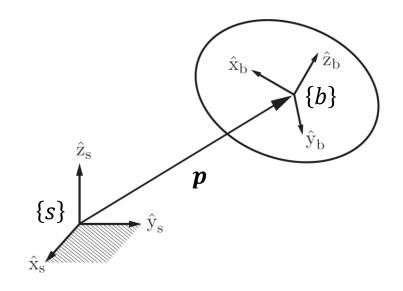
Homogeneous Transformation Matrices

Rigid-body configuration can be represented by the pair (R, p) $(R \in SO(3), p \in \mathbb{R}^3)$. We can package (\mathbf{R}, \mathbf{p}) into a single 4×4 matrix as

$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}$$

Transformation Matrix

This is an implicit representation of the C-space.



$$\boldsymbol{p}:=\boldsymbol{p}_{\scriptscriptstyle S}=\boldsymbol{p}_{\scriptscriptstyle S}^b=\boldsymbol{p}_{\scriptscriptstyle S}^{\scriptscriptstyle Sb}$$

Another notation for p_s^{sb} : ${}^sp_{sb}$

 $R:=R_{sb}$

Another notation for \mathbf{R}_{sh} : ${}^{s}\mathbf{R}_{h}$

 $T:=T_{Sb}$

Another notation for T_{sh} : ${}^{S}T_{h}$

Special Euclidean Group SE(3)

The Special Euclidean Group SE(3), also known as the group of rigid-body motions or homogeneous transformation matrices, is the set of all 4×4 real matrices T of the form

$$T = \begin{bmatrix} \mathbf{R} & \mathbf{p} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_1 \\ r_{21} & r_{22} & r_{23} & p_2 \\ r_{31} & r_{32} & r_{33} & p_3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{array}{c} T \in SE(3) \\ \mathbf{R} \in SO(3) \\ \mathbf{p} \in \mathbb{R}^3 \end{array}$$

$$SE(3) = \left\{ \boldsymbol{T} \in \mathbb{R}^{4 \times 4} \mid \boldsymbol{T} = \begin{bmatrix} \boldsymbol{R} & \boldsymbol{p} \\ \boldsymbol{0} & 1 \end{bmatrix}, \boldsymbol{R} \in SO(3), \boldsymbol{p} \in \mathbb{R}^3 \right\}$$

The special Euclidean group SE(2) is the set of all 3×3 real matrices T of the form

$$T = \begin{bmatrix} \mathbf{R} & \mathbf{p} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & p_1 \\ r_{21} & r_{22} & p_2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & p_1 \\ \sin \theta & \cos \theta & p_2 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{array}{l} \mathbf{T} \in SE(2) \\ \mathbf{R} \in SO(2) \\ \mathbf{p} \in \mathbb{R}^2 \\ \theta \in [0, 2\pi) \end{array}$$
$$-SE(2) \text{ is a subgroup of } SE(3) \text{:} \qquad SE(2) \subset SE(3)$$

Amin Fakhari, Fall 2025

Properties of Transformation Matrices

SE(3) (or SE(2)) is a matrix (Lie) group (and the group operation \bullet is matrix multiplication).

Closure: $T_1T_2 \in SE(3)$

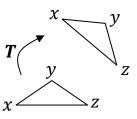
 $(T_1T_2)T_3 = T_1(T_2T_3)$ (but generally not commutative, $T_1T_2 \neq T_2T_1$) Associative:

Identity: $\exists I_4 \in SE(3)$ such that $TI_4 = I_4T = T$

 $\exists \ T^{-1} \in SE(3) \text{ such that } TT^{-1} = T^{-1}T = I_4$ **Inverse**:

$$T^{-1} = \begin{bmatrix} R & p \\ \mathbf{0} & 1 \end{bmatrix}^{-1} = \begin{bmatrix} R^T & -R^T p \\ \mathbf{0} & 1 \end{bmatrix}$$

Note: **T** preserves both distances and angles.

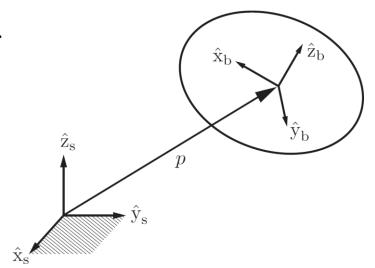


Uses of Transformation Matrices (1)

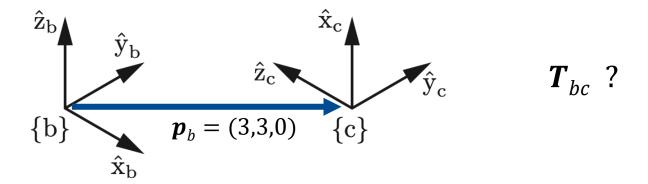
(1) Representing configuration (position and orientation) of a frame relative to another frame.

Notation: T_{sb} is the configuration of $\{b\}$ relative to $\{s\}$.

$$\boldsymbol{T}_{sb} = \begin{bmatrix} \boldsymbol{R}_{sb} & \boldsymbol{p} \\ \mathbf{0} & 1 \end{bmatrix}$$



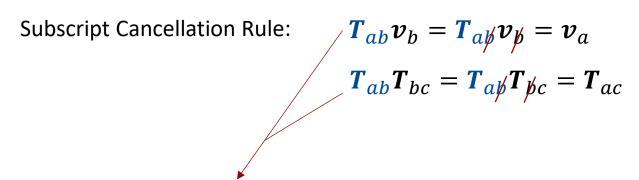
Example



Transformation Matrices

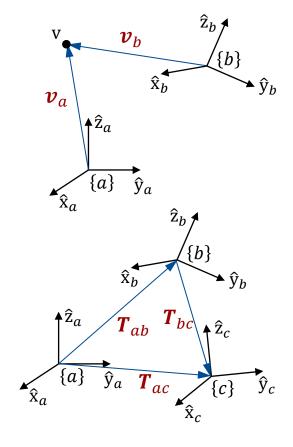
Uses of Transformation Matrices (2)

(2) Changing the reference frame of a <u>vector</u> or <u>frame</u>.



 T_{ab} can be viewed as a <u>mathematical operator</u> that changes the reference frame from $\{b\}$ to $\{a\}$.

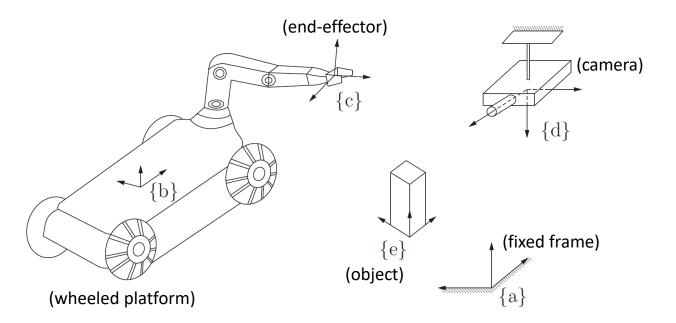
Note:
$$T_{bc}T_{cb} = I_4$$
 or $T_{bc} = T_{cb}^{-1} = \begin{bmatrix} R_{cb}^T & -R_{cb}^T p_c^{cb} \\ 0 & 1 \end{bmatrix}$



Note: To calculate Tv, we append a "1" to v and it is called homogeneous coordinates representation of v. $v = [v_1 \ v_2 \ v_3 \ 1]^T$

Example

A robot arm mounted on a wheeled mobile platform moving in a room, and a camera fixed to the ceiling. The robot must pick up an object with body frame $\{e\}$. What is the configuration of the object relative to the robot hand, T_{ce} , given T_{db} , T_{de} , T_{bc} , and T_{ad} ?



Transformation Matrices

Uses of Transformation Matrices (3)

(3) Displacing (rotating and translating) a <u>vector</u> or <u>frame</u>.

$$T = (R, p) = (\text{Rot}(\widehat{\omega}, \theta), p) = \text{Trans}(p) \overline{\text{Rot}}(\widehat{\omega}, \theta)$$

$$\overline{\text{Rot}}(\widehat{\omega}, \theta) = \begin{bmatrix} \text{Rot}(\widehat{\omega}, \theta) & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix}$$

$$\text{Trans}(p) = \begin{bmatrix} I_3 & p \\ \mathbf{0} & 1 \end{bmatrix}$$

T can be viewed as a <u>mathematical operator</u> that rotates a frame or vector about a unit axis $\widehat{\boldsymbol{\omega}} = (\widehat{\omega}_1, \widehat{\omega}_2, \widehat{\omega}_3)$ by an amount θ + translating it by \boldsymbol{p} .

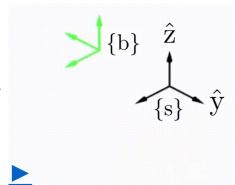
Uses of Transformation Matrices (3) (cont.)

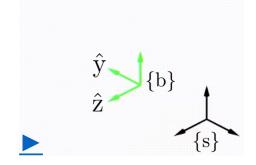
• Rotation of vector v about a unit axis $\widehat{\omega}$ (expressed in the same frame) by an amount θ and translation of it by p (expressed in the same frame) is vector v' expressed in the same frame:

$$v'' = Tv = \text{Trans}(p) \overline{\text{Rot}}(\widehat{\omega}, \theta) v \equiv \text{Rot}(\widehat{\omega}, \theta) v + p$$
Interpretation

Fixed-frame Transformation:

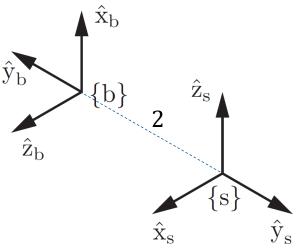
2. Translating
$$\{b'\}$$
 by \P 1. Rotating $\{b\}$ by θ about \P in $\{s\}$ p in $\{s\}$ to get $\{b''\}$ (this can move $\{b\}$ origin) to get $\{b'\}$
$$T_{sb''} = TT_{sb} = Trans(p) \overline{Rot}(\widehat{\omega}, \theta) T_{sb}$$
 (pre-multiplication)





Example

Find fixed-frame and body-frame transformations corresponding to $\hat{\omega}=(0,0,1)$, $\theta=90^\circ$, and p=(0,2,0).



Transformation Matrices

00000

Twist

Lie Algebra se(3)

The set of all 4 × 4 matrices of the form

$$\begin{bmatrix} [\boldsymbol{\omega}] & \boldsymbol{v} \\ \mathbf{0} & 0 \end{bmatrix}$$

where $[\boldsymbol{\omega}] \in so(3)$ and $\boldsymbol{v} \in \mathbb{R}^3$ is called se(3).

• se(3) is the matrix representation of 6×1 vectors $\mathcal{V} = \begin{bmatrix} \boldsymbol{\omega} \\ \boldsymbol{\nu} \end{bmatrix} \in \mathbb{R}^6$. Thus,

$$[\mathbf{\mathcal{V}}] = \begin{bmatrix} \boldsymbol{\omega} & \boldsymbol{v} \\ \mathbf{0} & 0 \end{bmatrix} \in se(3)$$

• se(3) is called the Lie algebra of the Lie group SE(3).

Notations:

- From 6×1 vector to 4×4 matrix representation: $[\mathcal{V}]$ or $[\mathcal{V}]_{\times}$ (Bracket notation), $\widehat{\mathcal{V}}$ ($\widehat{\cdot}$ hat notation), or \mathcal{V}^{\wedge} .
- From 4×4 matrix representation to 6×1 vector: $[\mathcal{V}]^{\vee}$ ($(\cdot)^{\vee}$ vee notation or $\dot{\cdot}$)

Spatial Velocity or Twist

A rigid body's **Spatial Velocity** or **Twist** can be represented as a point in \mathbb{R}^6 and defined as

$$\mathbf{\mathcal{V}}_{x} = \begin{bmatrix} \text{angular velocity of body expressed in frame } \{x\} \\ \text{linear velocity of origin of frame } \{x\} \text{ on body (or its extention) expressed in frame } \{x\} \end{bmatrix} \in \mathbb{R}^{6}$$
expressed in \{x\}

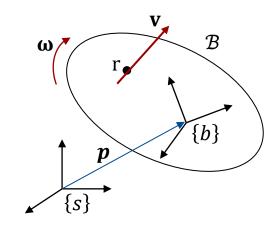
point where velocity is computed

ransformation Matrices

A general form:
$$v_x^{\mathcal{B}_r} = \begin{bmatrix} \text{angular velocity of body } \mathcal{B} \text{ expressed in frame } \{x\} \\ \text{linear velocity of point r on body } \mathcal{B} \text{ (or its extention) expressed in frame } \{x\} \end{bmatrix} \in \mathbb{I}$$

Let's find the twist $\mathcal{V} \in \mathbb{R}^6$ of a moving body (or body frame $\{b\}$) in terms of $T_{sb} = T(t)$. Body Frame $\{b\}$ is instantaneously coincident with the body-attached frame.

$$T(t) = \begin{bmatrix} R(t) & p(t) \\ \mathbf{0} & 1 \end{bmatrix}$$



Body Twist \mathcal{V}_h

Similar to
$$\mathbf{R}^{-1}\dot{\mathbf{R}} = [\boldsymbol{\omega}_b]$$
, let's compute $\mathbf{T}^{-1}\dot{\mathbf{T}}$: $(\mathbf{R}: = \mathbf{R}_{sb}, \mathbf{T}: = \mathbf{T}_{sb})$

$$T^{-1}\dot{T} = \begin{bmatrix} R^T & -R^T p \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \dot{R} & \dot{p} \\ \mathbf{0} & 0 \end{bmatrix}$$

$$= \begin{bmatrix} R^T \dot{R} & R^T \dot{p} \\ \mathbf{0} & 0 \end{bmatrix}$$

$$= \begin{bmatrix} [\boldsymbol{\omega}_b] & \boldsymbol{v}_b \\ \mathbf{0} & 0 \end{bmatrix} \xrightarrow{[\boldsymbol{\omega}_b] \in so(3)} T^{-1}\dot{T} = [\boldsymbol{v}_b] = \begin{bmatrix} [\boldsymbol{\omega}_b] & \boldsymbol{v}_b \\ \mathbf{0} & 0 \end{bmatrix} \in se(3)$$

$$\mathbf{\mathcal{V}}_b = \begin{bmatrix} \mathbf{\omega}_b \\ \mathbf{v}_b \end{bmatrix} \in \mathbb{R}^6$$
 $\mathbf{\mathcal{V}}_b$ is defined as **Body Twist** (or spatial velocity in the body frame)

- $[\mathcal{V}_h] \in se(3)$ is the matrix representations of the **body twists** $\mathcal{V}_b \in \mathbb{R}^6$ associated with the rigid-body configuration $T \in SE(3)$.
- \mathcal{V}_h does not depend on the choice of the fixed frame $\{s\}$,

Transformation Matrices

Twist

Spatial Twist \mathcal{V}_s

Similar to
$$\dot{R}R^{-1}=[\omega_s]$$
, let's compute $\dot{T}T^{-1}$: $(R=R_{sb},T=T_{sb})$

$$\begin{aligned}
\dot{T}T^{-1} &= \begin{bmatrix} \dot{R} & \dot{p} \\ \mathbf{0} & 0 \end{bmatrix} \begin{bmatrix} R^{T} & -R^{T}p \\ \mathbf{0} & 1 \end{bmatrix} \\
&= \begin{bmatrix} \dot{R}R^{T} & \dot{p} - \dot{R}R^{T}p \\ \mathbf{0} & 0 \end{bmatrix} \\
&= \begin{bmatrix} [\boldsymbol{\omega}_{S}] & \boldsymbol{v}_{S} \\ \mathbf{0} & 0 \end{bmatrix} \xrightarrow{[\boldsymbol{\omega}_{S}] \in so(3)} \quad \dot{T}T^{-1} = [\boldsymbol{v}_{S}] = \begin{bmatrix} [\boldsymbol{\omega}_{S}] & \boldsymbol{v}_{S} \\ \mathbf{0} & 0 \end{bmatrix} \in se(3)
\end{aligned}$$

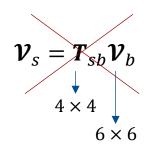
$$\mathbf{v}_{s} = \begin{bmatrix} \mathbf{w}_{s} \\ \mathbf{v}_{s} \end{bmatrix} \in \mathbb{R}^{6}$$
 \mathbf{v}_{s} is defined as **Spatial Twist** (or spatial velocity in the space frame)

- $[\mathcal{V}_s] \in se(3)$ is the matrix representations of the spatial twists $\mathcal{V}_s \in \mathbb{R}^6$ associated with the rigid-body configuration $T \in SE(3)$.
- \mathcal{V}_{s} does not depend on the choice of the body frame $\{b\}$.

Transformation Matrices

Twist

Adjoint Map



Transformation Matrices

Twist

$$[\mathcal{V}_b] = \mathbf{T}^{-1}\dot{\mathbf{T}} \qquad \longrightarrow \qquad [\mathcal{V}_S] = \mathbf{T}[\mathcal{V}_b]\mathbf{T}^{-1} \longrightarrow$$
$$[\mathcal{V}_S] = \dot{\mathbf{T}}\mathbf{T}^{-1}$$

$$[\boldsymbol{\mathcal{V}}_S] = \begin{bmatrix} \boldsymbol{R}[\boldsymbol{\omega}_b] \boldsymbol{R}^{\mathrm{T}} & -\boldsymbol{R}[\boldsymbol{\omega}_b] \boldsymbol{R}^{\mathrm{T}} \boldsymbol{p} + \boldsymbol{R} \boldsymbol{v}_b \end{bmatrix} \xrightarrow{\begin{array}{c} \boldsymbol{R}[\boldsymbol{\omega}] \boldsymbol{R}^{\mathrm{T}} = [\boldsymbol{R} \boldsymbol{\omega}] \\ [\boldsymbol{\omega}] \boldsymbol{p} = -[\boldsymbol{p}] \boldsymbol{\omega} \end{array}} = \begin{bmatrix} [\boldsymbol{R} \boldsymbol{\omega}_b] & [\boldsymbol{p}] \boldsymbol{R} \boldsymbol{\omega}_b + \boldsymbol{R} \boldsymbol{v}_b \\ \boldsymbol{0} & 0 \end{bmatrix}$$

$$[\mathrm{Ad}_{T}] = \begin{bmatrix} R & \mathbf{0} \\ \mathbf{p} & R \end{bmatrix} \in \mathbb{R}^{6 \times 6}$$

 $[\mathrm{Ad}_T] = \begin{bmatrix} R & \mathbf{0} \\ [p]R & R \end{bmatrix} \in \mathbb{R}^{6 \times 6}$ Adjoint Map associated with T or Adjoint Representation of T

 Therefore, $\mathcal{V}_s = |\operatorname{Ad}_{T_{sh}}|\mathcal{V}_b = \operatorname{Ad}_{T_{sh}}(\mathcal{V}_b)$ Similarly, $\mathcal{V}_b = [\mathrm{Ad}_{T_{hs}}] \mathcal{V}_S = \mathrm{Ad}_{T_{hs}} (\mathcal{V}_S)$

Adjoint Map Properties

• Let $T_1, T_2 \in SE(3)$ and $\mathcal{V} = (\boldsymbol{\omega}, \boldsymbol{v}) \in \mathbb{R}^6$. Then,

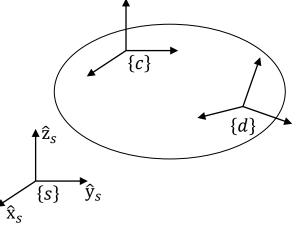
$$\big[\mathrm{Ad}_{T_1}\big]\big[\mathrm{Ad}_{T_2}\big]\boldsymbol{\mathcal{V}} = \big[\mathrm{Ad}_{T_1T_2}\big]\boldsymbol{\mathcal{V}} \qquad \text{or} \qquad \mathrm{Ad}_{T_1}\big(\mathrm{Ad}_{T_2}(\boldsymbol{\mathcal{V}})\big) = \mathrm{Ad}_{T_1T_2}(\boldsymbol{\mathcal{V}})$$

- For any $T \in SE(3)$, $[Ad_T]^{-1} = [Ad_{T-1}]$. Note that $[Ad_T]$ is always invertible.
- For any two frames $\{c\}$ and $\{d\}$, a twist represented in $\{c\}$ as \mathcal{V}_c is related to its representation in $\{d\}$ as \mathcal{V}_d by

$$\boldsymbol{\mathcal{V}}_c = [\mathrm{Ad}_{\boldsymbol{T}_{cd}}] \boldsymbol{\mathcal{V}}_d$$

$$\boldsymbol{\mathcal{V}}_d = [\mathrm{Ad}_{\boldsymbol{T}_{dc}}] \boldsymbol{\mathcal{V}}_c$$

(changing the reference frame of a twist)



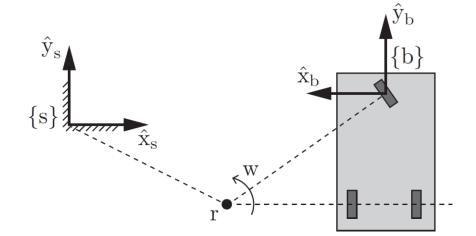
Example

Consider a three-wheeled car with a single steerable front wheel, driving on a plane. The angle of the front wheel of the car causes the car's motion to be a pure angular velocity 2 rad/s about an axis out of the page at the point r in the plane. Find \mathcal{V}_s and \mathcal{V}_b .

$$r_s = (2, -1.0)$$

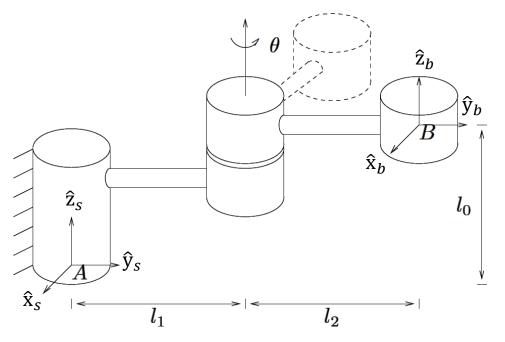
 $r_b = (2, -1.4.0)$

Transformation Matrices



Example

Find $\mathcal{V}_{\scriptscriptstyle S}$ and $\mathcal{V}_{\scriptscriptstyle b}$ for the shown one degree of freedom manipulator.

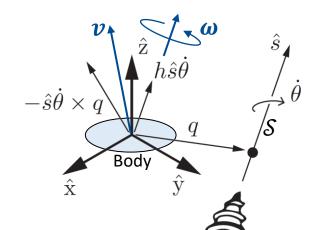


Transformation Matrices

Screw Interpretation of a Twist

Any rigid-body velocity or twist ν is equivalent to the instantaneous velocity θ about some screw axis \mathcal{S} (i.e., rotating about the axis while also translating along the axis).

A screw axis \mathcal{S} is represented by an arbitrary point $q \in \mathbb{R}^3$ on the axis, a unit vector $\hat{\mathbf{s}} \in S^2$ in the direction of the axis (or angular velocity ω), and a pitch $h \in \mathbb{R}_+$ (which is linear velocity along the axis divided by angular velocity $\dot{\theta}$ about the axis) as $\{q, \hat{s}, h\}$. It also can be uniquely represented by **Plücker Coordinates** as $\{m, \hat{s}, h\}$ where $m = q \times \hat{s}$.



Thus, twist ${\cal V}$ can be represented as

$$v = \begin{bmatrix} \boldsymbol{\omega} \\ \boldsymbol{v} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\omega} \\ \boldsymbol{\omega} \times (-\boldsymbol{q}) + h\boldsymbol{\omega} \end{bmatrix} = \begin{bmatrix} \hat{\boldsymbol{s}}\dot{\boldsymbol{\theta}} \\ -\hat{\boldsymbol{s}}\dot{\boldsymbol{\theta}} \times \boldsymbol{q} + h\dot{\boldsymbol{\theta}}\hat{\boldsymbol{s}} \end{bmatrix} = \begin{bmatrix} \hat{\boldsymbol{s}} \\ -\hat{\boldsymbol{s}} \times \boldsymbol{q} + h\hat{\boldsymbol{s}} \end{bmatrix} \dot{\boldsymbol{\theta}}$$

Due to rotation about \mathcal{S} (which is in the plane orthogonal to \hat{s})

Due to translation along \mathcal{S} (which is in the direction of \hat{s})

Representation of Screw Axis

Now, instead of representing the screw axis S as $\{q, \hat{s}, h\}$ (where q is not unique), we represent a "unit" screw axis (uniquely) as a vector as

$$m{S} = egin{bmatrix} m{S}_{\omega} \\ m{S}_{v} \end{bmatrix} \in \mathbb{R}^{6} \quad \text{where} \quad m{\gamma} = m{S}\dot{ heta} \in \mathbb{R}^{6} \qquad \qquad m{S}_{\omega}, m{S}_{v} \in \mathbb{R}^{3}$$

- Finding S and $\{q, \hat{s}, h\}$ by having V:
- (a) If $\|\omega\| \neq 0$ (\equiv rotation with/without translation along \hat{s}):

$$S = \begin{bmatrix} S_{\omega} \\ S_{v} \end{bmatrix} = \mathcal{V}/\|\boldsymbol{\omega}\| = \begin{bmatrix} \boldsymbol{\omega}/\|\boldsymbol{\omega}\| \\ \boldsymbol{v}/\|\boldsymbol{\omega}\| \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{s}} \\ -\hat{\mathbf{s}} \times \boldsymbol{q} + h\hat{\mathbf{s}} \end{bmatrix}$$
$$= \begin{bmatrix} \text{angular velocity when } \dot{\theta} = 1 \\ \text{linear velocity of origin when } \dot{\theta} = 1 \end{bmatrix}$$

(b) If $\|\boldsymbol{\omega}\| = 0$ (\equiv pure translation along $\hat{\boldsymbol{s}}$):

$$S = \begin{bmatrix} S_{\omega} \\ S_{v} \end{bmatrix} = \mathcal{V}/\|v\| = \begin{bmatrix} \mathbf{0} \\ v/\|v\| \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \hat{\mathbf{s}} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{0} \\ \text{normalized linear velocity of origin} \end{bmatrix}$$

Pitch h is finite (h=0 for pure rotation). $h=S_{\omega}^TS_{v}=\omega^Tv/\|\omega\|^2$ $\hat{s}=S_{\omega}=\omega/\|\omega\|, \ \|S_{\omega}\|=1$ $\dot{\theta}=\|\omega\|$ is interpreted as angular velocity about \hat{s} To find q, use $v-h\omega=-\omega\times q$ or $(S_v-hS_{\omega}=-S_{\omega}\times q)$

Pitch h is infinite, $\|\mathbf{S}_{\omega}\| = 0$ $\hat{\mathbf{s}} = \mathbf{S}_v = \mathbf{v}/\|\mathbf{v}\|, \|\mathbf{S}_v\| = 1$ $\dot{\theta} = \|\mathbf{v}\|$ is interpreted as linear velocity along $\hat{\mathbf{s}}$

Screw Axis Properties

Since a screw axis S is just a normalized twist, the 4×4 matrix representation [S] of $S = (S_{\omega}, S_{v}) \in \mathbb{R}^{6}$ is

$$[S] = \begin{bmatrix} [S_{\omega}] & S_{v} \\ \mathbf{0} & 0 \end{bmatrix} \in se(3)$$

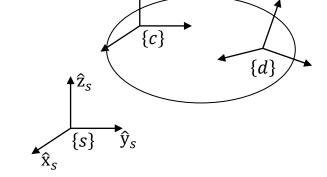
$$\mathbf{v} = \mathbf{S}\dot{\theta} \in \mathbb{R}^6 \quad \Rightarrow \quad [\mathbf{v}] = [\mathbf{S}]\dot{\theta} \in se(3)$$

Like twist \mathcal{V} , the screw axis \mathbf{S} is represented in a frame (e.g., $\{b\}$ or $\{s\}$). Therefore, for any two frames $\{c\}$ and $\{d\}$, a screw axis represented in $\{c\}$ as \mathbf{S}_c is related to its representation in $\{d\}$ as \mathbf{S}_d by:

$$\boldsymbol{S}_c = [\mathrm{Ad}_{\boldsymbol{T}_{cd}}] \boldsymbol{S}_d$$

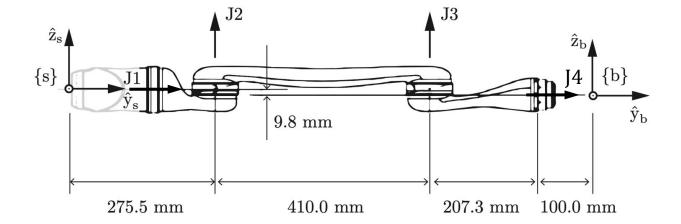
$$\mathbf{S}_d = [\mathrm{Ad}_{\mathbf{T}_{dc}}] \mathbf{S}_c$$

(changing the reference frame of a screw axis)



Example

What are the screw axis \boldsymbol{S}_b and \boldsymbol{S}_S for J4 and J2 for the shown Kinova 4-DOF arm?



Transformation Matrices

Exponential Coordinate Representation of Rigid-Body Motion

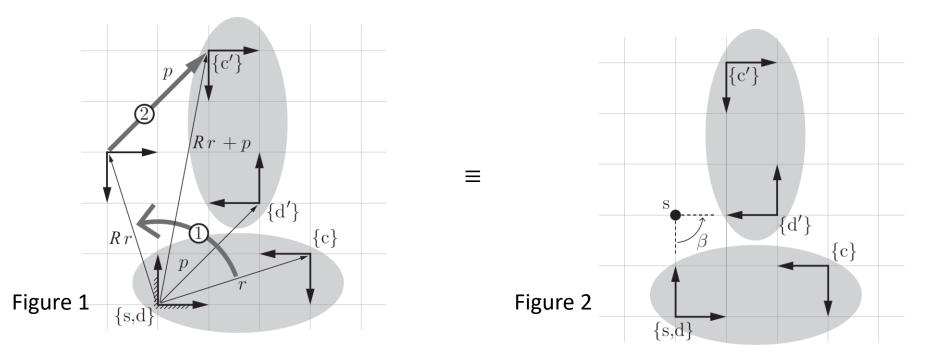
Screw Motion

Instead of viewing a displacement as a rotation followed by a translation, both rotation and translation can be performed simultaneously.

Planar example of a screw motion:

Twist

The displacement in Figure 1 (rotation **1** + translation **2**) can be viewed as a pure rotation of $\beta = 90^{\circ}$ about a fixed-point s as shown in Figure 2.



Exponential Coordinates of Rigid-Body Motions

Chasles—Mozzi theorem states that every rigid-body displacement can be expressed as a finite rotation θ and translation d about/along a fixed screw axis in space.

This theorem motivates a six-parameter representation of a configuration (or a homogeneous transformation $T \in SE(3)$ called the **exponential coordinates** as $S\theta \in \mathbb{R}^6$, where S is the screw axis and θ is the distance that must be traveled along the screw axis to take a frame from the origin I_4 to T.

Note: **T** is equivalent to the displacement obtained by rotating a frame from I_4 about S

• by an angle θ , or

Fransformation Matrices

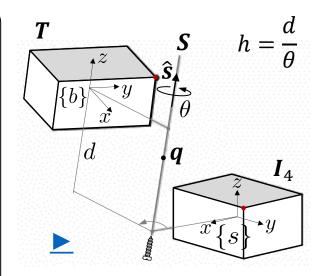
- at a speed $\dot{\theta} = 1$ rad/s for θ s, or
- at a speed $\dot{\theta} = \theta$ for 1s, or
- by constant twist ${m \mathcal V}$ for 1s. $(\mathcal{V}t = \mathbf{S}\theta)$

Constant Screw Motion:

A rotation θ + a translation d about/along a fixed screw axis **S**.

$$\boldsymbol{S} = \begin{bmatrix} \boldsymbol{S}_{\omega} \\ \boldsymbol{S}_{v} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\hat{s}} \\ -\boldsymbol{\hat{s}} \times \boldsymbol{q} + h\boldsymbol{\hat{s}} \end{bmatrix} \quad \text{(for rotation with/without translation along } \boldsymbol{\hat{s}}\text{)}$$

$$S = \begin{bmatrix} S_{\omega} \\ S_{\omega} \end{bmatrix} = \begin{bmatrix} 0 \\ \hat{s} \end{bmatrix}$$
 (for pure translation along \hat{s})



Exponential Coordinates of Rigid-Body Motions

As with rotations, we can define a matrix exponential (exp) and matrix logarithm (log). For any transformation matrix $T \in SE(3)$, we can always find a screw axis $S = (S_{\omega}, S_{\nu}) \in \mathbb{R}^6$ (where $\|S_{\omega}\| = 1$ for rotation with/without translation or $S_{\omega} = 0$ and $\|S_{v}\| = 1$ for pure translation) and scalar $\theta \in \mathbb{R}$ such that $T = e^{[S]\theta}$.

```
[S]\theta \in se(3) \rightarrow T \in SE(3) : e^{[S]\theta} = T = (R, p)
exp:
```

log:
$$T \in SE(3) \rightarrow [S]\theta \in se(3) : \log(T) = [S]\theta$$

 $S\theta \in \mathbb{R}^6$: Exponential coordinates of $T \in SE(3)$

 $[S]\theta = [S\theta] \in se(3)$: Matrix logarithm of T (inverse of the matrix exponential)

Note: T and S have the same base.

Transformation Matrices

Twist

Matrix Exponential

exp:
$$[S]\theta \in se(3) \rightarrow T \in SE(3)$$
 : $e^{[S]\theta} = T = (R, p)$

- \clubsuit Finding T = (R, p) by having $S = (S_{\alpha}, S_{n})$ and θ :
- (a) If $S_{\omega} \neq 0$ (and $||S_{\omega}|| = 1$) (i.e., rotation with/without translation):

$$e^{[S]\theta} = \begin{bmatrix} e^{[S_{\omega}]\theta} & G(\theta)S_v \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{p} \\ \mathbf{0} & 1 \end{bmatrix}$$
Using Taylor expansion
Use Rodrigues Formula

$$\mathbf{G}(\theta) = \mathbf{I}_3 \theta + (1 - \cos \theta) [\mathbf{S}_{\omega}] + (\theta - \sin \theta) [\mathbf{S}_{\omega}]^2 \in \mathbb{R}^{3 \times 3}$$

(b) If $S_{\omega} = \mathbf{0}$ (and $||S_{v}|| = 1$) (i.e., pure translation):

$$e^{[S]\theta} = \begin{bmatrix} I_3 & S_v \theta \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} R & P \\ \mathbf{0} & 1 \end{bmatrix}$$

Transformation Matrices

Twist

Matrix Exponential: Remark

• For a given transformation matrix $m{T}_{sb}$:

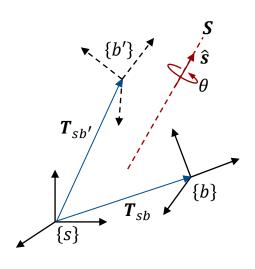
Fixed-frame Displacement is rotation by θ about/along a screw axis S_s , expressed in fixed frame $\{s\}$ as:

$$\boldsymbol{T}_{sb'} = e^{[\boldsymbol{S}_s]\theta} \boldsymbol{T}_{sb}$$

Body-frame Displacement is rotation by θ about/along a screw axis S_b , expressed in body frame $\{b\}$ as:

$$\boldsymbol{T}_{sb'} = \boldsymbol{T}_{sb} e^{[\boldsymbol{S}_b]\theta}$$

$$(\boldsymbol{S}_{\scriptscriptstyle S} = [\mathrm{Ad}_{\boldsymbol{T}_{\scriptscriptstyle Sb}}] \boldsymbol{S}_{\scriptscriptstyle b})$$



Matrix Logarithm

log:
$$T \in SE(3) \rightarrow [S]\theta \in se(3) : \log(T) = [S]\theta$$

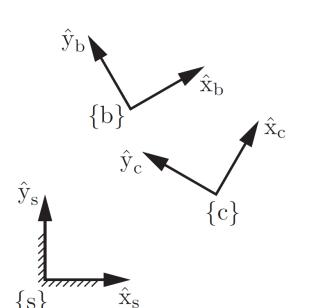
- \bullet Finding $S = (S_{\alpha}, S_{\nu})$ and $\theta \in [0, \pi]$ by having T = (R, p):
- (a) If tr $\mathbf{R}=3$ (or $\mathbf{R}=\mathbf{I}_3$), then set $\mathbf{S}_{\omega}=\mathbf{0}$, $\mathbf{S}_{v}=\mathbf{p}/\|\mathbf{p}\|$, and $\theta=\|\mathbf{p}\|$.
- (b) Otherwise, use the matrix logarithm $\log(R) = [S_{\omega}]\theta$ to determine S_{ω} (this is $\widehat{\omega}$ in the SO(3) algorithm) and $\theta \in [0,\pi]$. Then, S_v is calculated as

$$\mathbf{S}_v = \mathbf{G}^{-1}(\theta)\mathbf{p}$$
 where $\mathbf{G}^{-1}(\theta) = \frac{1}{\theta}\mathbf{I}_3 - \frac{1}{2}[\mathbf{S}_\omega] + \left(\frac{1}{\theta} - \frac{1}{2}\cot\frac{\theta}{2}\right)[\mathbf{S}_\omega]^2 \in \mathbb{R}^{3\times 3}$

(θ is in radian)

Example

The initial frame $\{b\}$ and final frame $\{c\}$ are given. Find the screw motion expressed in $\{s\}$ (S_s, θ) that displaces the frame at T_{sh} to T_{sc} .



Twist

Transformation Matrices

$$T_{sb} = \begin{bmatrix} \cos 30^{\circ} & -\sin 30^{\circ} & 0 & 1\\ \sin 30^{\circ} & \cos 30^{\circ} & 0 & 2\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{sc} = \begin{bmatrix} \cos 60^{\circ} & -\sin 60^{\circ} & 0 & 2\\ \sin 60^{\circ} & \cos 60^{\circ} & 0 & 1\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Unit Dual Quaternions

Transformation Matrices

Dual Quaternion

In general, dual numbers are defined as $d=a+\epsilon b$ where a and b are elements of an algebraic field, and ϵ is a dual unit with $\epsilon^2=0, \epsilon\neq 0$. Similarly, a dual quaternion \boldsymbol{D} is defined as $\boldsymbol{D}=\boldsymbol{p}+\epsilon \boldsymbol{q}$ where $\boldsymbol{p},\boldsymbol{q}\in\mathbb{H}$ are quaternions.

- Addition and multiplication of two dual quaternions $m{D}_1 = m{p}_1 + \epsilon m{q}_1$ and $m{D}_2 = m{p}_2 + \epsilon m{q}_2$: $m{D}_1 + m{D}_2 = (m{p}_1 + m{p}_2) + \epsilon (m{q}_1 + m{q}_2)$ $m{D}_1 m{D}_2 = (m{p}_1 m{p}_2) + \epsilon (m{p}_1 m{q}_2 + m{q}_1 m{p}_2) \neq m{D}_2 m{D}_1$ (not commutative)
- Conjugate of $m{D}$: $m{D}^* = m{p}^* + \epsilon m{q}^*$ or $m{D}^\dagger = m{p}^* \epsilon m{q}^*$
- Norm of **D**: $||D|| = \sqrt{DD^*} = \sqrt{pp^* + \epsilon(pq^* + qp^*)}$
- Inverse of \boldsymbol{D} : $\boldsymbol{D}^{-1} = \frac{\boldsymbol{D}^*}{\|\boldsymbol{D}\|^2}$

The dual quaternion $\pmb{D} = \pmb{p} + \epsilon \pmb{q}$ is a **Unit Dual Quaternion** if $\|\pmb{D}\| = 1$, i.e., $\sqrt{\pmb{p}\pmb{p}^*} = \|\pmb{p}\| = 1$ (\pmb{p} is unit quaternion) and $\pmb{p}\pmb{q}^* + \pmb{q}\pmb{p}^* = \pmb{0}$. Consequently, $\pmb{D}^{-1} = \pmb{D}^*$ and $\pmb{p} \cdot \pmb{q} = 0$.

Unit Dual Quaternion

The homogeneous transformation $T \in SE(3)$ (i.e., the rotation R followed by the translation p) can be also represented by a unit dual quaternion as

$$\boldsymbol{D}_T = \boldsymbol{q}_R + \epsilon \boldsymbol{q}_d = \boldsymbol{q}_R + \frac{\epsilon}{2} \boldsymbol{q}_p \boldsymbol{q}_R$$

where $q_R = \left(\cos\left(\frac{\theta}{2}\right), \widehat{\boldsymbol{\omega}}\sin\left(\frac{\theta}{2}\right)\right) \in S^3$ is a unit quaternion representing rotation $\boldsymbol{R}, q_d \in \mathbb{H}$ is a quaternion encoding translation, $q_p = (0, \boldsymbol{p}) \in \mathbb{H}$, and $q_R \cdot q_d = 0$.

Note: For pure rotation $\boldsymbol{D}_T = \boldsymbol{q}_R + \epsilon \boldsymbol{0}$ (or $\boldsymbol{D}_T = \boldsymbol{q}_R + \epsilon (0,0,0,0)$) and pure translation $\boldsymbol{D}_T = \boldsymbol{1} + \frac{\epsilon}{2} \boldsymbol{q}_p$ (or $\boldsymbol{D}_T = (1,0,0,0) + \frac{\epsilon}{2} \boldsymbol{q}_p$).

Note: If we are given a unit dual quaternion D_T , to convert it into the transformation matrix $T \in SE(3)$, we convert the unit quaternion q_R into a rotation matrix $R \in SO(3)$ and the translation $p \in \mathbb{R}^3$ is obtained from $2q_dq_R^* = q_p = (0, p)$.

Unit Dual Quaternion

• The transformation of a point or vector $\boldsymbol{p} \in \mathbb{R}^3$ using unit dual quaternion \boldsymbol{D}_T is determined as

$$\boldsymbol{D}_{p'} = \boldsymbol{D}_T (\mathbf{1} + \epsilon \boldsymbol{q}_p) \boldsymbol{D}_T^{\dagger} = \mathbf{1} + \epsilon (\boldsymbol{q}_R \boldsymbol{q}_p \boldsymbol{q}_R^{-1} + \boldsymbol{q}_p) \quad \leftrightarrow \quad \boldsymbol{p}' = \boldsymbol{T} \boldsymbol{p}$$

• The screw displacements $\{m, \hat{s}, h = d/\theta\}$ can be expressed by the dual quaternions as

$$D_{T} = \cos \frac{\Phi}{2} + L \sin \frac{\Phi}{2} = \left(\cos \frac{\theta}{2}, \hat{\mathbf{s}} \sin \frac{\theta}{2}\right) + \epsilon \left(-\frac{d}{2} \sin \frac{\theta}{2}, \frac{d}{2} \cos \frac{\theta}{2} \hat{\mathbf{s}} + \sin \frac{\theta}{2} \mathbf{m}\right) \quad \leftrightarrow \quad \mathbf{T} = e^{[\mathbf{S}]\theta}$$

$$\Phi = \theta + \epsilon d \text{ (dual number)}$$

$$L = \hat{\mathbf{s}} + \epsilon \mathbf{m} \text{ (dual vector)}$$

Note: $\theta = 0$, π corresponds to pure translation. In this case, $L = \hat{s} + \epsilon 0$ where \hat{s} is the unit vector along the axis of translation.

• A power of the unit dual quaternion D_T is defined as

$$\boldsymbol{D}_{T}^{\tau} = \cos\frac{\tau\Phi}{2} + \boldsymbol{L}\sin\frac{\tau\Phi}{2} = \left(\cos\frac{\tau\theta}{2}, \hat{\boldsymbol{s}}\sin\frac{\tau\theta}{2}\right) + \epsilon\left(-\frac{\tau d}{2}\sin\frac{\tau\theta}{2}, \frac{\tau d}{2}\cos\frac{\tau\theta}{2}\hat{\boldsymbol{s}} + \sin\frac{\tau\theta}{2}\boldsymbol{m}\right)$$

Transformation Matrices

000000000

Wrench

00000

Review

0000

Stony Brook University

Spatial Force or Wrench

A rigid body's **Spatial Force** or **Wrench** can be represented as a point in \mathbb{R}^6 and defined as

expressed in
$$\{x\}$$

$$\mathcal{F}_{x}^{\uparrow} = \begin{bmatrix} \text{moment applied to body expressed in frame } \{x\} \\ \text{force applied to origin of frame } \{x\} \text{ on body expressed in frame } \{x\} \end{bmatrix} \in \mathbb{R}^{6}$$

A general form:

Fransformation Matrices

point where force is applied

 $\boldsymbol{\mathcal{F}}_{x}^{\mathcal{B}_{r}} = \begin{bmatrix} \text{moment applied to body } \mathcal{B} + \text{moment of force applied to point r on body } \mathcal{B} \text{ in } \{x\} \\ \text{force applied to point r on body } \mathcal{B} \text{ expressed in frame } \{x\} \end{bmatrix} \in \mathbb{R}$

Body Wrench \mathcal{F}_b

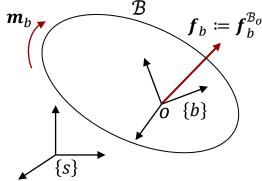
Let $m_b \in \mathbb{R}^3$ be a moment applied to the body expressed in $\{b\}$ and $f_b \in \mathbb{R}^3$ be a force applied to the body at the origin of frame $\{b\}$ and expressed in $\{b\}$. Body Wrench \mathcal{F}_b is defined as

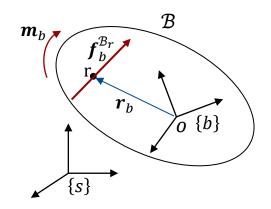
$$\boldsymbol{\mathcal{F}}_b = \begin{bmatrix} \boldsymbol{m}_b \\ \boldsymbol{f}_b \end{bmatrix} \in \mathbb{R}^6$$

General Case: If force \mathbf{f} is applied at the point \mathbf{r} of body \mathcal{B} , the body wrench in $\{b\}$ will be:

$$m{\mathcal{F}}_b^{\mathcal{B}_r} = egin{bmatrix} m{m}_b + m{r}_b imes m{f}_b^{\mathcal{B}_r} \ m{f}_b^{\mathcal{B}_r} \end{bmatrix} \in \mathbb{R}^6$$

where $r_b \in \mathbb{R}^3$ is the position vector of point r in $\{b\}$ and $r_b \times f_b^{\mathcal{B}_r}$ is the moment created by force $f_b^{\mathcal{B}_r}$ about the origin of $\{b\}$.



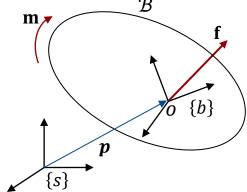


Spatial Wrench \mathcal{F}_s

The **power** is a coordinate-independent quantity, i.e., the power generated (or dissipated) by a wrench \mathcal{F} and twist \mathcal{V} pair must be the same regardless of the frame in which it is represented:

 $m{\mathcal{F}}_{S} = [\mathrm{Ad}_{m{T}_{bS}}]^{\mathrm{T}} m{\mathcal{F}}_{b}$ spatial wrench body wrench

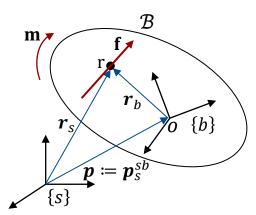
Therefore:
$$\boldsymbol{\mathcal{F}}_{S} = \begin{bmatrix} \operatorname{Ad}_{\boldsymbol{T}_{bS}} \end{bmatrix}^{T} \begin{bmatrix} \boldsymbol{m}_{b} \\ \boldsymbol{f}_{b} \end{bmatrix} = \begin{bmatrix} \boldsymbol{m}_{S} + \boldsymbol{p} \times \boldsymbol{f}_{S} \\ \boldsymbol{f}_{S} \end{bmatrix}$$



Spatial Wrench \mathcal{F}_s : General Case

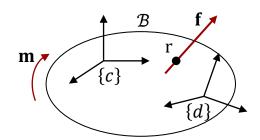
$$\boldsymbol{\mathcal{F}}_{s}^{\mathcal{B}_{r}} = \begin{bmatrix} \operatorname{Ad}_{\boldsymbol{T}_{bs}} \end{bmatrix}^{T} \boldsymbol{\mathcal{F}}_{b}^{\mathcal{B}_{r}} = \begin{bmatrix} \boldsymbol{R}_{sb} & -\boldsymbol{R}_{sb} [\boldsymbol{p}_{b}^{bs}] \\ \boldsymbol{0} & \boldsymbol{R}_{sb} \end{bmatrix} \begin{bmatrix} \boldsymbol{m}_{b}^{\mathcal{B}} + \boldsymbol{r}_{b} \times \boldsymbol{f}_{b}^{\mathcal{B}_{r}} \\ \boldsymbol{f}_{b}^{\mathcal{B}_{r}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{R}_{sb} \boldsymbol{m}_{b}^{\mathcal{B}} + \boldsymbol{R}_{sb} \left(\left(\boldsymbol{r}_{b} - \boldsymbol{p}_{b}^{bs} \right) \times \boldsymbol{f}_{b}^{\mathcal{B}_{r}} \right) \\ \boldsymbol{R}_{sb} \boldsymbol{f}_{b}^{\mathcal{B}_{r}} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{R}_{sb} \mathbf{m}_b^{\mathcal{B}} + \mathbf{R}_{sb} \mathbf{p}_b^{sr} \times \mathbf{R}_{sb} \mathbf{f}_b^{\mathcal{B}_r} \\ \mathbf{R}_{sb} \mathbf{f}_b^{\mathcal{B}_r} \end{bmatrix} = \begin{bmatrix} \mathbf{m}_s^{\mathcal{B}} + \mathbf{r}_s \times \mathbf{f}_s^{\mathcal{B}_r} \\ \mathbf{f}_s^{\mathcal{B}_r} \end{bmatrix} \in \mathbb{R}^6$$



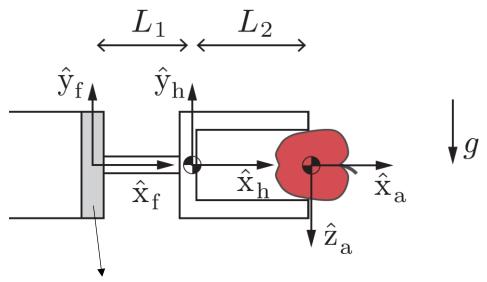
• In general, if we have the wrench in frame $\{d\}$, we can express it in another frame $\{d\}$ as:

$$\boldsymbol{\mathcal{F}}_{c}^{\mathcal{B}_{r}} = \left[\operatorname{Ad}_{T_{dc}}\right]^{T} \boldsymbol{\mathcal{F}}_{d}^{\mathcal{B}_{r}}$$



Example

The robot hand shown is holding an apple with a mass of 0.1 kg in a gravitational field $g=10 \text{ m/s}^2$. The mass of the hand is 0.5 kg, $L_1=10 \text{ cm}$, and $L_2=15 \text{ cm}$. What is the force and torque measured by the six-axis force—torque sensor between the hand and the robot arm?



force-torque sensor

Note: If more than one wrench acts on a rigid body, the total wrench on the body is simply the vector sum of the individual wrenches, provided that the wrenches are expressed in the same frame.

Review

Transformation Matrices

Rotations	Transformations
$R \in SO(3)$: 3×3 matrices $R^T R = RR^T = I_3$, $det(R) = 1$	$T \in SE(3)$: 4×4 matrices $T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}$, where $R \in SO(3)$, $p \in \mathbb{R}^3$
$\mathbf{R}^{-1} = \mathbf{R}^{\mathrm{T}}$	$\boldsymbol{T}^{-1} = \begin{bmatrix} \boldsymbol{R}^T & -\boldsymbol{R}^T \boldsymbol{p} \\ 0 & 1 \end{bmatrix}$
Change of coordinate frame:	Change of coordinate frame:
$\mathbf{R}_{ab}\mathbf{R}_{bc}=\mathbf{R}_{ac},\ \mathbf{R}_{ab}\mathbf{p}_{b}=\mathbf{p}_{a}$	$T_{ab}T_{bc}=T_{ac}, T_{ab}p_b=p_a$
$\left(\mathbf{R}_{ab} = \mathbf{R}_{ba}^{-1} = \mathbf{R}_{ba}^{T}\right)$	$\left(\boldsymbol{T}_{ab} = \boldsymbol{T}_{ba}^{-1}\right)$

Transformation Matrices

Rotations	Transformations
Rotating a frame $\{b\}$: $ R = \operatorname{Rot}(\hat{\boldsymbol{\omega}}, \theta) $ $ R_{sb'} = RR_{sb}$: $ \operatorname{rotate} \theta \text{ about } \hat{\boldsymbol{\omega}}_s = \hat{\boldsymbol{\omega}} $ $ R_{sb'} = R_{sb}R$: $ \operatorname{rotate} \theta \text{ about } \hat{\boldsymbol{\omega}}_b = \hat{\boldsymbol{\omega}} $	Displacing a frame {b}: $ \boldsymbol{T} = \begin{bmatrix} \operatorname{Rot}(\hat{\boldsymbol{\omega}}, \boldsymbol{\theta}) & \boldsymbol{p} \\ \boldsymbol{0} & 1 \end{bmatrix} $ $ \boldsymbol{T}_{sb'} = \boldsymbol{TT}_{sb} : $ rotate $\boldsymbol{\theta}$ about $\hat{\boldsymbol{\omega}}_s = \hat{\boldsymbol{\omega}}$ (moves {b} origin), translate \boldsymbol{p} in {s} $ \boldsymbol{T}_{sb'} = \boldsymbol{T}_{sb} \boldsymbol{T} : $ translate \boldsymbol{p} in {b}, rotate $\boldsymbol{\theta}$ about $\hat{\boldsymbol{\omega}}$ in new body frame
Unit rotation axis is $\hat{\boldsymbol{\omega}} \in \mathbb{R}^3$, where $\ \hat{\boldsymbol{\omega}}\ = 1$	"Unit" screw axis is $\mathbf{S} = \begin{bmatrix} \mathbf{S}_{\omega} \\ \mathbf{S}_{v} \end{bmatrix} \in \mathbb{R}^{6}$, where either (i) $\ \mathbf{S}_{\omega}\ = 1$ or (ii) $\ \mathbf{S}_{\omega}\ = 0$, $\ \mathbf{S}_{v}\ = 1$
	For a screw axis $\{q, \hat{s}, h\}$ with finite h , $S = \begin{bmatrix} S_{\omega} \\ S_{v} \end{bmatrix} = \begin{bmatrix} \hat{s} \\ -\hat{s} \times q + h\hat{s} \end{bmatrix}$
Angular velocity is $oldsymbol{\omega} = \hat{oldsymbol{\omega}} \dot{ heta}$	Twist is $oldsymbol{\mathcal{V}} = egin{bmatrix} oldsymbol{\omega} \\ oldsymbol{v} \end{bmatrix} = oldsymbol{S}\dot{ heta}$

Transformation Matrices

Rotations	Transformations
For any $\boldsymbol{\omega} = (\omega_1, \omega_2, \omega_3) \in \mathbb{R}^3$, $ [\boldsymbol{\omega}] = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} \in so(3) $ Properties: For any $\boldsymbol{\omega}, \boldsymbol{x} \in \mathbb{R}^3, \boldsymbol{R} \in SO(3)$: $ [\boldsymbol{\omega}] = -[\boldsymbol{\omega}]^T, [\boldsymbol{\omega}] \boldsymbol{x} = -[\boldsymbol{x}] \boldsymbol{\omega}, $ $ [\boldsymbol{\omega}] [\boldsymbol{x}] = ([\boldsymbol{x}] [\boldsymbol{\omega}])^T, \boldsymbol{R} [\boldsymbol{\omega}] \boldsymbol{R}^T = [\boldsymbol{R} \boldsymbol{\omega}] $	For any $\mathbf{\mathcal{V}} = \begin{bmatrix} \boldsymbol{\omega} \\ \boldsymbol{v} \end{bmatrix} \in \mathbb{R}^6$ or $\mathbf{S} = \begin{bmatrix} \mathbf{S}_{\omega} \\ \mathbf{S}_{v} \end{bmatrix} \in \mathbb{R}^6$, $[\mathbf{\mathcal{V}}] = \begin{bmatrix} [\boldsymbol{\omega}] & \boldsymbol{v} \\ 0 & 0 \end{bmatrix} \in se(3),$ $[\mathbf{S}] = \begin{bmatrix} [\mathbf{S}_{\omega}] & \mathbf{S}_{v} \\ 0 & 0 \end{bmatrix} \in se(3)$
$\dot{R}R^{-1} = [\boldsymbol{\omega}_s], \ R^{-1}\dot{R} = [\boldsymbol{\omega}_b] (R \coloneqq R_{sb})$	$\dot{T}T^{-1} = [\mathcal{V}_S], T^{-1}\dot{T} = [\mathcal{V}_b] (T := T_{Sb})$
	$ [\mathrm{Ad}_{T}] = \begin{bmatrix} R & 0 \\ [p]R & R \end{bmatrix} \in \mathbb{R}^{6 \times 6} $ Properties: $[\mathrm{Ad}_{T}]^{-1} = [\mathrm{Ad}_{T^{-1}}],$ $ [\mathrm{Ad}_{T_{1}}][\mathrm{Ad}_{T_{2}}] = [\mathrm{Ad}_{T_{1}T_{2}}] $
Change of coordinate frame: $\hat{\boldsymbol{\omega}}_a = \boldsymbol{R}_{ab}\hat{\boldsymbol{\omega}}_b$, $\boldsymbol{\omega}_a = \boldsymbol{R}_{ab}\boldsymbol{\omega}_b$	Change of coordinate frame: $\mathbf{S}_a = [\mathrm{Ad}_{\mathbf{T}_{ab}}]\mathbf{S}_b, \mathbf{\mathcal{V}}_a = [\mathrm{Ad}_{\mathbf{T}_{ab}}]\mathbf{\mathcal{V}}_b$

Transformation Matrices

Rotations	Transformations
$\widehat{\boldsymbol{\omega}}_{\scriptscriptstyle S} = \boldsymbol{R}_{\scriptscriptstyle Sb} \widehat{\boldsymbol{\omega}}_{\scriptscriptstyle b}$	$oldsymbol{S}_{\scriptscriptstyle S} = igl[\mathrm{Ad}_{oldsymbol{T}_{\scriptscriptstyle Sb}} igr] oldsymbol{S}_{\scriptscriptstyle b}$, $oldsymbol{\mathcal{V}}_{\scriptscriptstyle S} = igl[\mathrm{Ad}_{oldsymbol{T}_{\scriptscriptstyle Sb}} igr] oldsymbol{\mathcal{V}}_{\scriptscriptstyle b}$
Exponential coordinate for $\mathbf{R} \in SO(3)$: $\hat{\boldsymbol{\omega}}\theta \in \mathbb{R}^3$	Exponential coordinate for $T \in SE(3)$: $S\theta \in \mathbb{R}^6$
exp: $[\hat{\boldsymbol{\omega}}]\theta \in so(3) \rightarrow \boldsymbol{R} \in SO(3)$ $\boldsymbol{R} = \operatorname{Rot}(\hat{\boldsymbol{\omega}}, \theta) = e^{[\hat{\boldsymbol{\omega}}]\theta}$ $\boldsymbol{R} = \boldsymbol{I}_3 + \sin\theta[\hat{\boldsymbol{\omega}}] + (1 - \cos\theta)[\hat{\boldsymbol{\omega}}]^2$ (Rodrigues' formula for rotations)	$\exp: [\mathbf{S}] \theta \in se(3) \to \mathbf{T} \in SE(3)$ $\mathbf{T} = e^{[\mathbf{S}] \theta}$ $\mathbf{T} = \begin{bmatrix} e^{[\mathbf{S}_{\omega}] \theta} & \mathbf{G}(\theta) \mathbf{S}_{v} \\ 0 & 1 \end{bmatrix}$ $\mathbf{G}(\theta) = \mathbf{I}_{3} \theta + (1 - \cos \theta) [\mathbf{S}_{\omega}] + (\theta - \sin \theta) [\mathbf{S}_{\omega}]^{2}$
log: $\mathbf{R} \in SO(3) \to [\hat{\boldsymbol{\omega}}]\theta \in so(3)$ $\log(\mathbf{R}) = [\hat{\boldsymbol{\omega}}]\theta$	$\log: \mathbf{T} \in SE(3) \to [\mathbf{S}]\theta \in se(3)$ $\log(\mathbf{T}) = [\mathbf{S}]\theta$
Moment change of coordinate frame: $m{m}_a = m{R}_{ab} m{m}_b$	Wrench change of coordinate frame: $\boldsymbol{\mathcal{F}}_a = \begin{bmatrix} \boldsymbol{m}_a \\ \boldsymbol{f}_a \end{bmatrix} = \left[\operatorname{Ad}_{\boldsymbol{T}_{ba}} \right]^{\operatorname{T}} \boldsymbol{\mathcal{F}}_b$

Transformation Matrices