Ch4: Rigid-Body Motion – Rotation

Reference Frames	Rotation Matrices	Angular Velocity	Exponential Coordinate Representation	Euler Angles	Unit Quaternion	
00	000000000000	0000	000000000	00000	0000	Stony Brook University

Reference Frames

Reference Frames

- Fixed Space Frame {s}: A stationary, inertial frame and there is only one.
- **Body-attached Frame**: A frame fixed to a body and moves with it.
- Body Frame $\{b\}$: A <u>stationary</u>, inertial frame that is instantaneously coincident with the body-attached frame.

In this course, all frames are instantaneously stationary.

Exponential Coordinate Representation

Euler Angles 00000

Unit Quaternion OOOO

Reference Frames

All reference frames are **right-handed**.

A **positive rotation** about an axis is defined as the direction in which the fingers of the right hand curl when the thumb is pointed along the axis.

positive rotation

Reference Frames

 \mathbf{O}

Reference Frames	Rotation Matrices	Angular Velocity	Exponential Coordinate Representation	Euler Angles	Unit Quaternion	
00	00000000000	0000	000000000	00000	0000	Stony Brool University

Rotation Matrices

0000000000

Exponential Coordinate Representation

In 2D, the simplest way to describe the orientation of the body frame $\{b\}$ relative to the fixed frame $\{s\}$ is by specifying the angle θ .

Angular Velocity

0000

Another way is to specify the directions of the unit axes \hat{x}_b and \hat{y}_b of $\{b\}$ relative to $\{s\}$.

$$\Rightarrow \mathbf{R} = [\hat{x}_b \quad \hat{y}_b] = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \quad \theta \in [0, 2\pi)$$

Rotation Matrix

 $R:=R_{sb}$

Unit Quaternion

0000

Euler Angles

00000

Rotation Matrices

 \bigcirc

Rotation in 3D Space

In 3D, a way to describe the orientation of the body frame $\{b\}$ relative to the fixed frame $\{s\}$ is by specifying the directions of the unit axes \hat{x}_b , \hat{y}_b , and \hat{z}_b of $\{b\}$ relative to $\{s\}$.

$$\mathbf{R} = \begin{bmatrix} \hat{x}_b & \hat{y}_b & \hat{z}_b \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

Rotation Matrix

This is as Implicit representation the C-space.

Stony Brood University

Constraints on Rotation Matrix

1- The unit norm condition: \hat{x}_b , \hat{y}_b , and \hat{z}_b are all unit vectors.

2- The orthogonality condition: $\hat{x}_b \cdot \hat{y}_b = \hat{x}_b \cdot \hat{z}_b = \hat{y}_b \cdot \hat{z}_b = 0$

Compact form: $\mathbf{R}^T \mathbf{R} = \mathbf{I}_3$

For right-handed frames: $det(\mathbf{R}) = 1$

Definition of a Group

A group is a set of elements $G = \{a, b, c, ...\}$ and a binary operation • on any two elements satisfying

- **Closure**:
- **Associativity**:
- Inverse Element Existence:

 $a \bullet b \in G \quad \forall a, b \in G$ $(a \bullet b) \bullet c = a \bullet (b \bullet c) \quad \forall a, b, c \in G$ **Identity Element Existence**: $\exists I \in G$ such that $a \bullet I = I \bullet a = a$ $\forall a \in G$ $\forall a \in G, \exists a^{-1} \in G \text{ such that } a \bullet a^{-1} = a^{-1} \bullet a = I$ Stony Brool

Special Orthogonal Group SO(n)

The **special orthogonal group** SO(n), n = 2,3, also known as the (Lie) group of rotation matrices, is the set of all $n \times n$ real matrices **R** that satisfy (i) $\mathbf{R}^T \mathbf{R} = \mathbf{I}_3$ and (ii) det(\mathbf{R}) = 1. orthogonal pecial

SO(2) is a subgroup of SO(3): $SO(2) \subset SO(3)$

$$R \in SO(3)$$
 $SO(3) = \{R \in \mathbb{R}^{3 \times 3} | R^T R = RR^T = I_3, \det(R) = 1\}$

00

Stony Brool

Properties of Rotation Matrices

SO(3) (or SO(2)) is a matrix (Lie) group (and the group operation • is matrix multiplication).

- Closure:
- $\mathbf{R}_1 \mathbf{R}_2 \in SO(3)$
- $(\mathbf{R}_1\mathbf{R}_2)\mathbf{R}_3 = \mathbf{R}_1(\mathbf{R}_2\mathbf{R}_3)$ (but generally not commutative, $\mathbf{R}_1\mathbf{R}_2 \neq \mathbf{R}_2\mathbf{R}_1$) Associative:
- Identity:
- $\exists I_3 \in SO(3)$ such that $RI_3 = I_3R = R$ $\exists \mathbf{R}^{-1} \in SO(3)$ such that $\mathbf{R}\mathbf{R}^{-1} = \mathbf{R}^{-1}\mathbf{R} = \mathbf{I}_3 \quad (\Rightarrow \mathbf{R}^{-1} = \mathbf{R}^T)$ • Inverse:

* For any vector $x \in \mathbb{R}^3$ and $R \in SO(3)$, the vector y = Rx has the same length as x (||x|| = ||Rx||).

Uses of Rotation Matrices (1)

(1) Representing orientation of a frame relative to another frame.

<u>Notation</u>: \mathbf{R}_{bc} is the orientation of $\{c\}$ relative to $\{b\}$.

Uses of Rotation Matrices (2)

(2) Changing the reference frame of a <u>vector</u> or <u>frame</u>.

Subscript Cancellation Rule: $R_{ab}p_b = R_{ab}p_{b} = p_a$ $R_{ab}R_{bc} = R_{ab}R_{bc} = R_{ab}R_{bc} = R_{ac}$

 R_{ab} can be viewed as a <u>mathematical operator</u> that changes the reference frame from $\{b\}$ to $\{a\}$.

Note:
$$R_{bc}R_{cb} = I_3$$
 or $R_{bc} = R_{cb}^T = R_{cb}^{-1}$

Stony Broo

Example

Given $\mathbf{R}_1 = \mathbf{R}_{ab}$, $\mathbf{R}_2 = \mathbf{R}_{bc}$, and $\mathbf{R}_3 = \mathbf{R}_{ad}$, write \mathbf{R}_{dc} in terms of \mathbf{R}_1 , \mathbf{R}_2 , and \mathbf{R}_3 .

Given \boldsymbol{p}_b , what is \boldsymbol{p}_d in terms of \boldsymbol{R}_1 , \boldsymbol{R}_2 , and \boldsymbol{R}_3 ?

Uses of Rotation Matrices (3)

0000000000

Exponential Coordinate Representation

(3) Rotating a <u>vector</u> or <u>frame</u> (about a unit axis $\widehat{\boldsymbol{\omega}}$ by an amount θ).

Angular Velocity

0000

 $\boldsymbol{R} = \boldsymbol{R}_{aa'} = \operatorname{Rot}(\widehat{\boldsymbol{\omega}}, \theta)$

R can be viewed as a <u>mathematical operator</u> that rotates $\{a\}$ about a unit axis $\widehat{\boldsymbol{\omega}} = (\widehat{\omega}_1, \widehat{\omega}_2, \widehat{\omega}_3)$ (expressed in $\{a\}$) by an amount θ to obtain $\{a'\}$.

$$\operatorname{Rot}(\hat{x},\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}, \operatorname{Rot}(\hat{y},\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}, \operatorname{Rot}(\hat{z},\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$
$$\operatorname{Rot}(\hat{\omega},\theta) = \begin{bmatrix} c_{\theta} + \hat{\omega}_{1}^{2}(1-c_{\theta}) & \hat{\omega}_{1}\hat{\omega}_{2}(1-c_{\theta}) - \hat{\omega}_{3}s_{\theta} & \hat{\omega}_{1}\hat{\omega}_{3}(1-c_{\theta}) + \hat{\omega}_{2}s_{\theta} \\ \hat{\omega}_{1}\hat{\omega}_{2}(1-c_{\theta}) + \hat{\omega}_{3}s_{\theta} & c_{\theta} + \hat{\omega}_{2}^{2}(1-c_{\theta}) & \hat{\omega}_{2}\hat{\omega}_{3}(1-c_{\theta}) - \hat{\omega}_{1}s_{\theta} \\ \hat{\omega}_{1}\hat{\omega}_{3}(1-c_{\theta}) - \hat{\omega}_{2}s_{\theta} & \hat{\omega}_{2}\hat{\omega}_{3}(1-c_{\theta}) + \hat{\omega}_{1}s_{\theta} & c_{\theta} + \hat{\omega}_{2}^{2}(1-c_{\theta}) \end{bmatrix}$$

$$s_{\theta} = \sin \theta, c_{\theta} = \cos \theta$$

• $\operatorname{Rot}(\widehat{\boldsymbol{\omega}}, \theta) = \operatorname{Rot}(-\widehat{\boldsymbol{\omega}}, -\theta)$

Reference Frames

00

Rotation Matrices

00000000000000

Unit Quaternion

0000

Euler Angles

00000

Uses of Rotation Matrices (3) (cont.)

- Rotation of vector v about a unit axis $\hat{\omega}$ (expressed in the same frame) by an amount θ is vector v' expressed in the same frame: $v' = Rv = \operatorname{Rot}(\hat{\omega}, \theta)v$
- Fixed-frame Rotation: Rotation of frame $\{b\}$ about an axis $\hat{\boldsymbol{\omega}}$ expressed in $\{s\}$ by an amount θ is frame $\{b'\}$: (pre-multiplication) $\boldsymbol{R}_{sb'} = \operatorname{Rot}(\hat{\boldsymbol{\omega}}, \theta) \boldsymbol{R}_{sb}$
- Body-frame Rotation: Rotation of frame $\{b\}$ about an axis $\hat{\omega}$ expressed in $\{b\}$ by an amount θ is frame $\{b'\}$: $R_{sb'} = R_{sb} \operatorname{Rot}(\hat{\omega}, \theta)$

$$\boldsymbol{R} = \boldsymbol{R}_{ba} = \operatorname{Rot}(\widehat{\boldsymbol{\omega}}, \theta): \qquad \theta = \frac{\pi}{2}, \qquad \widehat{\boldsymbol{\omega}} = ?$$

 $\boldsymbol{R}_{bc'} = \boldsymbol{R}\boldsymbol{R}_{bc} = ? \qquad \qquad \boldsymbol{R}_{bc''} = \boldsymbol{R}_{bc}\boldsymbol{R} = ?$

Stony Brook University

Reference Frames	Rotation Matrices	Angular Velocity	Exponential Coordinate Representation	Euler Angles	Unit Quaternion	Sterre Dur al
00	000000000000	0000	000000000	00000	0000	University

Angular Velocity

Set of Skew-Symmetric Matrices so(3)

The set of all 3×3 real skew-symmetric matrices is called so(3) (which is the Lie algebra of the Lie group SO(3)).

$$so(3) = \{ \mathbf{S} \in \mathbb{R}^{3 \times 3} | \mathbf{S}^T = -\mathbf{S} \}$$
 $so(3) \subset \mathbb{R}^{3 \times 3}$

 $x \in \mathbb{R}^3$ $[x] \in so(3)$

• Given any $x \in \mathbb{R}^3$ and $\mathbf{R} \in SO(3)$, $\mathbf{R}[x]\mathbf{R}^T = [\mathbf{R}x]$.

• Given $[x] \in so(3)$, $[x]^2 = xx^T - ||x||^2 I_3$ and $[x]^3 = -||x||^2 [x]$ and higher powers of [x] can be calculated recursively.

Fixed-Frame Angular Velocity $\boldsymbol{\omega}_{S}$

Let's find the angular velocity $\boldsymbol{\omega} \in \mathbb{R}^3$ of a rotating body (or body frame $\{b\}$) in terms of $\boldsymbol{R}_{sb} = \boldsymbol{R}(t)$. Body Frame $\{b\}$ is instantaneously coincident with the body-attached frame.

• If $\boldsymbol{\omega}$ is expressed in $\{s\}$: $\boldsymbol{\omega} = \boldsymbol{\omega}_s = \dot{\theta} \widehat{\boldsymbol{\omega}}_s$ ⁽¹⁾

$$\begin{split} \boldsymbol{R}(t) &= [\hat{\mathbf{x}}_{b} \quad \hat{\mathbf{y}}_{b} \quad \hat{\mathbf{z}}_{b}]: \quad \boldsymbol{R}_{sb} \text{ at time } t \\ \dot{\boldsymbol{R}}(t) &= [\dot{\hat{\mathbf{x}}}_{b} \quad \dot{\hat{\mathbf{y}}}_{b} \quad \dot{\hat{\mathbf{z}}}_{b}]: \quad \text{Time rate of change of} \\ \boldsymbol{R}_{sb} \text{ at time } t \\ \dot{\hat{\mathbf{x}}}_{b} &= \boldsymbol{\omega}_{s} \times \hat{\mathbf{x}}_{b} \end{split}$$

$$\dot{\hat{\mathbf{y}}}_{b} = \boldsymbol{\omega}_{s} \times \hat{\mathbf{y}}_{b}$$
$$\dot{\hat{\mathbf{y}}}_{b} = \boldsymbol{\omega}_{s} \times \hat{\mathbf{y}}_{b}$$
$$\dot{\hat{\mathbf{z}}}_{b} = \boldsymbol{\omega}_{s} \times \hat{\mathbf{z}}_{b}$$

 $\dot{\boldsymbol{R}} = [[\boldsymbol{\omega}_s]\hat{\mathbf{x}}_b \quad [\boldsymbol{\omega}_s]\hat{\mathbf{y}}_b \quad [\boldsymbol{\omega}_s]\hat{\mathbf{z}}_b] = [\boldsymbol{\omega}_s]\boldsymbol{R}$

ω_s: Fixed-frame angular velocity (angular velocity expressed in {s})

$$[\boldsymbol{\omega}_{S}] = \dot{\boldsymbol{R}}\boldsymbol{R}^{-1} = \dot{\boldsymbol{R}}\boldsymbol{R}^{T}$$

Note: $\boldsymbol{\omega}_s$ does not depend on the choice of body frame $\{b\}$.

 \Rightarrow

Body-Frame Angular Velocity ω_h

• If $\boldsymbol{\omega}$ is expressed in $\{b\}$: $\boldsymbol{\omega} = \boldsymbol{\omega}_b = \hat{\boldsymbol{\omega}}_b^{(1)}$

 $\boldsymbol{\omega}_{s} = \boldsymbol{R}\boldsymbol{\omega}_{h}$

 $\boldsymbol{\omega}_h$: Body-frame angular velocity (angular velocity expressed in $\{b\}$)

$$\boldsymbol{\omega}_{b} = \boldsymbol{R}^{-1}\boldsymbol{\omega}_{s} = \boldsymbol{R}^{T}\boldsymbol{\omega}_{s}$$
$$\begin{bmatrix} \boldsymbol{\omega}_{b} \end{bmatrix} = \begin{bmatrix} \boldsymbol{R}^{T}\boldsymbol{\omega}_{s} \end{bmatrix} \\ = \boldsymbol{R}^{T}[\boldsymbol{\omega}_{s}]\boldsymbol{R} \\ = \boldsymbol{R}^{T}(\dot{\boldsymbol{R}}\boldsymbol{R}^{T})\boldsymbol{R} \\ = \boldsymbol{R}^{T}\dot{\boldsymbol{R}} = \boldsymbol{R}^{-1}\dot{\boldsymbol{R}} \end{bmatrix}$$
Recall: $\boldsymbol{R}[\boldsymbol{x}]\boldsymbol{R}^{T} = [\boldsymbol{R}\boldsymbol{x}].$

$$\Rightarrow \quad [\boldsymbol{\omega}_b] = \boldsymbol{R}^{-1} \dot{\boldsymbol{R}} = \boldsymbol{R}^T \dot{\boldsymbol{R}}$$

Note: ω_b does not depend on the choice of fixed frame $\{s\}$.

⁽¹⁾ Any angular velocity $\omega \in \mathbb{R}^3$ can be represented by product of a unit instantaneous axis of rotation $(\widehat{\omega} \in S^2)$ and the speed of rotation $\dot{\theta} \in \mathbb{R}$ about it, i.e., $\omega = \|\omega\| \omega/\|\omega\| = \dot{\theta}\widehat{\omega}$.

00

Example

Find $\boldsymbol{\omega}_s$ and $\boldsymbol{\omega}_b$ for rotational motion of a one degree of freedom manipulator.

Reference Frames	Rotation Matrices	Angular Velocity	Exponential Coordinate Representation	Euler Angles	Unit Quaternion	*
00	000000000000	0000	000000000	00000	0000	Stony Unive

Exponential Coordinate Representation of Rotation

Exponential Coordinate Representation 000000000

Euler Angles Unit Quaternion 00000 0000

* 🕅 Stony Brook University

Matrix Exponential

Scalar Linear ODE:

$$\dot{x}(t) = ax(t)$$
 $\xrightarrow{x(t) \in \mathbb{R}, a \in \mathbb{R} \text{ is constant}}_{x(0) = x_0}$ $x(t) = e^{at}x_0$

Vector Lir

$$\dot{x}(t) = Ax(t) \qquad \qquad x(t) \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n} \text{ is constant} \\ x(0) = x_0 \qquad \qquad x(t) = e^{At}x_0$$

Stony Brool

Properties of Matrix Exponential e^{At}

$$\forall A \in \mathbb{R}^{n \times n}, t \in \mathbb{R}$$
: $d(e^{At})/dt = Ae^{At} = e^{At}A$

If $A = PDP^{-1}$ for some $D \in \mathbb{R}^{n \times n}$ and invertible $P \in \mathbb{R}^{n \times n}$: $e^{At} = Pe^{Dt}P^{-1}$

If
$$\boldsymbol{D} \in \mathbb{R}^{n \times n}$$
 is diagonal, i.e., $\boldsymbol{D} = \text{diag}\{d_1, d_2, \dots, d_n\}$: $e^{\boldsymbol{D}t} = \begin{bmatrix} e^{d_1 t} & 0 & \cdots & 0 \\ 0 & e^{d_2 t} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{d_n t} \end{bmatrix}$

If AB = BA, then $e^A e^B = e^{A+B}$.

$$\left(e^A\right)^{-1} = e^{-A}$$

 $\cap \cap$

 $\boldsymbol{p}(t)$

 $\equiv \boldsymbol{p}(\theta)$

 $\dot{\boldsymbol{p}}(t)$

p'

 $\boldsymbol{p} \equiv \boldsymbol{p}(0)$

Exponential Coordinates of Rotations

The vector \boldsymbol{p} is rotated by an angle $\boldsymbol{\theta}$ about the unit axis $\widehat{\boldsymbol{\omega}}$ to \boldsymbol{p}' . Thus, p' = Rp. This rotation can be also achieved by imagining that **p** rotates at a constant rate of $\dot{\theta} = 1$ rad/s from time t = 0to $t = \theta$ (all vectors are expressed in $\{s\}$).

$$\dot{m{p}}=\dot{ heta}\widehat{m{\omega}} imesm{p}(t)=[\widehat{m{\omega}}]m{p}(t)$$
 ($\|\widehat{m{\omega}}\|=1,\dot{ heta}=1$ rad/s)

$$p(t) = e^{[\widehat{\omega}]t} p(0)$$

at $t = \theta$

$$p(\theta) = e^{[\widehat{\omega}]\theta} p(0) \xrightarrow{p' = Rp} R = e^{[\widehat{\omega}]\theta} = \operatorname{Rot}(\widehat{\omega}, \theta) \in SO(3) \qquad [\widehat{\omega}]\theta = [\widehat{\omega}\theta] \in so(3)$$

{S]

 \Rightarrow Any rotation matrix $\mathbf{R} \in SO(3)$ can be obtained by rotating from the identity matrix \mathbf{I}_3 about a unit rotation axis $\hat{\omega} \in \mathbb{R}^3$ ($\|\hat{\omega}\| = 1$) by an angle of rotation $\theta \in \mathbb{R}$ about that axis. This motivates a three-parameter representation of a rotation **R** called the **exponential coordinates** as $\widehat{\omega}\theta \in \mathbb{R}^3$ (equivalently, $\widehat{\omega}$ and θ can be written individually as the axis-angle **representation** of a rotation).

Note: The angle θ is taken to be <u>positive</u> if the rotation is made counter-clockwise about axis $\hat{\omega}$.

Remarks: Minimal Representation

- Rotation Matrix give an implicit redundant description of orientation; in fact, they are characterized by 9 elements which are not independent but related by 6 constraints due to the orthogonality conditions. This implies that three parameters are sufficient to describe orientation of a rigid body in space.
- A representation of orientation in terms of 3 independent parameters is called an Explicit or Minimal Representation. This involves Exponential Coordinates and Euler Angles. This three-parameter representation in prone to representation singularities.
- A major advantage of using rotation matrix is that it is singularity-free and simplifies the use of linear algebra operations.

Exponential Coordinates of Rotations

For any rotation matrix $\mathbf{R} \in SO(3)$, we can always find a unit rotation axis $\widehat{\boldsymbol{\omega}} \in \mathbb{R}^3$ ($\|\widehat{\boldsymbol{\omega}}\| = 1$) and scalar $\theta \in \mathbb{R}$ such that $\mathbf{R} = e^{[\widehat{\boldsymbol{\omega}}]\theta}$.

- exp: $[\widehat{\boldsymbol{\omega}}]\theta \in so(3) \rightarrow \boldsymbol{R} \in SO(3)$: $e^{[\widehat{\boldsymbol{\omega}}]\theta} = \operatorname{Rot}(\widehat{\boldsymbol{\omega}}, \theta) = \boldsymbol{R}$ log: $\boldsymbol{R} \in SO(3) \rightarrow [\widehat{\boldsymbol{\omega}}]\theta \in so(3)$: $\log(\boldsymbol{R}) = [\widehat{\boldsymbol{\omega}}]\theta$
- $\begin{aligned} \widehat{\boldsymbol{\omega}}\theta \in \mathbb{R}^3 & : \text{Exponential coordinates of } \boldsymbol{R} \in SO(3) \\ [\widehat{\boldsymbol{\omega}}]\theta = [\widehat{\boldsymbol{\omega}}\theta] \in so(3) & : \text{Matrix logarithm of } \boldsymbol{R} \text{ (inverse of the matrix exponential)} \end{aligned}$

Note: *R* and $\widehat{\boldsymbol{\omega}}$ have the same base.

Matrix Exponential

exp:
$$[\widehat{\boldsymbol{\omega}}]\theta \in so(3) \rightarrow \boldsymbol{R} \in SO(3)$$
 $: e^{[\widehat{\boldsymbol{\omega}}]\theta} = \operatorname{Rot}(\widehat{\boldsymbol{\omega}}, \theta) = \boldsymbol{R}$

• Finding **R** by having $\widehat{\boldsymbol{\omega}}$ and θ :

$$e^{[\widehat{\omega}]\theta} = \mathbf{I} + [\widehat{\omega}]\theta + [\widehat{\omega}]^2 \frac{\theta^2}{2!} + [\widehat{\omega}]^3 \frac{\theta^3}{3!} + \cdots$$
$$= \mathbf{I} + \underbrace{\left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \cdots\right)}_{\sin \theta} [\widehat{\omega}] + \underbrace{\left(\frac{\theta^2}{2!} - \frac{\theta^4}{4!} + \frac{\theta^6}{6!} - \cdots\right)}_{1 - \cos \theta} [\widehat{\omega}]^2$$

 $\operatorname{Rot}(\widehat{\boldsymbol{\omega}}, \theta) = e^{[\widehat{\boldsymbol{\omega}}]\theta} = \boldsymbol{I} + \sin \theta [\widehat{\boldsymbol{\omega}}] + (1 - \cos \theta) [\widehat{\boldsymbol{\omega}}]^2 \quad (\operatorname{Rodrigues' formula for rotations})$

$$\operatorname{Rot}(\widehat{\boldsymbol{\omega}},\theta) = \begin{bmatrix} c_{\theta} + \widehat{\omega}_{1}^{2}(1-c_{\theta}) & \widehat{\omega}_{1}\widehat{\omega}_{2}(1-c_{\theta}) - \widehat{\omega}_{3}s_{\theta} & \widehat{\omega}_{1}\widehat{\omega}_{3}(1-c_{\theta}) + \widehat{\omega}_{2}s_{\theta} \\ \widehat{\omega}_{1}\widehat{\omega}_{2}(1-c_{\theta}) + \widehat{\omega}_{3}s_{\theta} & c_{\theta} + \widehat{\omega}_{2}^{2}(1-c_{\theta}) & \widehat{\omega}_{2}\widehat{\omega}_{3}(1-c_{\theta}) - \widehat{\omega}_{1}s_{\theta} \\ \widehat{\omega}_{1}\widehat{\omega}_{3}(1-c_{\theta}) - \widehat{\omega}_{2}s_{\theta} & \widehat{\omega}_{2}\widehat{\omega}_{3}(1-c_{\theta}) + \widehat{\omega}_{1}s_{\theta} & c_{\theta} + \widehat{\omega}_{3}^{2}(1-c_{\theta}) \end{bmatrix}$$

 $s_{\theta} = \sin \theta, c_{\theta} = \cos \theta, \quad \widehat{\boldsymbol{\omega}} = (\widehat{\omega}_1, \widehat{\omega}_2, \widehat{\omega}_3)$

Stony Brook

Matrix Exponential: Remarks

- Since $Rot(\hat{\omega}, \theta) = Rot(-\hat{\omega}, -\theta)$, a rotation by $-\theta$ about $-\hat{\omega}$ cannot be distinguished from a rotation by θ about $\hat{\omega}$; hence, Exponential Coordinate representation is not unique.
- The inverse (or transpose) of a rotation matrix **R** = Rot(ŵ, θ) corresponds to a rotation by the negative of the original angle, but the same axis of rotation, i.e., **R**^T = **R**⁻¹ = Rot(ŵ, -θ).
- If r and $\hat{\omega}$ are aligned and $R = \operatorname{Rot}(\hat{\omega}, \theta)$, then, $Rr = R^T r = r$.
- For a given rotation matrix \boldsymbol{R}_{sb} :

Fixed-frame Rotation is rotation by θ about a unit axis $\hat{\omega}_s$, expressed in fixed frame $\{s\}$ as:

$$\mathbf{R}_{sb'} = \operatorname{Rot}(\widehat{\boldsymbol{\omega}}_{s}, \theta) \mathbf{R}_{sb} = e^{[\widehat{\boldsymbol{\omega}}_{s}]\theta} \mathbf{R}_{sb}$$

Body-frame Rotation is rotation by θ about a unit axis $\hat{\omega}_b$, expressed in body frame $\{b\}$ as:

$$\boldsymbol{R}_{sb'} = \boldsymbol{R}_{sb} \operatorname{Rot}(\widehat{\boldsymbol{\omega}}_{b}, \theta) = \boldsymbol{R}_{sb} e^{[\widehat{\boldsymbol{\omega}}_{b}]\theta}$$

 $(\widehat{\boldsymbol{\omega}}_{s} = \boldsymbol{R}_{sb}\widehat{\boldsymbol{\omega}}_{b})$

 $R_{sb'}$ $\{b'\}$ $\{b\}$ R_{sb} $\{s\}$

Example

The frame {*b*} is obtained by a rotation from {*s*} by $\theta_1 = 30^\circ$ about $\hat{\omega}_1 = (0, 0.866, 0.5)$. Find the rotation matrix representation of {*b*}. $\hat{Z}_{s} \land \hat{Z}_{s} \land$

 $\{s\}$

 \hat{y}_s

Find the new rotation matrix if $\{b\}$ is then rotated by θ_2 about (a) an axis $\hat{\omega}_2$ expressed in $\{s\}$. (b) an axis $\hat{\omega}_2$ expressed in $\{b\}$. $\{b\}$

Matrix Logarithm

log:	$\mathbf{R} \in SO(3)$	\rightarrow	$[\widehat{\boldsymbol{\omega}}] \theta \in so(3)$:	$\log(\mathbf{R}) = [\widehat{\boldsymbol{\omega}}]\theta$
------	------------------------	---------------	--	---	--

• Finding $\widehat{\boldsymbol{\omega}}$ and $\theta \in [0, \pi]$ by having **R**:

$$\boldsymbol{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} c_{\theta} + \widehat{\omega}_{1}^{2}(1 - c_{\theta}) & \widehat{\omega}_{1}\widehat{\omega}_{2}(1 - c_{\theta}) - \widehat{\omega}_{3}s_{\theta} & \widehat{\omega}_{1}\widehat{\omega}_{3}(1 - c_{\theta}) + \widehat{\omega}_{2}s_{\theta} \\ \widehat{\omega}_{1}\widehat{\omega}_{2}(1 - c_{\theta}) + \widehat{\omega}_{3}s_{\theta} & c_{\theta} + \widehat{\omega}_{2}^{2}(1 - c_{\theta}) & \widehat{\omega}_{2}\widehat{\omega}_{3}(1 - c_{\theta}) - \widehat{\omega}_{1}s_{\theta} \\ \widehat{\omega}_{1}\widehat{\omega}_{3}(1 - c_{\theta}) - \widehat{\omega}_{2}s_{\theta} & \widehat{\omega}_{2}\widehat{\omega}_{3}(1 - c_{\theta}) + \widehat{\omega}_{1}s_{\theta} & c_{\theta} + \widehat{\omega}_{3}^{2}(1 - c_{\theta}) \end{bmatrix}$$

By inspection:

• tr
$$\mathbf{R} = r_{11} + r_{22} + r_{33} = 1 + 2\cos\theta$$

• $\frac{1}{2\sin\theta} (\mathbf{R} - \mathbf{R}^{\mathrm{T}}) = \begin{bmatrix} 0 & -\widehat{\omega}_{3} & \widehat{\omega}_{2} \\ \widehat{\omega}_{3} & 0 & -\widehat{\omega}_{1} \\ -\widehat{\omega}_{2} & \widehat{\omega}_{1} & 0 \end{bmatrix} = [\widehat{\boldsymbol{\omega}}]$

•
$$\mathbf{R}|_{\theta=0} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{I}_3$$
 • $\mathbf{R}|_{\theta=\pi} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} -1 + 2\widehat{\omega}_1^2 & 2\widehat{\omega}_1\widehat{\omega}_2 & 2\widehat{\omega}_1\widehat{\omega}_3 \\ 2\widehat{\omega}_1\widehat{\omega}_2 & -1 + 2\widehat{\omega}_2^2 & 2\widehat{\omega}_2\widehat{\omega}_3 \\ 2\widehat{\omega}_1\widehat{\omega}_3 & 2\widehat{\omega}_2\widehat{\omega}_3 & -1 + 2\widehat{\omega}_3^2 \end{bmatrix}$

Therefore, we can propose an algorithm to determine $\widehat{\boldsymbol{\omega}}$ and θ .

Stony Brook University

Matrix Logarithm: Algorithm

(a) If tr $\mathbf{R} = 3$ or $\mathbf{R} = \mathbf{I}_3$ (null rotation), then $\theta = 0$ and $\widehat{\boldsymbol{\omega}}$ is undefined/arbitrary (singularity).

(b) If tr $\mathbf{R} = -1$, then $\theta = \pi$ and $\hat{\boldsymbol{\omega}}$ is equal to any of the three vectors that is a feasible solution:

$$\widehat{\boldsymbol{\omega}} = \frac{1}{\sqrt{2(1+r_{11})}} \begin{bmatrix} 1+r_{11} \\ r_{21} \\ r_{31} \end{bmatrix} \quad \text{or} \quad \widehat{\boldsymbol{\omega}} = \frac{1}{\sqrt{2(1+r_{22})}} \begin{bmatrix} r_{12} \\ 1+r_{22} \\ r_{32} \end{bmatrix} \quad \text{or} \quad \widehat{\boldsymbol{\omega}} = \frac{1}{\sqrt{2(1+r_{33})}} \begin{bmatrix} r_{13} \\ r_{23} \\ 1+r_{33} \end{bmatrix}$$

(Note: In this case, if $\widehat{\boldsymbol{\omega}}$ is a solution, then so is $-\widehat{\boldsymbol{\omega}}$)

(c) Otherwise, $\theta = \cos^{-1}\left(\frac{1}{2}(\operatorname{tr} \mathbf{R} - 1)\right) = \cos^{-1}\left(\frac{r_{11} + r_{22} + r_{33} - 1}{2}\right) \in (0, \pi)$ $[\widehat{\boldsymbol{\omega}}] = \frac{1}{2\sin\theta} \left(\mathbf{R} - \mathbf{R}^{\mathrm{T}}\right) \quad \Rightarrow \quad \widehat{\boldsymbol{\omega}} = \frac{1}{2\sin\theta} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$

Amin Fakhari, Fall 2024

Reference Frames OO	Rotation Matrices	Angular Velocity OOOO	Exponential Coordinate Representation	Euler Angles 00000	Unit Quaternion OOOO	Stony Brool University

Euler Angles

Euler Angles

Another minimal representation of orientation can be obtained by using a set of three angles (α, β, γ) . It composes <u>a suitable sequence of three elementary rotations</u>, each about one of the coordinate axes of fixed frame $\{s\}$ or body/current frame $\{b\}$, while guaranteeing that <u>two successive rotations are not made about parallel axes</u>.

This implies that 12 (3x2x2) distinct sets (triplet) of Euler angles are allowed out of all 27 (3x3x3) possible combinations.

Z-X-Z, X-Y-X, Y-Z-Y, Z-Y-Z, X-Z-X, Y-X-Y, X-Y-Z, Y-Z-X, Z-X-Y, X-Z-Y, Z-Y-X, Y-X-Z

Two Examples:

- *ZYX* Euler angles (with rotations about the body/current frame $\{b\}$).
- *XYZ* Euler angles (with rotations about the fixed frame {*s*}). This is also called **Roll–Pitch–Yaw** (**RPY**) angles.

Exponential Coordinate Representation

Euler Angles

Unit Quaternion

Euler Angles ZYX (about the body/current frame)

ZYX Euler angles (with rotations about the body/current frame $\{b\}$):

- Rotation by α about the body $\hat{\mathbf{z}}_b$,
- then by eta about the body \widehat{y}_b^\prime , and
- finally, by γ about the body \widehat{x}_b'' .

$$\mathbf{R}(\alpha,\beta,\gamma) = \mathbf{I}_{3}\operatorname{Rot}(\hat{\mathbf{z}}_{b},\alpha)\operatorname{Rot}(\hat{\mathbf{y}}_{b}^{\prime},\beta)\operatorname{Rot}(\hat{\mathbf{x}}_{b}^{\prime\prime},\gamma)$$

Euler Angles ZYX (about the body/current frame)

Finding (α, β, γ) for any given rotation matrix $\mathbf{R} \in SO(3)$:

 $\boldsymbol{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} c_{\alpha}c_{\beta} & c_{\alpha}s_{\beta}s_{\gamma} - s_{\alpha}c_{\gamma} & c_{\alpha}s_{\beta}c_{\gamma} + s_{\alpha}s_{\gamma} \\ s_{\alpha}c_{\beta} & s_{\alpha}s_{\beta}s_{\gamma} + c_{\alpha}c_{\gamma} & s_{\alpha}s_{\beta}c_{\gamma} - c_{\alpha}s_{\gamma} \\ -s_{\beta} & c_{\beta}s_{\gamma} & c_{\beta}c_{\gamma} \end{bmatrix}$ $\beta = \operatorname{atan} 2\left(-r_{31}, \sqrt{r_{11}^2 + r_{21}^2}\right)$ • If $r_{31} \neq \pm 1$ (i.e., when $\beta \in (-\pi/2, \pi/2)$): $\alpha = \operatorname{atan} 2(r_{21}, r_{11})$ $\gamma = \operatorname{atan} 2(r_{32}, r_{33})$ • If $r_{31} = -1$, then $\beta = \pi/2$, and if $r_{31} = 1$, then $\beta = -\pi/2$. In these singular cases, \hat{z}_b and \hat{x}_b axes are parallel, and it is possible to determine only the sum or difference of α and γ . $\int_{\beta} = 90^{\circ}$

Singularity of the Euler angles:

(Gimbal lock)

Roll–Pitch–Yaw or RPY Angles (XYZ) (about the fixed frame)

XYZ Euler angles (with rotations about the fixed frame $\{s\}$):

- Rotation by γ about the body \widehat{x}_s ,
- then by eta about the body $\widehat{oldsymbol{y}}_{\scriptscriptstyle S}$, and
- finally, by α about the body \hat{z}_s .

$$\boldsymbol{R}(\alpha,\beta,\gamma) = \operatorname{Rot}(\hat{\boldsymbol{z}}_{s},\alpha) \operatorname{Rot}(\hat{\boldsymbol{y}}_{s},\beta) \operatorname{Rot}(\hat{\boldsymbol{x}}_{s},\gamma) \boldsymbol{I}_{3}$$

$$\boldsymbol{R}(\alpha,\beta,\gamma) = \begin{bmatrix} c_{\alpha}c_{\beta} & c_{\alpha}s_{\beta}s_{\gamma} - s_{\alpha}c_{\gamma} & c_{\alpha}s_{\beta}c_{\gamma} + s_{\alpha}s_{\gamma} \\ s_{\alpha}c_{\beta} & s_{\alpha}s_{\beta}s_{\gamma} + c_{\alpha}c_{\gamma} & s_{\alpha}s_{\beta}c_{\gamma} - c_{\alpha}s_{\gamma} \\ -s_{\beta} & c_{\beta}s_{\gamma} & c_{\beta}c_{\gamma} \end{bmatrix}$$

This product of three rotations (i.e., *XYZ* Euler angles with rotations about the fixed frame $\{s\}$) is the same as that for the *ZYX* Euler angles with rotations about the body/current frame $\{b\}$, i.e., the same product of three rotations admits two different physical interpretations.

tony Bro

Reference Frames	Rotation Matrices	Angular Velocity	Exponential Coordinate Representation	Euler Angles	Unit Quaternion	*
00	000000000000	0000	000000000	00000	0000	Stony Brook University

Unit Quaternion

Unit Quaternion

Unit Quaternion (a.k.a. **Euler Parameters**) is a nonminimal four-parameter representation of rotation that alleviates the exponential coordinates singularity (division by $\sin \theta$) and Euler angle singularity (Gimbal lock), but at the cost of four variables subject to one constraint in the representation.

Let $\mathbf{R} \in SO(3)$ have the exponential coordinate representation $\widehat{\boldsymbol{\omega}}\theta$, i.e., $\mathbf{R} = e^{[\widehat{\boldsymbol{\omega}}]\theta}$, where $\|\widehat{\boldsymbol{\omega}}\| = 1$ and $\theta = [0, \pi]$. The Unit Quaternion is defined as

scalar part
$$\mathbf{q} = \begin{bmatrix} q_0 \\ q_v \end{bmatrix} = \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix} = \begin{bmatrix} \cos(\theta/2) \\ \widehat{\omega}\sin(\theta/2) \end{bmatrix} \in S^3 \qquad ||\mathbf{q}|| = 1$$

- $q = (q_0, q_v) = (q_0, q_1, q_2, q_3)$ is interpreted as a rotation about the unit axis, in the direction of (q_1, q_2, q_3) by an angle $\theta = 2 \cos^{-1} q_0$.
- If $0 \le \theta \le \pi$, then $q_0 \ge 0$, and if $\pi \le \theta \le 2\pi$, then $q_0 \le 0$.

Unit Quaternion: Finding R by Having q

The rotation matrix **R** corresponding to a given unit quaternion $\boldsymbol{q} = (q_0, \boldsymbol{q}_v) = (q_0, q_1, q_2, q_3) = \left(\cos(\theta/2), \widehat{\boldsymbol{\omega}} \sin\left(\frac{\theta}{2}\right)\right)$ where $\|\boldsymbol{q}\| = q_0^2 + q_1^2 + q_2^2 + q_3^2 = 1$:

$$\begin{split} \mathbf{R} &= \begin{bmatrix} c_{\theta} + \widehat{\omega}_{1}^{2}(1-c_{\theta}) & \widehat{\omega}_{1}\widehat{\omega}_{2}(1-c_{\theta}) - \widehat{\omega}_{3}s_{\theta} & \widehat{\omega}_{1}\widehat{\omega}_{3}(1-c_{\theta}) + \widehat{\omega}_{2}s_{\theta} \\ \widehat{\omega}_{1}\widehat{\omega}_{2}(1-c_{\theta}) + \widehat{\omega}_{3}s_{\theta} & c_{\theta} + \widehat{\omega}_{2}^{2}(1-c_{\theta}) & \widehat{\omega}_{2}\widehat{\omega}_{3}(1-c_{\theta}) - \widehat{\omega}_{1}s_{\theta} \\ \widehat{\omega}_{1}\widehat{\omega}_{3}(1-c_{\theta}) - \widehat{\omega}_{2}s_{\theta} & \widehat{\omega}_{2}\widehat{\omega}_{3}(1-c_{\theta}) + \widehat{\omega}_{1}s_{\theta} & c_{\theta} + \widehat{\omega}_{3}^{2}(1-c_{\theta}) \end{bmatrix} \\ &= \begin{bmatrix} q_{0}^{2} + q_{1}^{2} - q_{2}^{2} - q_{3}^{2} & 2(q_{1}q_{2} - q_{0}q_{3}) & 2(q_{0}q_{2} + q_{1}q_{3}) \\ 2(q_{0}q_{3} + q_{1}q_{2}) & q_{0}^{2} - q_{1}^{2} + q_{2}^{2} - q_{3}^{2} & 2(q_{2}q_{3} - q_{0}q_{1}) \\ 2(q_{1}q_{3} - q_{0}q_{2}) & 2(q_{0}q_{1} + q_{2}q_{3}) & q_{0}^{2} - q_{1}^{2} - q_{2}^{2} + q_{3}^{2} \end{bmatrix} \\ &= \begin{bmatrix} 2(q_{0}^{2} + q_{1}^{2}) - 1 & 2(q_{1}q_{2} - q_{0}q_{3}) & 2(q_{1}q_{3} + q_{0}q_{2}) \\ 2(q_{1}q_{2} + q_{0}q_{3}) & 2(q_{0}^{2} + q_{2}^{2}) - 1 & 2(q_{2}q_{3} - q_{0}q_{1}) \\ 2(q_{1}q_{3} - q_{0}q_{2}) & 2(q_{2}q_{3} + q_{0}q_{1}) & 2(q_{0}^{2} + q_{3}^{2}) - 1 \end{bmatrix} \\ &= (2q_{0}^{2} - 1)I_{3} + 2q_{\nu}q_{\nu}^{T} + 2q_{0}[q_{\nu}] \end{split}$$

Stony Brool

Unit Quaternion: Finding q by Having R

The unit quaternion \boldsymbol{q} corresponding to a given rotation matrix \boldsymbol{R} : $\boldsymbol{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$

$$\begin{aligned} q_0 &= \frac{1}{2}\sqrt{1 + r_{11} + r_{22} + r_{33}} = \frac{1}{2}\sqrt{1 + \operatorname{tr} \boldsymbol{R}} \\ q_v &= \begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix} = \frac{1}{4q_0} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - 2_{12} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \operatorname{sgn}(r_{32} - r_{23})\sqrt{r_{11} - r_{22} - r_{33} + 1} \\ \operatorname{sgn}(r_{13} - r_{31})\sqrt{r_{22} - r_{33} - r_{11} + 1} \\ \operatorname{sgn}(r_{21} - r_{12})\sqrt{r_{33} - r_{11} - r_{22} + 1} \end{bmatrix} \end{aligned}$$

Notes:

- It has been implicitly assumed $q_0 \ge 0$; this corresponds to an angle $\theta \in [-\pi, \pi]$, and thus, any rotation can be described.
- For every rotation matrix *R* there exists two unit-quaternion representations ±*q* that are antipodal to each other, i.e., +*q* and -*q* represent the same rotation *R*.
- Unlike the exponential coordinate representation, no singularity occurs in inverse solution.
- A rotation by $-\theta$ about $-\hat{\omega}$ gives the same quaternion q as that associated with a rotation by θ about $\hat{\omega}$.
- If the unit quaternion $q = (q_0, q_v)$ corresponds to a rotation matrix R, the unit quaternion extracted from $R^{-1} = R^T$ is denoted as q^{-1} , and can be computed as $q^{-1} = (q_0, -q_v)$.

Unit Quaternion: Remarks

• Let $p = (p_0, p_v) = (p_0, p_1, p_2, p_3)$ and $q = (q_0, q_v) = (q_0, q_1, q_2, q_3)$ denote the quaternions corresponding to the rotation matrices R_p and R_q , respectively. The quaternion corresponding to the product $R_n = R_p R_q$ is given by

$$\boldsymbol{n} = \boldsymbol{p} * \boldsymbol{q} = \begin{bmatrix} n_0 \\ n_1 \\ n_2 \\ n_3 \end{bmatrix} = \begin{bmatrix} p_0 q_0 - p_1 q_1 - p_2 q_2 - p_3 q_3 \\ p_1 q_0 + p_0 q_1 - p_3 q_2 + p_2 q_3 \\ p_2 q_0 + p_0 q_2 + p_3 q_1 - p_1 q_3 \\ p_3 q_0 + p_0 q_3 - p_2 q_1 + p_1 q_2 \end{bmatrix}$$
ernion

quaternion product operator

$$= (p_0 q_0 - \boldsymbol{p}_v^T \boldsymbol{q}_v, p_0 \boldsymbol{q}_v + q_0 \boldsymbol{p}_v + \boldsymbol{p}_v \times \boldsymbol{q}_v)$$

• $q * q^{-1} = (1, 0)$ which is the identity element.

• The rotation of a point or vector $p \in \mathbb{R}^3$ by the angle θ about a unit axis $\hat{\omega}$ is $p' = \operatorname{Rot}(\hat{\omega}, \theta) p$ which can be also determined using unit quaternions as $q_{p'} = q * q_p * q^{-1}$ where $q = (q_0, q_v)$ is unit quaternion representation of $\operatorname{Rot}(\hat{\omega}, \theta), q^{-1} = (q_0, -q_v),$ $q_p = (0, p), \text{ and } q_{p'} = (0, p').$ $p' = \operatorname{Rot}(\hat{\omega}, \theta) p \iff q_{p'} = q * q_p * q^{-1}$