Ch4: Rigid-Body Motion – Transformation

Transformation Matrices

Homogeneous Transformation Matrices

Rigid-body configuration can be represented by the pair (R, p) ($R \in SO(3)$, $p \in \mathbb{R}^3$). We can package (R, p) into a single 4×4 matrix as

> $\boldsymbol{T} =$ \bm{R} \bm{p} $0₁$

Transformation Matrix

This is as Implicit representation the C-space.

Special Euclidean Group $SE(n)$

The **Special Euclidean Group** $SE(3)$, also known as the **group of rigid-body motions** or **homogeneous transformation matrices** in \mathbb{R}^3 , is the set of all 4×4 real matrices T of the form

$$
T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_1 \\ r_{21} & r_{22} & r_{23} & p_2 \\ r_{31} & r_{32} & r_{33} & p_3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{aligned} T \in SE(3) \\ R \in SO(3) \\ p \in \mathbb{R}^3 \end{aligned}
$$

$$
SE(3) = \left\{ T \in \mathbb{R}^{4 \times 4} \mid T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}, R \in SO(3), p \in \mathbb{R}^3 \right\}
$$

The **special Euclidean group** $SE(2)$ is the set of all 3×3 real matrices **T** of the form

$$
T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & p_1 \\ r_{21} & r_{22} & p_2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & p_1 \\ \sin \theta & \cos \theta & p_2 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{array}{c} T \in SE(2) \\ R \in SO(2) \\ p \in \mathbb{R}^2 \\ \theta \in [0, 2\pi) \end{array}
$$
\n• SE(2) is a subgroup of SE(3):

\nSE(2) $\subset SE(3)$

Properties of Transformation Matrices

 $SE(3)$ (or $SE(2)$) is a **matrix (Lie) group** (and the group operation • is matrix multiplication).

Inverse: ∃

Closure: $T_1 T_2 \in SE(3)$ **Associative:** $(T_1 T_2) T_3 = T_1(T_2 T_3)$ (but generally not commutative, $T_1 T_2 \neq T_2 T_1$) **Identity:** $\exists I_4 \in SE(3)$ such that $TI_4 = I_4T = T$ $^{-1} \in SE(3)$ such that $TT^{-1} = T^{-1}T = I_4$

$$
T^{-1} = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} R^T & -R^T p \\ 0 & 1 \end{bmatrix}
$$

Note: T preserves both distances and angles.

Uses of Transformation Matrices (1)

(1) Representing configuration (position and orientation) of a frame relative to another frame.

Notation: T_{sb} is the configuration of ${b}$ relative to ${s}$.

Example

Uses of Transformation Matrices (2)

[Wrench](#page-33-0)

00000

[Review](#page-39-0)

0000

[Exponential Coordinate Representation](#page-25-0)

0000000

(2) Changing the reference frame of a vector or frame.

Subscript Cancellation Rule: $\qquad \, {\cal F}_{ab} {\cal V}_b = {\cal T}_{a\rlap{/}{\not{\!\!p}}} {\cal V}_\beta = {\cal V}_a$

[Twist](#page-12-0)

000000000000

$$
\int \frac{1}{a} \, d\rho \, d\rho = \frac{1}{a} \, d\rho
$$

 T_{ab} can be viewed as a **mathematical operator** that changes the reference frame from ${b}$ to ${a}$.

Note:
$$
T_{bc}T_{cb} = I_4
$$
 or $T_{bc} = T_{cb}^{-1} = \begin{bmatrix} R_{cb}^T & -R_{cb}^T p_c^{cb} \\ \mathbf{0} & 1 \end{bmatrix}$

Note: To calculate Tv , we append a "1" to v and it is called **homogeneous coordinates** representation of v . $\mathbf{v} = [v_1 \; v_2 \; v_3 \; 1]^T$

[Transformation Matrices](#page-1-0)

Example

A robot arm mounted on a wheeled mobile platform moving in a room, and a camera fixed to the ceiling. The robot must pick up an object with body frame ${e}$. What is the configuration of the object relative to the robot hand, T_{ce} , given T_{db} , T_{de} , T_{bc} , and T_{ad} ?

Uses of Transformation Matrices (3)

(3) Displacing (rotating and translating) a vector or frame.

$$
T = (R, p) = (\text{Rot}(\widehat{\omega}, \theta), p) = \text{Trans}(p) \text{Rot}(\widehat{\omega}, \theta)
$$

\n
$$
\text{Rot}(\widehat{\omega}, \theta) = \begin{bmatrix} R & 0 \\ 0 & 1 \end{bmatrix}
$$

\n
$$
\text{Trans}(p) = \begin{bmatrix} I_3 & p \\ 0 & 1 \end{bmatrix}
$$

T can be viewed as a **mathematical operator** that rotates a frame or vector about a unit axis $\hat{\omega} = (\hat{\omega}_1, \hat{\omega}_2, \hat{\omega}_3)$ by an amount θ + translating it by p .

Uses of Transformation Matrices (3) (cont.)

• Rotation of vector v about a unit axis $\widehat{\omega}$ (expressed in the same frame) by an amount θ and translation of it by p (expressed in the same frame) is vector v' expressed in the same frame:

$$
\boldsymbol{v}^{\prime\prime} = \boldsymbol{T} \boldsymbol{v} = \text{Trans}(\boldsymbol{p}) \text{Rot}(\widehat{\boldsymbol{\omega}}, \theta) \boldsymbol{v} \equiv \text{Rot}(\widehat{\boldsymbol{\omega}}, \theta) \boldsymbol{v} + \boldsymbol{p}
$$

Interpretation

Example

Find fixed-frame and body-frame transformations corresponding to $\hat{\omega} = (0,0,1)$, $\theta = 90^{\circ}$, and $p = (0,2,0)$.

Lie Algebra $se(3)$

• The set of all 4×4 matrices of the form

$$
\begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix}
$$

where $[\boldsymbol{\omega}] \in so(3)$ and $\boldsymbol{\nu} \in \mathbb{R}^3$ is called $se(3)$.

• $se(3)$ is the matrix representation of 6×1 vectors $\mathcal{V} =$ $\boldsymbol{\omega}$ $\boldsymbol{\mathcal{V}}$ $\in \mathbb{R}^6$. Thus,

$$
[\mathcal{V}] = \begin{bmatrix} [\boldsymbol{\omega}] & \boldsymbol{v} \\ \mathbf{0} & 0 \end{bmatrix} \in \mathit{se}(3)
$$

• $se(3)$ is called the Lie algebra of the Lie group $SE(3)$.

štony Broe

Spatial Velocity or Twist

A rigid body's **Spatial Velocity** or **Twist** can be represented as a point in \mathbb{R}^6 and defined as

 $\mathcal{V}_x =$ angular velocity of body expressed in frame { \pmb{x} linear velocity of origin of frame $\{x\}$ on body (or its extention)expressed in frame $\{x$ $\in \mathbb{R}^6$ expressed in $\{x\}$

 ${\boldsymbol{\mathcal{V}}}^{\scriptscriptstyle D}_{\scriptscriptstyle \mathcal X}$ $\frac{\mathcal{B}_r^{\prime}}{x}=$ angular velocity of body ${\mathcal{B}}$ expressed in frame { x linear velocity of point r on body $\mathcal B$ (or its extention) expressed in frame {x $\in \mathbb{R}^6$ A general form: point where velocity is computed expressed in $\{x\}$

Let's find the twist $V \in \mathbb{R}^6$ of a moving body (or body frame ${b}$) in terms of $T_{sh} = T(t)$. Body Frame ${b}$ is instantaneously coincident with the body-attached frame.

$$
T(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}
$$

Body Twist

Similar to $\boldsymbol{R^{-1}\dot R} = [\boldsymbol{\omega}_b]$, let's compute $\boldsymbol{T^{-1}\dot T}$: $(R = R_{sh}, T = T_{sh})$

$$
T^{-1}\dot{T} = \begin{bmatrix} R^T & -R^T p \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{R} & \dot{p} \\ 0 & 0 \end{bmatrix}
$$

$$
= \begin{bmatrix} R^T \dot{R} & R^T \dot{p} \\ 0 & 0 \end{bmatrix}
$$

$$
= \begin{bmatrix} R^T \dot{R} & R^T \dot{p} \\ \mathbf{0} & 0 \end{bmatrix} \xrightarrow{\boldsymbol{v}_b \in \mathbb{R}^3} \mathbf{r}^{-1} \dot{\mathbf{T}} = [\boldsymbol{\mathcal{V}}_b] = \begin{bmatrix} [\boldsymbol{\omega}_b] & \boldsymbol{v}_b \\ \mathbf{0} & 0 \end{bmatrix} \in se(3)
$$

$$
\boldsymbol{\mathcal{V}}_b = \begin{bmatrix} \boldsymbol{\omega}_b \\ \boldsymbol{\nu}_b \end{bmatrix} \in \mathbb{R}^6 \qquad \text{(or s)}
$$

 \mathcal{V}_h is defined as **Body Twist** (patial velocity in the body frame)

- $[\mathcal{V}_b]\in se(3)$ is the matrix representations of the **body twists** $\mathcal{V}_b\in\mathbb{R}^6$ associated with the rigid-body configuration $T \in SE(3)$.
- v_b does not depend on the choice of the fixed frame {s},

Spatial Twist

Similar to $\dot R R^{-1} = [\omega_s]$, let's compute $\dot T T^{-1}$: $(R = R_{sh}, T = T_{sh})$

$$
\dot{T}T^{-1} = \begin{bmatrix} \dot{R} & \dot{p} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} R^{T} & -R^{T}p \\ 0 & 1 \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} \dot{R}R^{T} & \dot{p} - \dot{R}R^{T}p \\ 0 & 0 \end{bmatrix} \xrightarrow{\nu_{s} \in \mathbb{R}^{3}}
$$

\n
$$
= \begin{bmatrix} [\omega_{s}] & \nu_{s} \\ 0 & 0 \end{bmatrix} \xrightarrow{[\omega_{s}] \in so(3)} \dot{T}T^{-1} = [\nu_{s}] = \begin{bmatrix} [\omega_{s}] & \nu_{s} \\ 0 & 0 \end{bmatrix} \in se(3)
$$

\n
$$
\mathcal{V}_{s} = \begin{bmatrix} \omega_{s} \\ \nu_{s} \end{bmatrix} \in \mathbb{R}^{6} \qquad \qquad \mathcal{V}_{s} \text{ is defined as } \text{Spatial Twist}
$$

\n(or spatial velocity in the space frame)

- $[\mathcal{V}_s] \in se(3)$ is the matrix representations of the **spatial twists** $\mathcal{V}_s \in \mathbb{R}^6$ associated with the rigid-body configuration $T \in SE(3)$.
- \mathcal{V}_s does not depend on the choice of the body frame $\{b\}.$

Stony Brool

Adjoint Map

$$
[\mathrm{Ad}_T] = \begin{bmatrix} R & 0 \\ [p]R & R \end{bmatrix} \in \mathbb{R}^{6 \times 6}
$$

Adjoint Map associated with or Adjoint Representation of T

 $\mathcal{V}_s = | \text{Ad}_{T_{sh}} | \mathcal{V}_b = \text{Ad}_{T_{sh}}(\mathcal{V}_b)$ Similarly, $\bm{\mathcal{V}}_b = \big[\text{Ad}_{\bm{T}_{bs}}\big]\bm{\mathcal{V}}_s = \text{Ad}_{\bm{T}_{bs}}(\bm{\mathcal{V}}_s)$ • Therefore,

Adjoint Map Properties

• Let $T_1, T_2 \in SE(3)$ and $\mathcal{V} = (\boldsymbol{\omega}, \boldsymbol{\nu}) \in \mathbb{R}^6$. Then,

 $\operatorname{Ad}_{T_1}[\operatorname{Ad}_{T_2}]\mathcal{V} = [\operatorname{Ad}_{T_1T_2}]\mathcal{V}$ or $\operatorname{Ad}_{T_1}(\operatorname{Ad}_{T_2}(\mathcal{V})) = \operatorname{Ad}_{T_1T_2}(\mathcal{V})$

- For any $T \in SE(3)$, $[Ad_T]^{-1} = [Ad_{T^{-1}}]$. Note that $[Ad_T]$ is always invertible.
- For any two frames $\{c\}$ and $\{d\}$, a twist represented in $\{c\}$ as $\bm{\mathcal{V}}_c$ is related to its representation in ${d}$ as ${\cal V}_d$ by

$$
\boldsymbol{\mathcal{V}}_c = [\text{Ad}_{\boldsymbol{T}_{cd}}] \boldsymbol{\mathcal{V}}_d \qquad \boldsymbol{\mathcal{V}}_d = [\text{Ad}_{\boldsymbol{T}_{dc}}] \boldsymbol{\mathcal{V}}_c
$$

(changing the reference frame of a twist)

Example

Consider a three-wheeled car with a single steerable front wheel, driving on a plane. The angle of the front wheel of the car causes the car's motion to be a pure angular velocity 2 rad/s about an axis out of the page at the point r in the plane. Find \mathcal{V}_s and \mathcal{V}_h .

Example

Find \mathcal{V}_s and \mathcal{V}_b for the shown one degree of freedom manipulator.

Screw Interpretation of a Twist

Any rigid-body velocity or twist V is equivalent to the instantaneous velocity θ about some screw axis δ (i.e., rotating about the axis while also translating along the axis).

A screw axis S represented by a point $q \in \mathbb{R}^3$ on the axis, a unit vector $\hat{\mathbf{s}} \in S^2$ in the direction of the axis, and a pitch $h_+ \in \mathbb{R}$ (which is linear velocity along the axis divided by angular velocity $\dot{\theta}$ about the axis) as $\{\boldsymbol{q}, \hat{\boldsymbol{s}}, h\}$.

Thus, twist ν can be represented as

$$
\mathcal{V} = \begin{bmatrix} \omega \\ v \end{bmatrix} = \begin{bmatrix} \omega \\ \omega \times (-q) + h\omega \end{bmatrix} = \begin{bmatrix} \hat{s}\dot{\theta} \\ -\hat{s}\dot{\theta} \times q + h\dot{\theta}\hat{s} \end{bmatrix} = \begin{bmatrix} \hat{s} \\ -\hat{s} \times q + h\hat{s} \end{bmatrix} \dot{\theta}
$$

Due to rotation about *S*
(which is in the plane orthogonal to \hat{s})
(which is in the direction of \hat{s})

Representation of Screw Axis

Now, instead of representing the screw axis S as $\{q, \hat{s}, h\}$ (where q is not unique), we represent a "unit" screw axis (uniquely) as a vector as

$$
\mathbf{S} = \begin{bmatrix} \mathbf{S}_{\omega} \\ \mathbf{S}_{\nu} \end{bmatrix} \in \mathbb{R}^{6} \text{ where } \mathbf{\mathcal{V}} = \mathbf{S}\dot{\theta} \in \mathbb{R}^{6} \qquad \qquad \mathbf{S}_{\omega}, \mathbf{S}_{\nu} \in \mathbb{R}^{3}
$$

• Finding S and $\{q, \hat{s}, h\}$ by having \mathcal{V} :

(a) If $\|\boldsymbol{\omega}\| \neq 0$ (= rotation with/without translation along $\hat{\boldsymbol{s}}$): Pitch h is finite ($h = 0$ for pure rotation).

$$
S = \begin{bmatrix} S_{\omega} \\ S_{\nu} \end{bmatrix} = \mathcal{V}/\|\omega\| = \begin{bmatrix} \omega/\|\omega\| \\ \nu/\|\omega\| \end{bmatrix} = \begin{bmatrix} \hat{s} \\ -\hat{s} \times q + h\hat{s} \end{bmatrix}
$$

\n
$$
S = \begin{bmatrix} S_{\omega} \\ S_{\nu} \end{bmatrix} = \mathcal{V}/\|\omega\| = \begin{bmatrix} \omega/\|\omega\| \\ \nu/\|\omega\| \end{bmatrix} = \begin{bmatrix} \hat{s} \\ -\hat{s} \times q + h\hat{s} \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} \text{angular velocity when } \dot{\theta} = 1 \\ \text{linear velocity of origin when } \dot{\theta} = 1 \end{bmatrix}
$$

\n
$$
S = \begin{bmatrix} S_{\omega} \\ S_{\nu} \end{bmatrix} = \mathcal{V}/\|\omega\| = 0 \ (\equiv \text{pure translation along } \hat{s})
$$

\n
$$
S = \begin{bmatrix} S_{\omega} \\ S_{\nu} \end{bmatrix} = \mathcal{V}/\|\nu\| = \begin{bmatrix} 0 \\ \nu/\|\nu\| \end{bmatrix} = \begin{bmatrix} 0 \\ \hat{s} \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} 0 \\
$$

= normalized linear velocity of origin

as linear velocity along \hat{s}

Screw Axis Properties

❖ Since a screw axis S is just a normalized twist, the 4×4 matrix representation $\lfloor S \rfloor$ of $\boldsymbol{S} = (\boldsymbol{S}_{\omega}, \boldsymbol{S}_{\nu}) \in \mathbb{R}^{6}$ is

$$
[\mathbf{S}] = \begin{bmatrix} [\mathbf{S}_{\omega}] & \mathbf{S}_{\nu} \\ \mathbf{0} & 0 \end{bmatrix} \in se(3)
$$

$$
\mathcal{V} = \mathbf{S}\dot{\theta} \in \mathbb{R}^6 \quad \Rightarrow \quad [\mathcal{V}] = [\mathbf{S}]\dot{\theta} \in \mathit{se}(3)
$$

◆ Like twist V, the screw axis S is represented in a frame (e.g., $\{b\}$ or $\{s\}$). Therefore, for any two frames $\{c\}$ and $\{d\}$, a screw axis represented in $\{c\}$ as \boldsymbol{S}_c is related to its representation in ${d}$ as S_d by:

$$
\mathbf{S}_c = [\text{Ad}_{\mathbf{T}_{cd}}] \mathbf{S}_d \qquad \qquad \mathbf{S}_d = [\text{Ad}_{\mathbf{T}_{dc}}] \mathbf{S}_c
$$

(changing the reference frame of a screw axis)

Example

What are the screw axis \boldsymbol{S}_b and \boldsymbol{S}_s for J4 and J2 for the shown Kinova 4-DOF arm?

Exponential Coordinate Representation of Rigid-Body Motion

Screw Motion

Instead of viewing a displacement as a rotation followed by a translation, both rotation and translation can be performed simultaneously.

Planar example of a screw motion:

The displacement in Figure 1 (rotation \bullet + translation \bullet) can be viewed as a pure rotation of $\beta = 90^{\circ}$ about a fixed-point s as shown in Figure 2.

Exponential Coordinates of Rigid-Body Motions

Chasles–Mozzi theorem states that every rigid-body displacement can be expressed as a finite rotation and translation about a fixed screw axis in space.

This theorem motivates a six-parameter representation of a configuration (or a homogeneous transformation $T \in SE(3)$) called the **exponential coordinates** as $S\theta \in \mathbb{R}^6$, where S is the screw axis and θ is the distance that must be traveled along the screw axis to take a frame from the origin I_4 to T.

 I_4

►U

 \overline{d}

 θ

 $h =$

 \boldsymbol{S}

 $\widehat{x^{\bullet}}$

Exponential Coordinates of Rigid-Body Motions

As with rotations, we can define a matrix exponential (exp) and matrix logarithm (log). For any transformation matrix $T \in SE(3)$, we can always find a screw axis $S = (S_{\alpha}, S_{\eta}) \in \mathbb{R}^6$ $(\|\boldsymbol{S}_{\omega}\|=1$ or $\boldsymbol{S}_{\omega}=\boldsymbol{0}$, $\|\boldsymbol{S}_{v}\|=1)$ and scalar $\theta\in\mathbb{R}$ such that $\boldsymbol{T}=e^{[\boldsymbol{S}]\theta}.$

 $S\theta \in \mathbb{R}^6$: Exponential coordinates of $T \in SE(3)$ $\lceil S \rceil \theta = \lceil S \theta \rceil \in se(3)$: Matrix logarithm of **T** (inverse of the matrix exponential)

Note: Tand S have the same base.

Matrix Exponential

exp:
$$
[S]\theta \in se(3) \rightarrow T \in SE(3)
$$
 : $e^{[S]\theta} = T = (R, p)$

❖ Finding $T = (R, p)$ by having $S = (S_{\omega}, S_{\nu})$ and θ :

$$
e^{[S]\theta} = \begin{bmatrix} e^{[S_{\omega}]\theta} & G(\theta)S_{\nu} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}
$$

Using Taylor
expansion
Formula

$$
G(\theta) = I_3\theta + (1 - \cos\theta)[S_{\omega}] + (\theta - \sin\theta)[S_{\omega}]^2 \in \mathbb{R}^{3 \times 3}
$$

Matrix Exponential: Remark

• For a given transformation matrix T_{sb} :

Fixed-frame Displacement is rotation by θ about/along a screw axis $S_{\scriptscriptstyle S}$, expressed in fixed frame $\{s\}$ as:

$$
\boldsymbol{T}_{sb'}=e^{[\boldsymbol{S}_S]\boldsymbol{\theta}}\boldsymbol{T}_{sb}
$$

Body-frame Displacement is rotation by θ about/along a screw axis S_h , expressed in body frame ${b}$ as:

$$
\boldsymbol{T}_{sb'} = \boldsymbol{T}_{sb}e^{[\boldsymbol{S}_b]\theta}
$$

 $\{s\}$ ${b}$ $\tilde{\textit{\textbf{T}}}_{sb}$ $\bm{T}_{sb'}$ \boldsymbol{S} $\mathbf{\hat{s}}$ θ b^{\prime}

 $(\mathbf{S}_{s} = [\text{Ad}_{T_{sh}}] \mathbf{S}_{b})$

Matrix Logarithm

$$
\log: \qquad T \in SE(3) \qquad \rightarrow \quad [\mathbf{S}] \theta \in se(3) \quad : \quad \log(T) = [\mathbf{S}] \theta
$$

 $\mathbf{\hat{S}} = (\mathbf{S}_{\omega}, \mathbf{S}_{\nu})$ and $\theta \in [0, \pi]$ by having $\mathbf{T} = (\mathbf{R}, \mathbf{p})$:

(a) If tr $R = 3$ (or $R = I_3$), then set $S_{\omega} = 0$, $S_{\nu} = p/||p||$, and $\theta = ||p||$.

(b) Otherwise, use the matrix logarithm $\log(R) = [\mathcal{S}_{\omega}]\theta$ to determine \mathcal{S}_{ω} ($\hat{\omega}$ in the $SO(3)$ algorithm) and $\theta \in [0, \pi]$. Then, S_{ν} is calculated as

$$
\mathbf{S}_{v} = \mathbf{G}^{-1}(\theta)\mathbf{p}
$$

where
$$
\mathbf{G}^{-1}(\theta) = \frac{1}{\theta}\mathbf{I}_{3} - \frac{1}{2}[\mathbf{S}_{\omega}] + \left(\frac{1}{\theta} - \frac{1}{2}\cot\frac{\theta}{2}\right)[\mathbf{S}_{\omega}]^{2} \in \mathbb{R}^{3 \times 3}
$$

Example

The initial frame ${b}$ and final frame ${c}$ are given. Find the screw motion expressed in ${s}$ $(\mathcal{\mathcal{S}}_{\scriptscriptstyle S},\theta)$ that displaces the frame at T_{sb} to $T_{sc}.$

Wrench

Spatial Force or Wrench

A rigid body's **Spatial Force** or **Wrench** can be represented as a point in \mathbb{R}^6 and defined as

Body Wrench

Let $m_h \in \mathbb{R}^3$ be a moment applied to the body expressed in $\{b\}$ and $\mathbf{f}_h \in \mathbb{R}^3$ be a force applied to the body at the origin of frame $\{b\}$ and expressed in $\{b\}$. **Body Wrench** \mathcal{F}_b is defined as

$$
\boldsymbol{\mathcal{F}}_b = \Big[\begin{matrix}\boldsymbol{m}_b \\ \boldsymbol{f}_b\end{matrix} \Big] \in \mathbb{R}^6
$$

General Case: If force **f** is applied at the point r of body B , the body wrench in ${b}$ will be:

$$
\boldsymbol{\mathcal{F}}_{b}^{\mathcal{B}_{r}}=\left[\begin{matrix}\boldsymbol{m}_{b}+\boldsymbol{r}_{b}\times\boldsymbol{f}_{b}^{\mathcal{B}_{r}}\\ \boldsymbol{f}_{b}^{\mathcal{B}_{r}}\end{matrix}\right]\in\mathbb{R}^{6}
$$

where $r_b \in \mathbb{R}^3$ is the position vector of point r in $\{b\}$ and $\bm{r}_b \times \bm{f}_b^{\mathcal{B}_r}$ is the moment created by force $\bm{f}_b^{\mathcal{B}_r}$ about the origin of ${b}$.

Spatial Wrench

The **power** is a coordinate-independent quantity, i.e., the power generated (or dissipated) by a wrench $\mathcal F$ and twist $\mathcal V$ pair must be the same regardless of the frame in which it is represented:

$$
(\mathbf{\mathcal{V}} \cdot \mathbf{\mathcal{F}} = \text{power}) \qquad \mathbf{\mathcal{V}}_s^T \mathbf{\mathcal{F}}_s = \mathbf{\mathcal{V}}_b^T \mathbf{\mathcal{F}}_b = \text{power} \qquad (\mathbf{\mathcal{V}}_b = [\text{Ad}_{T_{bs}}] \mathbf{\mathcal{V}}_s) \n\mathbf{\mathcal{V}}_s^T \mathbf{\mathcal{F}}_s = ([\text{Ad}_{T_{bs}}] \mathbf{\mathcal{V}}_s)^T \mathbf{\mathcal{F}}_b \n= \mathbf{\mathcal{V}}_s^T [\text{Ad}_{T_{bs}}]^T \mathbf{\mathcal{F}}_b \n\text{, since this must hold for all } \mathbf{\mathcal{V}}_s \n\mathbf{\mathcal{F}}_s = [\text{Ad}_{T_{bs}}]^T \mathbf{\mathcal{F}}_b \qquad \text{by} \n\text{spatial whench} \qquad \text{body whench} \qquad \text{for } \mathbf{\mathcal{V}}_s \n\mathbf{\mathcal{F}}_s = [\text{Ad}_{T_{bs}}]^T [\mathbf{\mathcal{P}}_b^B] = [\mathbf{m}_s + \mathbf{p} \times \mathbf{f}_s] \qquad \qquad \text{for } \mathbf{\mathcal{V}}_s \qquad \text{for } \math
$$

 \mathbf{f}

Spatial Wrench : General Case

$$
\mathcal{F}_{s}^{\mathcal{B}_{r}} = \left[A\mathbf{d}_{T_{bs}}\right]^{T} \mathcal{F}_{b}^{\mathcal{B}_{r}} = \begin{bmatrix} R_{sb} & -R_{sb} [p_{b}^{bs}]\n0 & R_{sb} \end{bmatrix} \begin{bmatrix} m_{b}^{\mathcal{B}} + r_{b} \times f_{b}^{\mathcal{B}_{r}} \end{bmatrix} = \begin{bmatrix} R_{sb} m_{b}^{\mathcal{B}} + R_{sb} \left((r_{b} - p_{b}^{bs}) \times f_{b}^{\mathcal{B}_{r}} \right) \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} R_{sb} m_{b}^{\mathcal{B}} + R_{sb} p_{b}^{sr} \times R_{sb} f_{b}^{\mathcal{B}_{r}} \end{bmatrix} = \begin{bmatrix} m_{s}^{\mathcal{B}} + r_{s} \times f_{s}^{\mathcal{B}_{r}} \end{bmatrix} \in \mathbb{R}^{6}
$$
\n
$$
r_{s} \begin{bmatrix} \mathcal{B} \\ \mathcal{B} \end{bmatrix} = p_{s}^{\mathcal{B}_{b}}
$$
\n
$$
p_{s} = p_{s}^{\mathcal{B}_{b}}
$$

• In general, if we have the wrench in frame $\{d\}$, we can express it in another frame $\{d\}$ as:

$$
\boldsymbol{\mathcal{F}}_{c}^{\mathcal{B}_{r}}=\left[\mathrm{Ad}_{\boldsymbol{T}_{dc}}\right]^{T}\boldsymbol{\mathcal{F}}_{d}^{\mathcal{B}_{r}}
$$

Example

The robot hand shown is holding an apple with a mass of 0.1 kg in a gravitational field g =10 m/s². The mass of the hand is 0.5 kg, L_1 =10 cm, and L_2 =15 cm. What is the force and torque measured by the six-axis force–torque sensor between the hand and the robot arm?

force–torque sensor

❖ **Note**: If more than one wrench acts on a rigid body, the total wrench on the body is simply the vector sum of the individual wrenches, provided that the wrenches are expressed in the same frame.

Review

