Ch4: Rigid-Body Motion – Transformation

Transformation Matrices	Twist	Exponential Coordinate Representation	Wrench	Review	
000000000	000000000000	000000	00000	0000	Stony Brook University

Transformation Matrices

Homogeneous Transformation Matrices

Rigid-body configuration can be represented by the pair (\mathbf{R}, \mathbf{p}) $(\mathbf{R} \in SO(3), \mathbf{p} \in \mathbb{R}^3)$. We can package (\mathbf{R}, \mathbf{p}) into a single 4×4 matrix as

 $T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}$

Transformation Matrix

This is as Implicit representation the C-space.

Special Euclidean Group SE(n)

The Special Euclidean Group SE(3), also known as the group of rigid-body motions or homogeneous transformation matrices in \mathbb{R}^3 , is the set of all 4×4 real matrices T of the form

$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_1 \\ r_{21} & r_{22} & r_{23} & p_2 \\ r_{31} & r_{32} & r_{33} & p_3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{array}{l} T \in SE(3) \\ R \in SO(3) \\ p \in \mathbb{R}^3 \end{array}$$
$$SE(3) = \left\{ T \in \mathbb{R}^{4 \times 4} \mid T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}, R \in SO(3), p \in \mathbb{R}^3 \right\}$$

The special Euclidean group SE(2) is the set of all 3×3 real matrices **T** of the form

$$T = \begin{bmatrix} \mathbf{R} & \mathbf{p} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & p_1 \\ r_{21} & r_{22} & p_2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & p_1 \\ \sin \theta & \cos \theta & p_2 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{array}{l} \mathbf{T} \in SE(2) \\ \mathbf{R} \in SO(2) \\ \mathbf{p} \in \mathbb{R}^2 \\ \theta \in [0, 2\pi) \end{array}$$
$$-SE(2) \text{ is a subgroup of } SE(3): \qquad SE(2) \subset SE(3) \qquad \begin{array}{l} \mathbf{T} \in SE(2) \\ \mathbf{p} \in \mathbb{R}^2 \\ \theta \in [0, 2\pi) \end{array}$$

Properties of Transformation Matrices

SE(3) (or SE(2)) is a matrix (Lie) group (and the group operation • is matrix multiplication).

Closure: Associative: Identity: Inverse: $T_1T_2 \in SE(3)$ $(T_1T_2)T_3 = T_1(T_2T_3) \text{ (but generally not commutative, } T_1T_2 \neq T_2T_1)$ $\exists I_4 \in SE(3) \text{ such that } TI_4 = I_4T = T$ $\exists T^{-1} \in SE(3) \text{ such that } TT^{-1} = T^{-1}T = I_4$

$$\boldsymbol{T}^{-1} = \begin{bmatrix} \boldsymbol{R} & \boldsymbol{p} \\ \boldsymbol{0} & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \boldsymbol{R}^T & -\boldsymbol{R}^T \boldsymbol{p} \\ \boldsymbol{0} & 1 \end{bmatrix}$$

Note: *T* preserves both distances and angles.

Uses of Transformation Matrices (1)

(1) Representing configuration (position and orientation) of a frame relative to another frame.

<u>Notation</u>: T_{sb} is the configuration of $\{b\}$ relative to $\{s\}$.

Transformation MatricesTwistExponential Coordinate RepresentationWrenchReview000	Stony Broc University
--	--------------------------

Example

Uses of Transformation Matrices (2)

Wrench

00000

Review

0000

Exponential Coordinate Representation

000000

(2) Changing the reference frame of a <u>vector</u> or <u>frame</u>.

Subscript Cancellation Rule: $T_{ab}v_b = T_{ab}v_b = v_a$

Twist

000000000000

$$T_{ab}T_{bc} = T_{ab}T_{bc} = T_{ac}$$
$$T_{ab}T_{bc} = T_{ab}T_{bc} = T_{ac}$$

 T_{ab} can be viewed as a <u>mathematical operator</u> that changes the reference frame from $\{b\}$ to $\{a\}$.

Note:
$$T_{bc}T_{cb} = I_4$$
 or $T_{bc} = T_{cb}^{-1} = \begin{bmatrix} \mathbf{R}_{cb}^T & -\mathbf{R}_{cb}^T \mathbf{p}_c^{cb} \\ \mathbf{0} & 1 \end{bmatrix}$

Note: To calculate Tv, we append a "1" to v and it is called **homogeneous coordinates** representation of v. $v = [v_1 \ v_2 \ v_3 \ 1]^T$

Amin Fakhari, Fall 2024

Transformation Matrices

Example

A robot arm mounted on a wheeled mobile platform moving in a room, and a camera fixed to the ceiling. The robot must pick up an object with body frame $\{e\}$. What is the configuration of the object relative to the robot hand, T_{ce} , given T_{db} , T_{de} , T_{bc} , and T_{ad} ?

Uses of Transformation Matrices (3)

(3) Displacing (rotating and translating) a <u>vector</u> or <u>frame</u>.

T can be viewed as a **mathematical operator** that rotates a frame or vector about a unit axis $\widehat{\boldsymbol{\omega}} = (\widehat{\omega}_1, \widehat{\omega}_2, \widehat{\omega}_3)$ by an amount θ + translating it by **p**.

Uses of Transformation Matrices (3) (cont.)

Rotation of vector *v* about a unit axis *ŵ* (expressed in the same frame) by an amount *θ* and translation of it by *p* (expressed in the same frame) is vector *v*' expressed in the same frame:

$$\boldsymbol{v}'' = \boldsymbol{T}\boldsymbol{v} = \operatorname{Trans}(\boldsymbol{p})\operatorname{Rot}(\widehat{\boldsymbol{\omega}}, \theta)\boldsymbol{v} \equiv \operatorname{Rot}(\widehat{\boldsymbol{\omega}}, \theta)\boldsymbol{v} + \boldsymbol{p}$$

Interpretation

Example

Find fixed-frame and body-frame transformations corresponding to $\hat{\omega} = (0,0,1)$, $\theta = 90^{\circ}$, and p = (0,2,0).

Transformation Matrices	Twist	Exponential Coordinate Representation	Wrench	Review	× 10
000000000	000000000000	000000	00000	0000	Stony Brook University

Lie Algebra se(3)

• The set of all 4 × 4 matrices of the form

$$\begin{bmatrix} \boldsymbol{\omega} & \boldsymbol{v} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

where $[\boldsymbol{\omega}] \in so(3)$ and $\boldsymbol{\nu} \in \mathbb{R}^3$ is called se(3).

• se(3) is the matrix representation of 6×1 vectors $\mathcal{V} = \begin{bmatrix} \boldsymbol{\omega} \\ \boldsymbol{\nu} \end{bmatrix} \in \mathbb{R}^6$. Thus,

$$\begin{bmatrix} \boldsymbol{\mathcal{V}} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \boldsymbol{\omega} \end{bmatrix} & \boldsymbol{\mathcal{V}} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \in se(3)$$

• se(3) is called the Lie algebra of the Lie group SE(3).

tony Bro

Spatial Velocity or Twist

A rigid body's **Spatial Velocity** or **Twist** can be represented as a point in \mathbb{R}^6 and defined as

 $\boldsymbol{\mathcal{V}}_{x} = \begin{bmatrix} \text{angular velocity of body expressed in frame } \{x\} \\ \downarrow \end{bmatrix} \in \mathbb{R}^{d} \\ \text{expressed in } \{x\} \end{bmatrix} \in \mathbb{R}^{d} \\ \text{expressed in } \{x\} \end{bmatrix}$

Let's find the twist $\mathcal{V} \in \mathbb{R}^6$ of a moving body (or body frame $\{b\}$) in terms of $T_{sb} = T(t)$. Body Frame $\{b\}$ is instantaneously coincident with the body-attached frame.

$$\boldsymbol{T}(t) = \begin{bmatrix} \boldsymbol{R}(t) & \boldsymbol{p}(t) \\ \boldsymbol{0} & 1 \end{bmatrix}$$

Body Twist ${\cal V}_b$

Similar to $R^{-1}\dot{R} = [\omega_b]$, let's compute $T^{-1}\dot{T}$:

$$T^{-1}\dot{T} = \begin{bmatrix} \mathbf{R}^T & -\mathbf{R}^T \mathbf{p} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \dot{\mathbf{R}} & \dot{\mathbf{p}} \\ \mathbf{0} & 0 \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{R}^T \dot{\mathbf{R}} & \mathbf{R}^T \dot{\mathbf{p}} \\ \mathbf{0} & 0 \end{bmatrix} \xrightarrow{\mathbf{v}_b \in \mathbb{R}^3} \mathbf{v}_b \in \mathbb{R}^3$$
$$= \begin{bmatrix} [\boldsymbol{\omega}_b] & \boldsymbol{v}_b \\ \mathbf{0} & 0 \end{bmatrix} \xrightarrow{[\boldsymbol{\omega}_b] \in so(3)} T^{-1}\dot{T} = [\boldsymbol{\mathcal{V}}_b] = \begin{bmatrix} [\boldsymbol{\omega}_b] & \boldsymbol{v}_b \\ \mathbf{0} & 0 \end{bmatrix} \in se(3)$$

 $(\mathbf{R}:=\mathbf{R}_{sh},\mathbf{T}:=\mathbf{T}_{sh})$

$$\begin{bmatrix} \boldsymbol{w}_b \\ \boldsymbol{v}_b \end{bmatrix} \in \mathbb{R}^6$$
 $\begin{bmatrix} \boldsymbol{\mathcal{V}}_b & \text{is defined as Body Twist} \\ (or spatial velocity in the body frame) \end{bmatrix}$

- $[\mathcal{V}_b] \in se(3)$ is the matrix representations of the **body twists** $\mathcal{V}_b \in \mathbb{R}^6$ associated with the rigid-body configuration $T \in SE(3)$.
- \mathcal{V}_b does not depend on the choice of the fixed frame $\{s\}$,

 $\boldsymbol{\mathcal{V}}_b =$

Spatial Twist \mathcal{V}_{s}

Similar to $\dot{R}R^{-1} = [\omega_s]$, let's compute $\dot{T}T^{-1}$: $(R = R_{sb}, T = T_{sb})$

$$\dot{T}T^{-1} = \begin{bmatrix} \dot{R} & \dot{p} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} R^{\mathrm{T}} & -R^{\mathrm{T}}p \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \dot{R}R^{\mathrm{T}} & \dot{p} - \dot{R}R^{\mathrm{T}}p \\ 0 & 0 \end{bmatrix} \qquad \begin{matrix} v_{s} \in \mathbb{R}^{3} \\ [\omega_{s}] \in so(3) \end{matrix} \qquad \dot{T}T^{-1} = [\mathcal{V}_{s}] = \begin{bmatrix} [\omega_{s}] & v_{s} \\ 0 & 0 \end{bmatrix} \in se(3)$$

$$\mathcal{V}_{s} = \begin{bmatrix} \omega_{s} \\ v_{s} \end{bmatrix} \in \mathbb{R}^{6} \qquad \begin{matrix} \mathcal{V}_{s} \text{ is defined as Spatial Twist} \\ (\text{or spatial velocity in the space frame}) \end{matrix}$$

- $[\mathcal{V}_s] \in se(3)$ is the matrix representations of the **spatial twists** $\mathcal{V}_s \in \mathbb{R}^6$ associated with the rigid-body configuration $T \in SE(3)$.
- \mathcal{V}_s does not depend on the choice of the body frame $\{b\}$.

Stony Broo

Adjoint Map

$$[\mathrm{Ad}_T] = \begin{bmatrix} R & 0\\ [p]R & R \end{bmatrix} \in \mathbb{R}^{6 \times 6}$$

Adjoint Map associated with *T* or Adjoint Representation of *T*

• Therefore, $\mathcal{V}_{s} = [\operatorname{Ad}_{T_{sb}}]\mathcal{V}_{b} = \operatorname{Ad}_{T_{sb}}(\mathcal{V}_{b})$ Similarly, $\mathcal{V}_{b} = [\operatorname{Ad}_{T_{bs}}]\mathcal{V}_{s} = \operatorname{Ad}_{T_{bs}}(\mathcal{V}_{s})$

MEC529 • Ch4: Rigid-Body Motion – Transformation

Adjoint Map Properties

• Let $T_1, T_2 \in SE(3)$ and $\mathcal{V} = (\boldsymbol{\omega}, \boldsymbol{\nu}) \in \mathbb{R}^6$. Then,

 $[\mathrm{Ad}_{T_1}][\mathrm{Ad}_{T_2}]\mathcal{V} = [\mathrm{Ad}_{T_1T_2}]\mathcal{V} \quad \text{or} \quad \mathrm{Ad}_{T_1}(\mathrm{Ad}_{T_2}(\mathcal{V})) = \mathrm{Ad}_{T_1T_2}(\mathcal{V})$

- For any $T \in SE(3)$, $[Ad_T]^{-1} = [Ad_{T^{-1}}]$. Note that $[Ad_T]$ is always invertible.
- For any two frames {c} and {d}, a twist represented in {c} as V_c is related to its representation in {d} as V_d by

$$\boldsymbol{\mathcal{V}}_{c} = [\operatorname{Ad}_{\boldsymbol{T}_{cd}}]\boldsymbol{\mathcal{V}}_{d}$$
 $\boldsymbol{\mathcal{V}}_{d} = [\operatorname{Ad}_{\boldsymbol{T}_{dc}}]\boldsymbol{\mathcal{V}}_{c}$

(changing the reference frame of a twist)

Example

Consider a three-wheeled car with a single steerable front wheel, driving on a plane. The angle of the front wheel of the car causes the car's motion to be a pure angular velocity 2 rad/s about an axis out of the page at the point r in the plane. Find \mathcal{V}_s and \mathcal{V}_b .

Example

Find \mathcal{V}_s and \mathcal{V}_b for the shown one degree of freedom manipulator.

Screw Interpretation of a Twist

Any rigid-body velocity or twist \mathcal{V} is equivalent to the <u>instantaneous</u> velocity $\dot{\theta}$ about some <u>screw axis</u> \mathcal{S} (i.e., rotating about the axis while also translating along the axis).

A screw axis S represented by a point $q \in \mathbb{R}^3$ on the axis, a unit vector $\hat{s} \in S^2$ in the direction of the axis, and a pitch $h_+ \in \mathbb{R}$ (which is linear velocity along the axis divided by angular velocity $\dot{\theta}$ about the axis) as $\{q, \hat{s}, h\}$.

Thus, twist ${m {\cal V}}$ can be represented as

$$\mathcal{V} = \begin{bmatrix} \boldsymbol{\omega} \\ \boldsymbol{v} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\omega} \\ \boldsymbol{\omega} \times (-\boldsymbol{q}) + h\boldsymbol{\omega} \end{bmatrix} = \begin{bmatrix} \hat{s}\dot{\theta} \\ -\hat{s}\dot{\theta} \times \boldsymbol{q} + h\dot{\theta}\hat{s} \end{bmatrix} = \begin{bmatrix} \hat{s} \\ -\hat{s} \times \boldsymbol{q} + h\hat{s} \end{bmatrix} \dot{\theta}$$

Due to rotation about \mathcal{S}
which is in the plane orthogonal to \hat{s})
Due to translation along \mathcal{S}
(which is in the direction of \hat{s})

Representation of Screw Axis

Now, instead of representing the screw axis S as $\{q, \hat{s}, h\}$ (where q is not unique), we represent a "unit" screw axis (uniquely) as a vector as

$$S = \begin{bmatrix} S_{\omega} \\ S_{v} \end{bmatrix} \in \mathbb{R}^{6}$$
 where $v = S\dot{\theta} \in \mathbb{R}^{6}$ $S_{\omega}, S_{v} \in \mathbb{R}^{3}$

• Finding *S* and $\{q, \hat{s}, h\}$ by having \mathcal{V} :

(a) If $\|\boldsymbol{\omega}\| \neq 0$ (\equiv rotation with/without translation along $\hat{\boldsymbol{s}}$): $\begin{aligned} \text{Pitch } h \text{ is finite } (h = 0 \text{ for pure rotation}). \\ h = \boldsymbol{S}_{\omega}^{T} \boldsymbol{S}_{v} = \boldsymbol{\omega}^{T} \boldsymbol{v} / \|\boldsymbol{\omega}\|^{2} \end{aligned}$

$$S = \begin{bmatrix} S_{\omega} \\ S_{\nu} \end{bmatrix} = \mathcal{V}/||\omega|| = \begin{bmatrix} \omega/||\omega|| \\ \nu/||\omega|| \end{bmatrix} = \begin{bmatrix} \hat{s} \\ -\hat{s} \times q + h\hat{s} \end{bmatrix}$$

$$= \begin{bmatrix} \text{angular velocity when } \dot{\theta} = 1 \\ \text{linear velocity of origin when } \dot{\theta} = 1 \end{bmatrix}$$

$$\stackrel{\circ}{=} \|\omega\| \text{ is interpreted as angular velocity about } \hat{s} \\ \text{To find } q, \text{ use } \nu - h\omega = -\omega \times q \\ \text{or } (S_{\nu} - hS_{\omega} = -S_{\omega} \times q) \end{bmatrix}$$

$$(b) \text{ If } \|\omega\| = 0 \text{ (\equiv pure translation along } \hat{s}\text{):}$$

$$S = \begin{bmatrix} S_{\omega} \\ S_{\nu} \end{bmatrix} = \mathcal{V}/||\nu|| = \begin{bmatrix} 0 \\ \nu/||\nu|| \end{bmatrix} = \begin{bmatrix} 0 \\ \hat{s} \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ \text{normalized linear velocity of origin} \end{bmatrix}$$

$$Pitch h \text{ is infinite, } \|S_{\omega}\| = 0$$

$$\hat{s} = S_{\nu} = \nu/||\nu||, \|S_{\nu}\| = 1$$

$$\dot{\theta} = \|\nu\| \text{ is interpreted as angular velocity about } \hat{s}$$

$$S = \begin{bmatrix} S_{\omega} \\ S_{\nu} \end{bmatrix} = \mathcal{V} / \|\nu\| = \begin{bmatrix} 0 \\ \nu / \|\nu\| \end{bmatrix} = \begin{bmatrix} 0 \\ \hat{s} \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ \text{normalized linear velocity of origin} \end{bmatrix}$$

Amin Fakhari, Fall 2024

 $\|S_{\omega}\| = 1$

Screw Axis Properties

★ Since a screw axis **S** is just a normalized twist, the 4 × 4 matrix representation [**S**] of $S = (S_{\omega}, S_{\nu}) \in \mathbb{R}^{6}$ is

$$[\boldsymbol{S}] = \begin{bmatrix} [\boldsymbol{S}_{\omega}] & \boldsymbol{S}_{v} \\ \boldsymbol{0} & \boldsymbol{0} \end{bmatrix} \in se(3)$$

$$\boldsymbol{\mathcal{V}} = \boldsymbol{S}\dot{\theta} \in \mathbb{R}^6 \quad \Rightarrow \quad [\boldsymbol{\mathcal{V}}] = [\boldsymbol{S}]\dot{\theta} \in se(3)$$

★ Like twist 𝒱, the screw axis 𝔅 is represented in a frame (e.g., {b} or {s}). Therefore, for any two frames {c} and {d}, a screw axis represented in {c} as 𝔅 is related to its representation in {d} as 𝔅 by:

$$\boldsymbol{S}_{c} = [\operatorname{Ad}_{\boldsymbol{T}_{cd}}]\boldsymbol{S}_{d} \qquad \qquad \boldsymbol{S}_{d} = [\operatorname{Ad}_{\boldsymbol{T}_{dc}}]\boldsymbol{S}_{c}$$

(changing the reference frame of a screw axis)

Example

What are the screw axis S_b and S_s for J4 and J2 for the shown Kinova 4-DOF arm?

Transformation Matrices	Twist 0000000000000	Exponential Coordinate Representation	Wrench 00000	Review 0000	Stony Brool University
					Oniversity

Exponential Coordinate Representation of Rigid-Body Motion

Screw Motion

Instead of viewing a displacement as a rotation followed by a translation, both rotation and translation can be performed <u>simultaneously</u>.

Planar example of a screw motion:

The displacement in Figure 1 (rotation \bullet + translation \bullet) can be viewed as a pure rotation of $\beta = 90^{\circ}$ about a fixed-point s as shown in Figure 2.

Exponential Coordinates of Rigid-Body Motions

Chasles–Mozzi theorem states that every rigid-body displacement can be expressed as a finite rotation and translation about a fixed screw axis in space.

This theorem motivates a six-parameter representation of a configuration (or a homogeneous transformation $T \in SE(3)$) called the **exponential coordinates** as $S\theta \in \mathbb{R}^6$, where S is the screw axis and θ is the distance that must be traveled along the screw axis to take a frame from the origin I_4 to T.

 $h = \frac{a}{A}$

14

►Ų

x

Exponential Coordinates of Rigid-Body Motions

As with rotations, we can define a matrix exponential (exp) and matrix logarithm (log). For any transformation matrix $T \in SE(3)$, we can always find a screw axis $S = (S_{\omega}, S_{v}) \in \mathbb{R}^{6}$ $(||S_{\omega}|| = 1 \text{ or } S_{\omega} = \mathbf{0}, ||S_{v}|| = 1)$ and scalar $\theta \in \mathbb{R}$ such that $T = e^{[S]\theta}$.

exp:	$[\mathbf{S}]\theta \in se(3)$	\rightarrow	$T \in SE(3)$:	$e^{[S]\theta} = T = (R, p)$
log:	$T \in SE(3)$	\rightarrow	$[\mathbf{S}]\theta \in se(3)$:	$\log(\boldsymbol{T}) = [\boldsymbol{S}]\boldsymbol{\theta}$

 $\begin{array}{ll} \boldsymbol{S}\theta \in \mathbb{R}^6 & : \text{Exponential coordinates of } \boldsymbol{T} \in \boldsymbol{S}E(3) \\ [\boldsymbol{S}]\theta = [\boldsymbol{S}\theta] \in \boldsymbol{s}e(3) & : \text{Matrix logarithm of } \boldsymbol{T} \text{ (inverse of the matrix exponential)} \end{array}$

Note: *T* and *S* have the same base.

Matrix Exponential

exp:
$$[S]\theta \in se(3) \rightarrow T \in SE(3)$$
 : $e^{[S]\theta} = T = (R, p)$

• Finding T = (R, p) by having $S = (S_{\omega}, S_{\nu})$ and θ :

$$e^{[S]\theta} = \begin{bmatrix} e^{[S_{\omega}]\theta} & G(\theta)S_{\nu} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}$$

Using Taylor
expansion
Use Rodrigues
Formula
$$G(\theta) = I_{3}\theta + (1 - \cos\theta)[S_{\omega}] + (\theta - \sin\theta)[S_{\omega}]^{2} \in \mathbb{R}^{3 \times 3}$$

Matrix Exponential: Remark

• For a given transformation matrix T_{sb} :

Fixed-frame Displacement is rotation by θ about/along a screw axis S_s , expressed in fixed frame $\{s\}$ as:

$$\boldsymbol{T}_{sb'} = e^{[\boldsymbol{S}_s]\theta} \boldsymbol{T}_{sb}$$

Body-frame Displacement is rotation by θ about/along a screw axis S_b , expressed in body frame $\{b\}$ as:

$$\boldsymbol{T}_{sb'} = \boldsymbol{T}_{sb} e^{[\boldsymbol{S}_b]\theta}$$

 $T_{sb'}$ $T_{sb'}$ T_{sb} $\{b\}$

 $(\boldsymbol{S}_{s} = [\mathrm{Ad}_{\boldsymbol{T}_{sb}}]\boldsymbol{S}_{b})$

Matrix Logarithm

$$\log: \quad \mathbf{T} \in SE(3) \quad \rightarrow \quad [\mathbf{S}]\theta \in se(3) \quad : \quad \log(\mathbf{T}) = [\mathbf{S}]\theta$$

♦ Finding $S = (S_ω, S_ν)$ and $θ \in [0, π]$ by having T = (R, p):

(a) If tr $\mathbf{R} = 3$ (or $\mathbf{R} = \mathbf{I}_3$), then set $\mathbf{S}_{\omega} = \mathbf{0}$, $\mathbf{S}_{v} = \mathbf{p}/||\mathbf{p}||$, and $\theta = ||\mathbf{p}||$.

(b) Otherwise, use the matrix logarithm $\log(\mathbf{R}) = [\mathbf{S}_{\omega}]\theta$ to determine \mathbf{S}_{ω} ($\hat{\boldsymbol{\omega}}$ in the SO(3) algorithm) and $\theta \in [0, \pi]$. Then, \mathbf{S}_{v} is calculated as

$$\boldsymbol{S}_{v} = \boldsymbol{G}^{-1}(\theta) \boldsymbol{p}$$

where $\boldsymbol{G}^{-1}(\theta) = \frac{1}{\theta} \boldsymbol{I}_{3} - \frac{1}{2} [\boldsymbol{S}_{\omega}] + \left(\frac{1}{\theta} - \frac{1}{2} \cot \frac{\theta}{2}\right) [\boldsymbol{S}_{\omega}]^{2} \in \mathbb{R}^{3 \times 3}$

Example

The initial frame $\{b\}$ and final frame $\{c\}$ are given. Find the screw motion expressed in $\{s\}$ (S_s, θ) that displaces the frame at T_{sh} to T_{sc} .

 $T_{sb} = \begin{bmatrix} \cos 30^\circ & -\sin 30^\circ & 0 & 1\\ \sin 30^\circ & \cos 30^\circ & 0 & 2\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$ $T_{sc} = \begin{bmatrix} \cos 60^{\circ} & -\sin 60^{\circ} & 0 & 2\\ \sin 60^{\circ} & \cos 60^{\circ} & 0 & 1\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$

Transformation Matrices	Twist	Exponential Coordinate Representation	Wrench	Review	
000000000	00000000000	000000	00000	0000	Stony Brook University

Wrench

Spatial Force or Wrench

A rigid body's **Spatial Force** or **Wrench** can be represented as a point in \mathbb{R}^6 and defined as

Body Wrench $\boldsymbol{\mathcal{F}}_b$

Let $m_b \in \mathbb{R}^3$ be a moment applied to the body expressed in $\{b\}$ and $f_b \in \mathbb{R}^3$ be a force applied to the body at the origin of frame $\{b\}$ and expressed in $\{b\}$. Body Wrench \mathcal{F}_b is defined as \mathcal{B}

$$\boldsymbol{\mathcal{F}}_b = \begin{bmatrix} \boldsymbol{m}_b \\ \boldsymbol{f}_b \end{bmatrix} \in \mathbb{R}^6$$

General Case: If force **f** is applied at the point r of body \mathcal{B} , the body wrench in $\{b\}$ will be:

$$\boldsymbol{\mathcal{F}}_{b}^{\mathcal{B}_{r}} = \begin{bmatrix} \boldsymbol{m}_{b} + \boldsymbol{r}_{b} \times \boldsymbol{f}_{b}^{\mathcal{B}_{r}} \\ \boldsymbol{f}_{b}^{\mathcal{B}_{r}} \end{bmatrix} \in \mathbb{R}^{6}$$

where $r_b \in \mathbb{R}^3$ is the position vector of point r in $\{b\}$ and $r_b \times f_b^{\mathcal{B}_r}$ is the moment created by force $f_b^{\mathcal{B}_r}$ about the origin of $\{b\}$.

Spatial Wrench \mathcal{F}_s

The **power** is a coordinate-independent quantity, i.e., the power generated (or dissipated) by a wrench \mathcal{F} and twist \mathcal{V} pair must be the same regardless of the frame in which it is represented:

$$(\mathcal{V} \cdot \mathcal{F} = \text{power}) \qquad \mathcal{V}_{S}^{T} \mathcal{F}_{S} = \mathcal{V}_{b}^{T} \mathcal{F}_{b} = \text{power} \qquad (\mathcal{V}_{b} = [\text{Ad}_{T_{bs}}] \mathcal{V}_{S})$$
$$\mathcal{V}_{S}^{T} \mathcal{F}_{s} = ([\text{Ad}_{T_{bs}}]^{T} \mathcal{F}_{b}$$
$$= \mathcal{V}_{S}^{T} [\text{Ad}_{T_{bs}}]^{T} \mathcal{F}_{b}$$
Since this must hold for all \mathcal{V}_{s}
$$\mathcal{F}_{s} = [\text{Ad}_{T_{bs}}]^{T} \mathcal{F}_{b}$$
spatial wrench body wrench
$$\mathcal{F}_{s} = [\text{Ad}_{T_{bs}}]^{T} \begin{bmatrix} \mathbf{m}_{b} \\ \mathbf{f}_{b} \end{bmatrix} = \begin{bmatrix} \mathbf{m}_{s} + \mathbf{p} \times \mathbf{f}_{s} \\ \mathbf{f}_{s} \end{bmatrix}$$
Therefore:
$$\mathcal{F}_{s} = [\text{Ad}_{T_{bs}}]^{T} \begin{bmatrix} \mathbf{m}_{b} \\ \mathbf{f}_{b} \end{bmatrix} = \begin{bmatrix} \mathbf{m}_{s} + \mathbf{p} \times \mathbf{f}_{s} \\ \mathbf{f}_{s} \end{bmatrix}$$

Spatial Wrench \mathcal{F}_s : General Case

$$\mathcal{F}_{s}^{\mathcal{B}_{r}} = \begin{bmatrix} \operatorname{Ad}_{T_{bs}} \end{bmatrix}^{T} \mathcal{F}_{b}^{\mathcal{B}_{r}} = \begin{bmatrix} R_{sb} & -R_{sb} [p_{b}^{bs}] \\ 0 & R_{sb} \end{bmatrix} \begin{bmatrix} m_{b}^{\mathcal{B}} + r_{b} \times f_{b}^{\mathcal{B}_{r}} \\ f_{b}^{\mathcal{B}_{r}} \end{bmatrix} = \begin{bmatrix} R_{sb} m_{b}^{\mathcal{B}} + R_{sb} ((r_{b} - p_{b}^{bs}) \times f_{b}^{\mathcal{B}_{r}}) \\ R_{sb} f_{b}^{\mathcal{B}_{r}} \end{bmatrix} = \begin{bmatrix} m_{s}^{\mathcal{B}} + r_{s} \times f_{s}^{\mathcal{B}_{r}} \\ f_{s}^{\mathcal{B}_{r}} \end{bmatrix} \in \mathbb{R}^{6}$$

$$m_{sb} f_{b}^{\mathcal{B}_{r}} = \begin{bmatrix} R_{sb} m_{b}^{\mathcal{B}} + R_{sb} p_{b}^{\mathcal{B}_{r}} \times R_{sb} f_{b}^{\mathcal{B}_{r}} \\ R_{sb} f_{b}^{\mathcal{B}_{r}} \end{bmatrix} = \begin{bmatrix} m_{s}^{\mathcal{B}} + r_{s} \times f_{s}^{\mathcal{B}_{r}} \\ f_{s}^{\mathcal{B}_{r}} \end{bmatrix} \in \mathbb{R}^{6}$$

• In general, if we have the wrench in frame $\{d\}$, we can express it in another frame $\{d\}$ as:

$$\boldsymbol{\mathcal{F}}_{c}^{\mathcal{B}_{r}} = \left[\mathrm{Ad}_{\boldsymbol{T}_{dc}} \right]^{T} \boldsymbol{\mathcal{F}}_{d}^{\mathcal{B}_{r}}$$

Example

The robot hand shown is holding an apple with a mass of 0.1 kg in a gravitational field $g=10 \text{ m/s}^2$. The mass of the hand is 0.5 kg, $L_1=10 \text{ cm}$, and $L_2=15 \text{ cm}$. What is the force and torque measured by the six-axis force—torque sensor between the hand and the robot arm?

force-torque sensor

Note: If more than one wrench acts on a rigid body, the total wrench on the body is simply the vector sum of the individual wrenches, provided that the wrenches are expressed in the same frame.

Transformation Matrices	Twist	Exponential Coordinate Representation	Wrench	Review	
000000000	000000000000	000000	00000	0000	Stony Brook University

Review

Rotations	Rigid-Body Motions
$\mathbf{R} \in SO(3)$: 3 × 3 matrices $\mathbf{R}^T \mathbf{R} = \mathbf{R} \mathbf{R}^T = \mathbf{I}_3$, det(\mathbf{R}) = 1	$T \in SE(3)$: 4 × 4 matrices $T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}$, where $R \in SO(3)$, $p \in \mathbb{R}^3$
$R^{-1} = R^{\mathrm{T}}$	$\boldsymbol{T}^{-1} = \begin{bmatrix} \boldsymbol{R}^T & -\boldsymbol{R}^T \boldsymbol{p} \\ \boldsymbol{0} & 1 \end{bmatrix}$
Change of coordinate frame:	Change of coordinate frame:
$\boldsymbol{R}_{ab}\boldsymbol{R}_{bc} = \boldsymbol{R}_{ac}, \ \boldsymbol{R}_{ab}\boldsymbol{p}_{b} = \boldsymbol{p}_{a}$	$\boldsymbol{T}_{ab}\boldsymbol{T}_{bc} = \boldsymbol{T}_{ac}, \ \boldsymbol{T}_{ab}\boldsymbol{p}_{b} = \boldsymbol{p}_{a}$
$\left(\boldsymbol{R}_{ab} = \boldsymbol{R}_{ba}^{-1} = \boldsymbol{R}_{ba}^{T}\right)$	$\left(\boldsymbol{T}_{ab} = \boldsymbol{T}_{ba}^{-1}\right)$

Rotations	Rigid-Body Motions
Rotating a frame {b}: $R = \operatorname{Rot}(\hat{\omega}, \theta)$ $R_{sb'} = RR_{sb}$: rotate θ about $\hat{\omega}_s = \hat{\omega}$ $R_{sb'} = R_{sb}R$: rotate θ about $\hat{\omega}_b = \hat{\omega}$	Displacing a frame {b}: $T = \begin{bmatrix} \operatorname{Rot}(\hat{\omega}, \theta) & p \\ 0 & 1 \end{bmatrix}$ $T_{sb'} = TT_{sb}:$ rotate θ about $\hat{\omega}_s = \hat{\omega}$ (moves {b} origin), translate p in {s} $T_{sb'} = T_{sb}T:$ translate p in {b}, rotate θ about $\hat{\omega}$ in new body frame
Unit rotation axis is $\hat{\boldsymbol{\omega}} \in \mathbb{R}^3$, where $\ \hat{\boldsymbol{\omega}}\ = 1$	"Unit" screw axis is $\boldsymbol{S} = \begin{bmatrix} \boldsymbol{S}_{\omega} \\ \boldsymbol{S}_{v} \end{bmatrix} \in \mathbb{R}^{6}$, where either (i) $\ \boldsymbol{S}_{\omega}\ = 1$ or (ii) $\ \boldsymbol{S}_{\omega}\ = 0$, $\ \boldsymbol{S}_{v}\ = 1$
	For a screw axis $\{\boldsymbol{q}, \hat{\boldsymbol{s}}, h\}$ with finite h , $\boldsymbol{S} = \begin{bmatrix} \boldsymbol{S}_{\omega} \\ \boldsymbol{S}_{v} \end{bmatrix} = \begin{bmatrix} \hat{\boldsymbol{s}} \\ -\hat{\boldsymbol{s}} \times \boldsymbol{q} + h\hat{\boldsymbol{s}} \end{bmatrix}$
Angular velocity is $oldsymbol{\omega} = \hat{oldsymbol{\omega}}\dot{ heta}$	Twist is ${m {\cal V}}={m {\cal S}}\dot{ heta}$

Rotations	Rigid-Body Motions
For any $\boldsymbol{\omega} = (\omega_1, \omega_2, \omega_3) \in \mathbb{R}^3$, $\begin{bmatrix} \boldsymbol{\omega} \end{bmatrix} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} \in so(3)$ Properties: For any $\boldsymbol{\omega}, \boldsymbol{x} \in \mathbb{R}^3, \boldsymbol{R} \in SO(3)$: $\begin{bmatrix} \boldsymbol{\omega} \end{bmatrix} = -\begin{bmatrix} \boldsymbol{\omega} \end{bmatrix}^{\mathrm{T}}, \begin{bmatrix} \boldsymbol{\omega} \end{bmatrix} \boldsymbol{x} = -\begin{bmatrix} \boldsymbol{x} \end{bmatrix} \boldsymbol{\omega},$ $\begin{bmatrix} \boldsymbol{\omega} \end{bmatrix} \begin{bmatrix} \boldsymbol{x} \end{bmatrix} = (\begin{bmatrix} \boldsymbol{x} \end{bmatrix} \begin{bmatrix} \boldsymbol{\omega} \end{bmatrix})^T, \boldsymbol{R} \begin{bmatrix} \boldsymbol{\omega} \end{bmatrix} \boldsymbol{R}^{\mathrm{T}} = \begin{bmatrix} \boldsymbol{R} \boldsymbol{\omega} \end{bmatrix}$	For any $\mathcal{V} = \begin{bmatrix} \boldsymbol{\omega} \\ \boldsymbol{v} \end{bmatrix} \in \mathbb{R}^6$ or $S = \begin{bmatrix} S_{\boldsymbol{\omega}} \\ S_{\boldsymbol{v}} \end{bmatrix} \in \mathbb{R}^6$, $[\mathcal{V}] = \begin{bmatrix} \begin{bmatrix} \boldsymbol{\omega} \end{bmatrix} & \boldsymbol{v} \\ 0 & 0 \end{bmatrix} \in se(3)$, $[S] = \begin{bmatrix} \begin{bmatrix} S_{\boldsymbol{\omega}} \end{bmatrix} & S_{\boldsymbol{v}} \\ 0 & 0 \end{bmatrix} \in se(3)$
$\dot{R}R^{-1} = [\boldsymbol{\omega}_s], \ R^{-1}\dot{R} = [\boldsymbol{\omega}_b] (R \coloneqq R_{sb})$	$\dot{T}T^{-1} = [\mathcal{V}_s], \ T^{-1}\dot{T} = [\mathcal{V}_b] (T \coloneqq T_{sb})$
	$\begin{bmatrix} \operatorname{Ad}_{T} \end{bmatrix} = \begin{bmatrix} R & 0 \\ [p]R & R \end{bmatrix} \in \mathbb{R}^{6 \times 6}$ Properties: $[\operatorname{Ad}_{T}]^{-1} = [\operatorname{Ad}_{T^{-1}}],$ $[\operatorname{Ad}_{T_{1}}][\operatorname{Ad}_{T_{2}}] = [\operatorname{Ad}_{T_{1}T_{2}}]$
Change of coordinate frame: $\hat{\boldsymbol{\omega}}_a = \boldsymbol{R}_{ab}\hat{\boldsymbol{\omega}}_b, \boldsymbol{\omega}_a = \boldsymbol{R}_{ab}\boldsymbol{\omega}_b$	Change of coordinate frame: $\boldsymbol{S}_a = [\operatorname{Ad}_{\boldsymbol{T}_{ab}}]\boldsymbol{S}_b, \boldsymbol{\mathcal{V}}_a = [\operatorname{Ad}_{\boldsymbol{T}_{ab}}]\boldsymbol{\mathcal{V}}_b$

Rotations	Rigid-Body Motions
$\widehat{\boldsymbol{\omega}}_{s} = \boldsymbol{R}_{sb}\widehat{\boldsymbol{\omega}}_{b}$	$\boldsymbol{S}_{s} = \begin{bmatrix} \operatorname{Ad}_{T_{sb}} \end{bmatrix} \boldsymbol{S}_{b}, \boldsymbol{\mathcal{V}}_{s} = \begin{bmatrix} \operatorname{Ad}_{T_{sb}} \end{bmatrix} \boldsymbol{\mathcal{\mathcal{V}}}_{b}, \begin{bmatrix} \operatorname{Ad}_{T} \end{bmatrix} = \begin{bmatrix} \boldsymbol{R} & \boldsymbol{0} \\ [\boldsymbol{p}]\boldsymbol{R} & \boldsymbol{R} \end{bmatrix}$
Exponential coordinate for $\mathbf{R} \in SO(3)$:	Exponential coordinate for $T \in SE(3)$:
$\hat{\boldsymbol{\omega}} \boldsymbol{\theta} \in \mathbb{R}^3$	$S\theta \in \mathbb{R}^6$
$\begin{split} \exp: [\hat{\boldsymbol{\omega}}] \boldsymbol{\theta} &\in so(3) \rightarrow \boldsymbol{R} \in SO(3) \\ \boldsymbol{R} &= \operatorname{Rot}(\hat{\boldsymbol{\omega}}, \boldsymbol{\theta}) = e^{[\hat{\boldsymbol{\omega}}]\boldsymbol{\theta}} \\ \boldsymbol{R} &= \boldsymbol{I}_3 + \sin \boldsymbol{\theta}[\hat{\boldsymbol{\omega}}] + (1 - \cos \boldsymbol{\theta})[\hat{\boldsymbol{\omega}}]^2 \\ (\operatorname{Rodrigues' formula for rotations)} \end{split}$	$\exp [S]\theta \in se(3) \to T \in SE(3)$ $T = e^{[S]\theta}$ $T = \begin{bmatrix} e^{[S_{\omega}]\theta} & G(\theta)S_{\nu} \\ 0 & 1 \end{bmatrix}$ $G(\theta) = I_{3}\theta + (1 - \cos\theta)[S_{\omega}] + (\theta - \sin\theta)[S_{\omega}]^{2}$
log: $\mathbf{R} \in SO(3) \rightarrow [\hat{\boldsymbol{\omega}}] \theta \in so(3)$	log: $T \in SE(3) \rightarrow [S]\theta \in se(3)$
$\log(\mathbf{R}) = [\hat{\boldsymbol{\omega}}] \theta$	$\log(T) = [S]\theta$
Moment change of coordinate frame:	Wrench change of coordinate frame:
$\boldsymbol{m}_a = \boldsymbol{R}_{ab} \boldsymbol{m}_b$	$\boldsymbol{\mathcal{F}}_{a} = (\boldsymbol{m}_{a}, \boldsymbol{f}_{a}) = \left[\operatorname{Ad}_{\boldsymbol{T}_{ba}}\right]^{\mathrm{T}} \boldsymbol{\mathcal{F}}_{b}$