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Manipulator Jacobian

In a 2R planar robot, we saw that 𝒗tip is the linear velocity of the 

end-effector frame

𝒗tip =
ሶ𝑥
ሶ𝑦

= 𝑱 𝜃1, 𝜃2

ሶ𝜃1

ሶ𝜃2

= 𝑱1 𝑱2

ሶ𝜃1

ሶ𝜃2

= 𝑱1
ሶ𝜃1 + 𝑱2

ሶ𝜃2

In a pure orienting devices such as a wrist, 𝒗tip is the angular velocity 

of the end-effector frame.

𝑱1
ሶ𝜃1

𝑱2
ሶ𝜃2

𝑥

𝑦

tip

• Thus, 𝒗tip determine the specific form of the Jacobian.

tip
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Space and Body Manipulator Jacobians

Let’s assume that the configuration of the end-effector is expressed as 𝑻𝑠𝑏 = 𝑻 ∈ 𝑆𝐸(3) 
and its velocity is expressed as a twist 𝓥 ∈ ℝ6 in the fixed base frame {𝑠} or the end-
effector body frame {𝑏}.

❖ The Jacobian is derived based on the following general idea:
Given the configuration 𝜽 ∈ ℝ𝑛 of the robot, 𝑱𝑖 𝜽 ∈ ℝ6, which is column 𝑖 of 𝑱 𝜽 ∈ ℝ6×𝑛, 
is the twist 𝓥 when the robot is in an arbitrary configuration 𝜽 (not in zero configuration 

𝜽 = 𝟎), ሶ𝜃𝑖 = 1, and all other joint velocities are zero.

𝓥 = 𝑱 𝜽 ሶ𝜽 = 𝑱1 𝑱2 … 𝑱𝑛 ሶ𝜽

• If each column 𝑱𝑖 𝜽  is expressed in 
the fixed space frame {𝑠}:

• If each column 𝑱𝑖 𝜽  is expressed in 
the end-effector frame {𝑏}:

Space Jacobian

Body Jacobian

𝓥𝑠 = 𝑱𝑠 𝜽 ሶ𝜽

𝓥𝑏 = 𝑱𝑏 𝜽 ሶ𝜽





ሶ𝜽: joint velocities

(Velocity or Differential Kinematics Equation is a linear map in a given configuration)

Geometric 
Jacobians
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Space Jacobian

Consider an 𝑛-link open chain as configuration 𝜽:
forward 

kinematics
{𝑏}

{𝑠}

𝑻 = 𝑻𝑠𝑏

𝑻 𝜽 = 𝑒 𝑺1 𝜃1𝑒 𝑺2 𝜃2 ⋯ 𝑒 𝑺𝑛 𝜃𝑛𝑴

Ǘ𝑻 =
𝑑

𝑑𝑡
𝑒 𝑺1 𝜃1 ⋯ 𝑒 𝑺𝑛 𝜃𝑛𝑴 + 𝑒 𝑺1 𝜃1

𝑑

𝑑𝑡
𝑒 𝑺2 𝜃2 ⋯ 𝑒 𝑺𝑛 𝜃𝑛𝑴 + ⋯

= 𝑺1
ሶ𝜃1𝑒 𝑺1 𝜃1 ⋯ 𝑒 𝑺𝑛 𝜃𝑛𝑴 + 𝑒 𝑺1 𝜃1 𝑺2

ሶ𝜃2𝑒 𝑺2 𝜃2 ⋯ 𝑒 𝑺𝑛 𝜃𝑛𝑴 + ⋯

𝓥𝑠 = ሶ𝑻𝑻−1

𝑻−1 = 𝑴−1𝑒− 𝑺𝑛 𝜃𝑛 ⋯ 𝑒− 𝑺1 𝜃1

𝓥𝑠 = 𝑺1
ሶ𝜃1 + 𝑒 𝑺1 𝜃1 𝑺2 𝑒− 𝑺1 𝜃1 ሶ𝜃2 + 𝑒 𝑺1 𝜃1𝑒 𝑺2 𝜃2 𝑺3 𝑒− 𝑺2 𝜃2𝑒− 𝑺1 𝜃1 ሶ𝜃3 + ⋯

𝓥𝑠 = ด𝑺1

𝑱𝑠1

ሶ𝜃1 + Ad𝑒 𝑺1 𝜃1 𝑺2

𝑱𝑠2

ሶ𝜃2 + Ad𝑒 𝑺1 𝜃1𝑒 𝑺2 𝜃2 𝑺3

𝑱𝑠3

ሶ𝜃3 + ⋯

𝓥𝑠 = 𝑱𝑠1
ሶ𝜃1 + 𝑱𝑠2 𝜃1

ሶ𝜃2 + ⋯ + 𝑱𝑠𝑛 𝜃1, … , 𝜃𝑛−1
ሶ𝜃𝑛

𝑨 𝑺𝑖 𝑨−1 = Ad𝑨 𝑺𝑖

𝑨 ∈ 𝑆𝐸 3
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Space Jacobian (cont.)

The space Jacobian 𝑱𝑠 𝜽 ∈ ℝ6×𝑛 relates the joint rate vector ሶ𝜽 ∈ ℝ𝑛 to the spatial twist 
𝓥𝑠. The 𝑖th column of 𝑱𝑠 𝜽  is

𝑱𝑠𝑖 𝜽 =
𝝎𝑠𝑖 𝜽

𝒗𝑠𝑖 𝜽
= Ad

𝑒 𝑺1 𝜃1…𝑒 𝑺𝑖−1 𝜃𝑖−1
𝑺𝑖 𝑱𝑠1 = 𝑺1

𝑖 = 2, … , 𝑛

Screw axis describing the 𝑖th joint 
axis (expressed in the fixed space 
frame {𝑠}) when the robot in its 
zero/home configuration 𝜽 = 𝟎.

Screw axis describing the 𝑖th joint axis (expressed in the 
fixed space frame {𝑠}) after the joints 1, … , 𝑖 − 1 move 
from their zero position to the current values 𝜃1, … , 𝜃𝑖−1.

𝓥𝑠 = 𝑱𝑠1
𝑱𝑠2 𝜃1 ⋯ 𝑱𝑠𝑛

(𝜃1, … , 𝜃𝑛−1)

ሶ𝜃1

⋮
ሶ𝜃𝑛

= 𝑱𝑠(𝜽) ሶ𝜽

Note: The space Jacobian 𝑱𝑠 is independent of the choice of the end-effector frame {𝑏}.
Note: 𝑱𝑠𝑖  is determined in the same way as the joint screw axis 𝑺𝑖, except that 𝑱𝑠𝑖  is 
determined for an arbitrary 𝜽 rather than 𝜽 = 𝟎.
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Example: Space Jacobian of a Spatial RRRP Robot
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Body Jacobian

Consider an 𝑛-link open chain as configuration 𝜽:

(forward kinematics)

{𝑏}

{𝑠}
𝑻 = 𝑻𝑠𝑏

𝑻(𝜽) = 𝑴𝑒 𝓑1 𝜃1𝑒 𝓑2 𝜃2 ⋯ 𝑒 𝓑𝑛 𝜃𝑛

𝓥𝑏 = 𝑻−1 ሶ𝑻

ሶ𝑻 = 𝑴𝑒 𝓑1 𝜃1 ⋯ 𝑒 𝓑𝑛−1 𝜃𝑛−1
𝑑

𝑑𝑡
𝑒 𝓑𝑛 𝜃𝑛 + 𝑴𝑒 𝓑1 𝜃1 ⋯

𝑑

𝑑𝑡
𝑒 𝓑𝑛−1 𝜃𝑛−1 𝑒 𝓑𝑛 𝜃𝑛 + ⋯

= 𝑴𝑒 𝓑1 𝜃1 ⋯ 𝑒 𝓑𝑛 𝜃𝑛 𝓑𝑛
ሶ𝜃𝑛 + 𝑴𝑒 𝓑1 𝜃1 ⋯ 𝑒 𝓑𝑛−1 𝜃𝑛−1 𝓑𝑛−1 𝑒 𝓑𝑛 𝜃𝑛 ሶ𝜃𝑛−1 + ⋯

+𝑴𝑒 𝓑1 𝜃1 𝓑1 𝑒 ℬ2 𝜃2 ⋯ 𝑒 ℬ𝑛 𝜃𝑛 ሶ𝜃1

𝑻−1 = 𝑒− 𝓑𝑛 𝜃𝑛 ⋯ 𝑒− 𝓑1 𝜃1𝑴−1

𝓥𝑏 = 𝓑𝑛
ሶ𝜃𝑛 + 𝑒− 𝓑𝑛 𝜃𝑛 𝓑𝑛−1 𝑒 𝓑𝑛 𝜃𝑛 ሶ𝜃𝑛−1 + ⋯ + 𝑒− 𝓑𝑛 𝜃𝑛 ⋯ 𝑒− 𝓑2 𝜃2 𝓑1 𝑒 𝓑2 𝜃2 ⋯ 𝑒 𝓑𝑛 𝜃𝑛 ሶ𝜃1

𝓥𝑏 = ด𝓑𝑛

𝑱𝑏𝑛

ሶ𝜃𝑛 + Ad𝑒− 𝓑𝑛 𝜃𝑛 𝓑𝑛−1

𝑱𝑏,𝑛−1

ሶ𝜃𝑛−1 + ⋯ + Ad𝑒− 𝓑𝑛 𝜃𝑛…𝑒− 𝓑2 𝜃2 𝓑1

𝑱𝑏1

ሶ𝜃1

𝓥𝑏 = 𝑱𝑏1(𝜃2, … , 𝜃𝑛) ሶ𝜃1 + ⋯ + 𝑱𝑏𝑛−1(𝜃𝑛) ሶ𝜃𝑛−1 + 𝑱𝑏𝑛
ሶ𝜃𝑛

𝑨−1 𝓑𝑖 𝑨 = Ad𝑨−1 𝓑𝑖

𝑨 ∈ 𝑆𝐸 3
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Body Jacobian (cont.)

The body Jacobian 𝑱𝑏 𝜽 ∈ ℝ6×𝑛 relates the joint rate vector ሶ𝜽 ∈ ℝ𝑛 to the end-effector 
(or body) twist 𝓥𝑏. The 𝑖th column of 𝑱𝑏 𝜽  is

𝑱𝑏𝑖 𝜽 =
𝝎𝑏𝑖 𝜽

𝒗𝑏𝑖 𝜽
= Ad

𝑒− 𝓑𝑛 𝜃𝑛…𝑒− 𝓑𝑖+1 𝜃𝑖+1
𝓑𝑖

𝓥𝑏 = 𝑱𝑏1
(𝜃2, … , 𝜃𝑛) ⋯ 𝑱𝑏𝑛−1

(𝜃𝑛) 𝑱𝑏𝑛

ሶ𝜃1

⋮
ሶ𝜃𝑛

= 𝑱𝑏(𝜽) ሶ𝜽

𝑱𝑏𝑛 = 𝓑𝑛

𝑖 = 𝑛 − 1, … , 1

Screw axis describing the 𝑖th joint 
axis (expressed in the end-effector 
frame {𝑏}) when the robot in its 
zero/home configuration 𝜽 = 𝟎.

Screw axis describing the 𝑖th joint axis (expressed in the 
end-effector frame {𝑏}) after the joints 𝑖 + 1, … , 𝑛 move 
from their zero position to the current values 𝜃𝑛 , … , 𝜃𝑖+1.

Note: The body Jacobian 𝑱𝑏 is independent of the choice of the space frame {𝑠}.
Note: 𝑱𝑏𝑖  is determined in the same way as the joint screw axis 𝓑𝑖, except that 𝑱𝑏𝑖  is 
determined for an arbitrary 𝜽 rather than 𝜽 = 𝟎.
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Example

Find the space and body Jacobians in the given configuration.
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Relationship between Space and Body Jacobian

𝓥𝑏 = 𝑱𝑏(𝜽) ሶ𝜽

𝓥𝑠 = 𝑱𝑠(𝜽) ሶ𝜽
𝓥𝑠 = Ad𝑻𝑠𝑏

𝓥𝑏

𝓥𝑏 = Ad𝑻𝑏𝑠
𝓥𝑠

𝓥𝑠 = 𝑱𝑠(𝜽) ሶ𝜽 Ad𝑻𝑠𝑏
𝓥𝑏 = 𝑱𝑠(𝜽) ሶ𝜽 Ad𝑻𝑏𝑠

Ad𝑻𝑠𝑏
𝓥𝑏 = Ad𝑻𝑏𝑠

𝑱𝑠(𝜽) ሶ𝜽 

 𝓥𝑏 = Ad𝑻𝑏𝑠
𝑱𝑠(𝜽) ሶ𝜽 𝑱𝑏(𝜽) ሶ𝜽 = Ad𝑻𝑏𝑠

𝑱𝑠(𝜽) ሶ𝜽

𝑱𝑏(𝜽)  = Ad𝑻𝑏𝑠
𝑱𝑠(𝜽)


∀ ሶ𝜽 ≠ 𝟎

𝑱𝑠(𝜽)  = Ad𝑻𝑠𝑏
𝑱𝑏(𝜽)Similarly,

Note: The space and body Jacobians, and the space and body twists, are similarly related by the adjoint 
map because each column of the space or body Jacobian corresponds to a twist.

Ad𝑻1
Ad𝑻2

𝓥 = Ad𝑻1𝑻2
𝓥 
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Another Form of Geometric Jacobian

Another form of geometric Jacobian is defined as
𝝎𝑠

ሶ𝒑 = 𝑱𝑔 𝜽 ሶ𝜽

where 𝝎𝑠 is the angular velocity of EE frame {𝑏} expressed in fixed frame {𝑠} ans ሶ𝒑 is 
linear velocity of the origin of EE frame {𝑏} expressed in fixed frame {𝑠}.
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Example

Prove that the relationship between the space Jacobian 𝑱𝑠 where 
𝝎𝑠

𝒗𝑠
= 𝑱𝑠 𝜽 ሶ𝜽 and 

geometric Jacobian 𝑱𝑔 where 
𝝎𝑠

ሶ𝒑 = 𝑱𝑔 𝜽 ሶ𝜽 is as follows.

𝑱𝑔 𝜽 =
𝑰3 𝟎

− 𝒑 𝑰3
𝑱𝑠 𝜽
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Analytic Jacobian
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Alternative Notions of Jacobian

•
𝝎𝑠

ሶ𝒑 = 𝑱𝑔 𝜽 ሶ𝜽

There exist alternative notions of the Jacobian that are based on the representation of the 
end-effector configuration using a minimum set of coordinates 𝒙𝑒 corresponding to a 
specific robot task space (which is a subspace of 𝑆𝐸 3 ), i.e., the different representations 
of rotations (e.g., Euler angles 𝝓, unit quaternions 𝒒, or exponential coordinates 𝒓), or the 
different definitions of the end-effector velocities.

• 𝓥𝑏 =
𝝎𝑏

𝒗𝑏
= 𝑱𝑏 𝜽 ሶ𝜽

• ሶ𝒙𝑒 =
ሶ𝝓
ሶ𝒑

=
𝜕

𝝓
𝒑

𝜕𝜽
ሶ𝜽 = 𝑱𝑎,𝜙 𝜽 ሶ𝜽 𝝓 = 𝛼, 𝛽, 𝛾

• ሶ𝒙𝑒 =
ሶ𝒒
ሶ𝒑

=
𝜕

𝒒
𝒑

𝜕𝜽
ሶ𝜽 = 𝑱𝑎,𝑞 𝜽 ሶ𝜽 𝒒 = 𝑞0, 𝑞1, 𝑞2, 𝑞3

If the end-effector velocity is represented by the time 
derivative of the coordinates, the Jacobian is called the 
Analytic Jacobian 𝑱𝑎, which is derived by differentiation 
of the forward kinematics function with respect to the 

joint variables: 𝒙𝑒 = FK 𝜽  →  ሶ𝒙𝑒 = 𝑱𝑎 𝜽 ሶ𝜽.

Geometric Jacobian

• ሶ𝒙𝑒 =
ሶ𝒓
ሶ𝒑

=
𝜕

𝒓
𝒑

𝜕𝜽
ሶ𝜽 = 𝑱𝑎,𝑟 𝜽 ሶ𝜽 𝒓 = ෝ𝝎𝜃 ∈ ℝ3

• 𝓥𝑠 =
𝝎𝑠

𝒗𝑠
= 𝑱𝑠 𝜽 ሶ𝜽

Note: 𝒓 and 𝒒 represent the orientation of EE 
frame {𝑏} expressed in fixed frame {𝑠} and 𝒑 
represents the position of the origin of {𝑏} 
expressed in {𝑠}.

( ෝ𝝎 = 1, 𝜃 ∈ 0, 𝜋 )

( 𝒒 = 1)

Amin Fakhari, Fall 2024 MEC529 • Ch6: Velocity Kinematics and Statics P15

Geometric Jacobian

Geometric Jacobian
Analytic Jacobian

Analytic Jacobian
Singularity Analysis

Singularity Analysis
Inverse Velocity Kin.  Redundancy Analysis

Inverse Velocity Kin. & Redundancy Analysis
Statics

Statics
Manipulability

Manipulability



Geometric Jacobian vs Analytic Jacobian 

• From a physical viewpoint, the meaning of 𝝎 is more intuitive than that of ሶ𝝓, ሶ𝒒, and ሶ𝒓. 

However, while the integral of ሶ𝝓, ሶ𝒒, and ሶ𝒓 over time gives 𝝓, 𝒒, and 𝒓, the integral of 𝝎 
does not admit a clear physical interpretation.

• The geometric Jacobian is used whenever it is necessary to refer to quantities of clear 
physical meaning, while the analytical Jacobian is used whenever it is necessary to refer 
to differential quantities of variables defined in the task space.
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Example

Prove that the relationship between the body Jacobian 𝑱𝑏 where 𝓥𝑏 =
𝝎𝑏

𝒗𝑏
= 𝑱𝑏 𝜽 ሶ𝜽 and 

an analytic Jacobian 𝑱𝑎,𝑟 where 
ሶ𝒓
ሶ𝒑

= 𝑱𝑎,𝑟 𝜽 ሶ𝜽 is as follows.

𝑨(𝒓) = 𝑰3 −
1 − cos ∥ 𝒓 ∥

∥ 𝒓 ∥2 [𝒓] +
∥ 𝒓 ∥ −sin ∥ 𝒓 ∥

∥ 𝒓 ∥3 [𝒓]2𝝎𝑏 = 𝑨(𝒓) ሶ𝒓 whereNote:

and we assume that the matrix 𝑨(𝒓) is invertible.

𝑱𝑎,𝑟 𝜽 =
𝑨−1 𝒓 𝟎

𝟎 𝑒 𝒓
𝑱𝑏(𝜽)
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Example

Prove that the relationship between the analytic Jacobian 𝑱𝑎,𝜙, where 
ሶ𝝓
ሶ𝒑

= 𝑱𝑎,𝜙 𝜽 ሶ𝜽

 and 𝝓 = 𝜑, 𝜗, 𝜓  is the Euler angles ZYZ in current frame, and geometric Jacobian 𝑱𝑔 

where 
𝝎𝑠

ሶ𝒑 = 𝑱𝑔 𝜽 ሶ𝜽 is as follows.

𝑱𝑔 𝜽 =
𝑨 𝝓 𝟎3

𝟎3 𝑰3
𝑱𝑎,𝜙 𝜽
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General Form of Velocity Kinematics

In general, depending on the dimension of task space 𝑟 (𝑟 ≤ 6), the differential kinematics 
equation can be represented as  

𝓥 = 𝑱 𝜽 ሶ𝜽

where now 𝓥 ∈ ℝ𝑟 (e.g., 𝓥𝑏, 𝓥𝑠, 𝝎𝑠, ሶ𝒑 , or ሶ𝒙𝑒) is end-effector velocity for the specific 

task, ሶ𝜽 ∈ ℝ𝑛, and 𝑱 𝜽 ∈ ℝ𝑟×𝑛 is the corresponding Jacobian matrix that can be extracted 
from a 6 × 𝑛 geometric or analytic Jacobian (by removing null and irrelevant rows).

Examples:

𝜙

𝑥𝑒 , 𝑦𝑒

𝑥

𝑦
𝑥𝑊, 𝑦𝑊

𝑒

𝑊

• For the 3R planar robot (1) with 
𝒙𝑒 = 𝑥𝑊, 𝑦𝑊 , 𝜙 , 𝑱 ∈ ℝ3×3 and 
with 𝒙𝑒 = 𝑥𝑒 , 𝑦𝑒 ,  𝑱 ∈ ℝ2×3. • (2) and (3) are inherently impossible to rotate about axes 𝑥 and 𝑦.

𝑱 ∈ ℝ4×4

(1) (2) (3)

𝑱 ∈ ℝ3×3

Cylindrical arm

𝑑3

𝑑2

𝜃1

𝑦

𝑧

𝑥 SCARA manipulator

𝜃1 𝜃2

𝜃4

𝑑3

𝑦

𝑧

𝑥
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Singularity Analysis
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Kinematic Singularity

The configurations at which the robot’s end-effector loses the ability to move 
instantaneously in one or more directions is called a Kinematic Singularity. In these 
directions, the robot can resist arbitrary wrenches.

❖ In singular configuration 𝜽∗, 𝑱 𝜽∗ ∈ ℝ𝑟×𝑛 is rank-deficient, i.e., rank 𝑱 𝜽∗ < min 𝑟, 𝑛 .

❖ In the neighborhood of a singularity, small velocities 𝓥 in the task space may cause 

large velocities ሶ𝜽 in the joint space.

❖ The kinematic singularities are typical of a mechanical structure and independent of the 
choice of the frames (e.g., fixed frame 𝑠  and end-effector frame 𝑏 ).

To check rank-deficiency, use the Jacobian that maps ሶ𝜽 to the non-zero and independent 
velocities of the EE frame 𝑏  (i.e., after removing null and irrelevant rows of 𝑱 𝜽 ∈ ℝ𝑟×𝑛 
where 𝑱 can be 𝑱𝑏, 𝑱𝑔, or 𝑱𝑎 as we are interested in the velocity of 𝑏  rather than 𝑠 ).

❖ Since Ad𝑻  is always invertible and 𝑱𝑠 = Ad𝑻𝑠𝑏
𝑱𝑏, 𝑱𝑏 and 𝑱𝑠 always have the 

same rank.
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Kinematic Singularity

Singularities can be classified into:
• Boundary Singularities: They occur when the manipulator is either outstretched or 

retracted (it is easy to avoid).
• Internal Singularities: They occur anywhere inside the reachable workspace (it is hard to 

avoid).

• Computation of wrist singularities resulting from 
the motion of the spherical wrist.

• Computation of arm singularities resulting from 
the motion of the first 3 or more links.

Singularity Decoupling: Computation of internal singularities 
via the Jacobian determinant may be tedious and of no easy 
solution for complex structures. For manipulators having a 
spherical wrist (i.e., three consecutive revolute joint axes 
intersect at a common point 𝑤), we can compute the singular 
configurations in two steps:

(spherical wrist)

𝑤
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An Example of Wrist Singularity

The singularity occurs when 𝑆1 and 𝑆3 are aligned.

𝑆1

𝑆2

𝑆3

• In this configuration, the wrist cannot rotate about the axis orthogonal to 𝑆1 and 𝑆2.
• Rotations of equal magnitude about opposite directions on 𝑆1 and 𝑆3 do not produce 

any end-effector rotation.

𝑆1

𝑆2

𝑆3

Note: Wrist singularity is naturally described in the joint space and can be encountered 
anywhere inside the manipulator reachable workspace.

𝑤

𝑤
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Examples of Arm Singularities 

Elbow Singularity: when the elbow 
is outstretched or retracted.

Shoulder Singularity: when the wrist point (𝑤) 
lies on axis 𝑆1 (the whole axis 𝑆1 describes a 
continuum of singular configurations).

𝑆1

𝑆2 𝑆3

𝑆2

𝑆1

𝑆3

𝑆2

𝑆1

𝑆3

𝑤

For a 3R spatial robot:

Note: Arm singularity is well identified in the task space, and thus, they can be suitably 
avoided in the end-effector trajectory planning stage.

𝑤

𝑤
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Examples of Common Singular Configurations (𝑛 ≥ 3)

Case I: Two Collinear Revolute Joint Axes

Case II: Three Coplanar and Parallel Revolute Joint Axes

The set 𝑱𝑠1, 𝑱𝑠2, 𝑱𝑠3, …  cannot be linearly independent.

The set 𝑱𝑠1, 𝑱𝑠2, …  cannot be linearly independent.

𝑆2

𝑆1
𝑆3

𝑆2𝑆1 𝑆3

𝒒2

𝒒1

𝝎𝑠1 = 𝝎𝑠2

𝝎𝑠1 × 𝒒1 = 𝝎𝑠1 × 𝒒1

𝑱𝑠1 = 𝑱𝑠2

𝒖 𝛼𝒖

𝑱𝑠2(𝜽) =
𝝎𝑠2

−𝝎𝑠2 × 𝒒2
቉𝑱𝑠1(𝜽) = ቈ

𝝎𝑠1

−𝝎𝑠1 × 𝒒1

቉𝑱𝑠(𝜽) = ቈ
𝝎𝑠1 𝝎𝑠1 𝝎𝑠1 ⋯

𝟎 −𝝎𝑠1 × 𝒒2 −𝝎𝑠1 × 𝒒3 ⋯

𝑠

𝑠
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Examples of Common Singular Configurations (𝑛 ≥ 4)

Case III: Four Revolute Joint Axes Intersecting at a Common Point

The set 𝑱𝑠1, 𝑱𝑠2, 𝑱𝑠3, 𝑱𝑠4, …  cannot be linearly independent.

Case IV: Four Coplanar Revolute Joints

The set 𝑱𝑠1, 𝑱𝑠2, 𝑱𝑠3, 𝑱𝑠4, …  
cannot be linearly independent.

𝑆2

𝑆1

𝑆4

𝑆3

Example

൨𝑱𝑠(𝜽) = ൤
𝝎𝑠1 𝝎𝑠2 𝝎𝑠3 𝝎𝑠4 ⋯

𝟎 𝟎 𝟎 𝟎 ⋯

𝝎𝑠𝑖 =

𝜔𝑠𝑖𝑥

𝜔𝑠𝑖𝑦

0
𝒒𝑖 =

𝑞𝑖𝑥

𝑞𝑖𝑦

0
−𝝎𝑠𝑖 × 𝒒𝑖 =

0
0

𝜔𝑠𝑖𝑦𝑞𝑖𝑥 − 𝜔𝑠𝑖𝑥𝑞𝑖𝑦

𝑱𝑠(𝜽) =

𝜔𝑠1𝑥 𝜔𝑠2𝑥 𝜔𝑠3𝑥 𝜔𝑠4𝑥

𝜔𝑠1𝑦 𝜔𝑠2𝑦 𝜔𝑠3𝑦 𝜔𝑠4𝑦

0 0 0 0
0 0 0 0
0 0 0 0

𝜔𝑠1𝑦𝑞1𝑥 − 𝜔𝑠1𝑥𝑞1𝑦 𝜔𝑠2𝑦𝑞2𝑥 − 𝜔𝑠2𝑥𝑞2𝑦 𝜔𝑠3𝑦𝑞3𝑥 − 𝜔𝑠3𝑥𝑞3𝑦 𝜔𝑠4𝑦𝑞4𝑥 − 𝜔𝑠4𝑥𝑞4𝑦

𝑠
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Examples of Common Singular Configurations (𝑛 ≥ 6)

Case V: Six Revolute Joints Intersecting a Common Line

The set 𝑱𝑠1, 𝑱𝑠2, 𝑱𝑠3, 𝑱𝑠4, 𝑱𝑠5, 𝑱𝑠6, …  cannot be linearly independent.

Ƹ𝑧

−𝝎𝑠𝑖 × 𝒒𝑖 = (𝜔𝑠𝑖𝑦𝑞𝑖𝑧, −𝜔𝑠𝑖𝑥𝑞𝑖𝑧, 0)

𝑱𝑠(𝜽) =

𝜔𝑠1𝑥 𝜔𝑠2𝑥 𝜔𝑠3𝑥 𝜔𝑠4𝑥 𝜔𝑠5𝑥 𝜔𝑠6𝑥

𝜔𝑠1𝑦 𝜔𝑠2𝑦 𝜔𝑠3𝑦 𝜔𝑠4𝑦 𝜔𝑠5𝑦 𝜔𝑠6𝑦

𝜔𝑠1𝑧 𝜔𝑠2𝑧 𝜔𝑠3𝑧 𝜔𝑠4𝑧 𝜔𝑠5𝑧 𝜔𝑠6𝑧

𝜔𝑠1𝑦𝑞1𝑧 𝜔𝑠2𝑦𝑞2𝑧 𝜔𝑠3𝑦𝑞3𝑧 𝜔𝑠4𝑦𝑞4𝑧 𝜔𝑠5𝑦𝑞5𝑧 𝜔𝑠6𝑦𝑞6𝑧

−𝜔𝑠1𝑥𝑞1𝑧 −𝜔𝑠2𝑥𝑞2𝑧 −𝜔𝑠3𝑥𝑞3𝑧 −𝜔𝑠4𝑥𝑞4𝑧 −𝜔𝑠5𝑥𝑞5𝑧 −𝜔𝑠6𝑥𝑞6𝑧

0 0 0 0 0 0

𝑠
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Example

For the KUKA LBR iiwa 7R robot shown in its zero/home configuration, for a general task of 
manipulating a rigid body, what is the dimension of the Jacobian matrix? What is the rank 
of the Jacobian at this configuration?
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Inverse Velocity Kinematics 
and Redundancy Analysis
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Analysis of Velocity Kinematics and Kinematic 
Redundancy

• If 𝑛 < 𝑟, then arbitrary twists 𝓥 cannot be achieved (the robot does not have enough 
joints).

• If 𝑛 = 𝑟, then any arbitrary twists 𝓥 can be achieved (the robot have enough joints).
• If 𝑛 > 𝑟, then not only any arbitrary twists 𝓥 can be achieved but also the remaining 

𝑛 − 𝑟 degrees of freedoms (redundant DOFs) can generates internal motions at the 
joints of the robot that are not evident in the motion of the end-effector.

Assume a 𝑛-DOF robot that is not at a singular configuration and dim T−Space = 𝑟,

►
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https://www.dropbox.com/scl/fi/786paj5zxmx9owkbdgzkt/LBR-iiwa-Kinematic-Redundancy.mp4?rlkey=16ypimhmpgkcnz1qjal0e263z&st=j3fgwk5b&dl=0


Analysis of Velocity Kinematics and Kinematic 
Redundancy

𝒩 𝑱

ሶ𝜽 = ሶ𝜽ℛ + ሶ𝜽𝒩

ℝ𝑟

ℛ 𝑱

𝟎

𝒩 𝑱𝑇

𝟎

ℛ 𝑱𝑇
ℝ𝑛

dim 𝒩 𝑱 = 𝑛 − 𝜌 dim 𝒩 𝑱𝑇 = 𝑟 − 𝜌

dim ℛ 𝑱 = 𝜌dim ℛ 𝑱𝑇 = 𝜌

ሶ𝜽ℛ ∈ ℝ𝑛

𝑱 ሶ𝜽 = 𝓥

ሶ𝜽𝒩 ∈ ℝ𝑛

𝓥 ∈ ℝ𝑟

𝑱 ሶ𝜽ℛ = 𝓥

𝑱 ሶ𝜽𝒩 = 𝟎

Consider the velocity kinematics equation 𝓥 = 𝑱 𝜽 ሶ𝜽 where 𝑱 𝜽 ∈ ℝ𝑟×𝑛, ሶ𝜽 ∈ ℝ𝑛, 𝓥 ∈ ℝ𝑟, and 
rank 𝑱 = 𝜌.

ഥ𝓥 = 𝓥 + 𝓥𝒩

𝓥𝒩 ∈ ℝ𝑟

ሶ𝜽 that does not 
produce any 𝓥, due 
to 𝑛 − 𝜌 degrees of 

redundancy.

𝓥 that can be 

generated by ሶ𝜽, in a 
given configuration.

𝓥 that is unreachable, 
in a given configuration, 
due 𝑟 − 𝜌 singularities.

• If the Jacobian is full-rank (robot is not at a singular configuration) and 𝑛 > 𝑟 (robot is redundant): 
dim ℛ 𝑱 = 𝑟, dim 𝒩 𝑱 = 𝑛 − 𝑟, and dim 𝒩 𝑱𝑇 = 0. 

ሶ𝜽 𝓥
𝑱 𝜽
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Inverse Velocity Kinematics

• If 𝑱 𝜽 ∈ ℝ𝑟×𝑛 is square (𝑛 = 𝑟) and full rank rank 𝑱 = 𝑟, (i.e., not at a singular 

configuration), then 𝑱 𝜽  is invertible and there is a unique solution as ሶ𝜽 = 𝑱 𝜽 −1𝓥.

Given a desired EE twist 𝓥 ∈ ℝ𝑟, what joint velocities ሶ𝜽 ∈ ℝ𝑛 are needed?

• If 𝑱 𝜽 ∈ ℝ𝑟×𝑛 is not square and 𝑛 > 𝑟 (i.e., robot is redundant, 𝑱 is a fat matrix, and 
𝒩 𝑱 ≠ ∅), and also 𝑱 is full (row) rank, rank 𝑱 = 𝑟 (i.e., robot is not at a singular 

configuration and 𝒩 𝑱𝑇 = ∅ ), then infinite exact solutions ሶ𝜽 exist to 𝓥 = 𝑱 𝜽 ሶ𝜽 as

❖ The solution ሶ𝜽∗ = 𝑱+𝓥 locally minimizes the norm of joint velocities ሶ𝜽.

❖ The matrix 𝑷 = 𝑰𝑛 − 𝑱+𝑱 projects of ሶ𝜽0 in 𝒩 𝑱 , so as not to violate the constraint 

𝓥 = 𝑱 ሶ𝜽.

ሶ𝜽 = ሶ𝜽∗ + 𝑷 ሶ𝜽0 = 𝑱 𝜽 +𝓥 + 𝑰𝑛 − 𝑱 𝜽 +𝑱 𝜽 ሶ𝜽0

where 𝑱+ = 𝑱𝑇 𝑱𝑱𝑇 −1 is the right pseudo-inverse as 𝑱𝑱+ = 𝑰𝑟. 

∀ ሶ𝜽0 ∈ ℝ𝑛
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Remarks

❖ ሶ𝜽0 is a vector of arbitrary joint velocities that can generate internal motions and can be 
specified to satisfy an additional constraint to the problem due to the presence of 
redundant DOFs. The additional constraint has secondary priority with respect to the 

primary kinematic constraint 𝓥 = 𝑱 ሶ𝜽.

❖ The use of the pseudoinverse 𝑱+ = 𝑱𝑇 𝑱𝑱𝑇 −1 implicitly weights the cost of each joint 
velocity identically. We could instead give the joint velocities different weights; for 
example, the velocity at the first joint, which moves a lot of the robot’s mass, could be 
weighted more heavily than the velocity at the last joint, which moves little of the 
robot’s mass. Therefore, we can use the weighted right pseudo-inverse as

For example, by using 𝑾𝑟 = 𝑴 𝜽  where 𝑴 𝜽  is the mass matrix of the robot, we can 

find the ሶ𝜽 that minimizes the kinetic energy, while also satisfying 𝓥 = 𝑱 ሶ𝜽.

𝑱+ = 𝑾𝑟
−1𝑱𝑇 𝑱𝑾𝑟

−1𝑱𝑇 −1

𝑾𝑟 ∈ ℝ𝑛×𝑛 is a positive definite matrix.
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Exploiting Redundant DOFs
(Redundancy Resolution)

A typical choice of ሶ𝜽0 for advantageously exploiting redundant DOFs is

ሶ𝜽0 = 𝑘0𝛁𝜽𝑤 𝜽 = 𝑘0

𝜕𝑤 𝜽

𝜕𝜽

𝑇

where 𝑘0 ∈ ℝ+ 

which is in the direction of the gradient of a (secondary) objective function 𝑤 𝜽  at a 
given 𝜽 (i.e., in the direction at which function 𝑤 𝜽  increases the fastest). Thus, the 

solution ሶ𝜽 = ሶ𝜽∗ + 𝑷 ሶ𝜽0 attempts to maximize 𝑤 𝜽  locally compatible to the primary 

objective 𝓥 = 𝑱 ሶ𝜽 (kinematic constraint).

❖ Three typical (secondary) objective functions 𝑤 𝜽 :

𝑤 𝜽 = det 𝑱 𝜽 𝑱 𝜽 𝑇1) Manipulability measure:

By maximizing 𝑤 𝜽 , redundancy is exploited to move away from singularities. Note that 
𝑤 𝜽  vanishes at a singular configuration. 
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Exploiting Redundant DOFs
(Redundancy Resolution)

𝑤 𝜽 = −
1

2𝑛
෍

𝑖=1

𝑛
𝜃𝑖 − ҧ𝜃𝑖

𝜃𝑖𝑀 − 𝜃𝑖𝑚

2

𝑤 𝜽 = min
𝒑ℬ ,𝒐

𝒑ℬ(𝜽) − 𝒐

2) Distance from mechanical joint limits:

By maximizing 𝑤 𝜽 , redundancy is exploited to keep the joint variables 𝜽 as close as 
possible to the center of their ranges.

3) Distance from an obstacle:

𝑛: number of joints,
𝜃𝑖𝑀 (𝜃𝑖𝑚): maximum (minimum) joint limit,

ҧ𝜃𝑖: middle value of the joint range.

By maximizing 𝑤 𝜽 , redundancy is exploited to avoid collision of the manipulator’s body 
with an obstacle.

𝒐: position vector of a suitable point on the obstacle,
𝒑ℬ: position vector of a generic point along the body 
ℬ of the robot.
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Inverse Velocity Kinematics
Kinematic Singularities

• When 𝑱 𝜽 ∈ ℝ𝑟×𝑛 (square or non-square) is rank deficient (i.e., mathematically, 

rank 𝑱 < min 𝑟, 𝑛 , 𝒩 𝑱 ≠ ∅, and 𝒩 𝑱T ≠ ∅, and physically, a redundant or non-

redundant robot at a singular configuration),

and 𝑱 𝜽 + is pseudo-inverse which can be computed using the Singular Value 
Decomposition (SVD) or approximately using Damped Least Squares (DLS).

ሶ𝜽 = 𝑱 𝜽 +𝓥 + 𝑰𝑛 − 𝑱 𝜽 +𝑱 𝜽 ሶ𝜽0 ∀ ሶ𝜽0 ∈ ℝ𝑛

This means that the assigned path is physically executable by the manipulator, even 
though it is at a singular configuration.

This means that the end-effector path cannot be executed by the manipulator at the 
given posture.

▪ If 𝓥 ∈ ℛ 𝑱 , there will be infinite exact solutions in the form

▪ If 𝓥 ∉ ℛ 𝑱 , there will be not exact solutions.
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Inverse Velocity Kinematics
Kinematic Singularities

min
ሶ𝜽

 𝓥 − 𝑱 𝜽 ሶ𝜽 
𝑇

𝓥 − 𝑱 𝜽 ሶ𝜽 +
1

2
𝜆 ሶ𝜽𝑇 ሶ𝜽

❖ In the neighborhood of a singularity, small velocities 𝓥 in the task space may cause 

large velocities ሶ𝜽 in the joint space.

The damping factor 𝜆 ∈ ℝ+ establishes the relative weight between the kinematic 

constraint 𝓥 = 𝑱 𝜽 ሶ𝜽 and the minimum norm joint velocity requirement. In the 
neighborhood of a singularity, 𝜆 is to be chosen large enough so as to render differential 
kinematics inversion well conditioned, whereas far from singularities, 𝜆 can be chosen 
small (even 𝜆 = 0) so as to guarantee accurate differential kinematics inversion. There 
exist techniques for selecting optimal values for 𝜆. 

❖The pseudo-inverse 𝑱 𝜽 + computed using the Damped Least Squares (DLS) is more 
stable and computationally less expensive.

𝑱+ 𝜽 =  𝑱 𝜽 𝑇 𝑱 𝜽 𝑱 𝜽 𝑇 +  𝜆𝑰𝑟
−1

This solution is derived from this optimization problem:
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Statics of Open Chains
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Statics of Open Chains

The goal of statics is to determine the relationship between wrench 𝓕 applied to the end-
effector and joint torques 𝝉 ∈ ℝ𝑛 applied to the joints (forces for prismatic joints, torques 
for revolute joints) with the manipulator at an equilibrium configuration.

𝓕

𝓕ext = −𝓕

𝑏

𝑠

(external wrench)

(generated wrench)Principle of conservation of power:
power generated at the joints =

(power measured at the end-effector) + (power to move the robot)

ሶ𝜽 → 𝟎

At static equilibrium, no power is being used to move the robot, 
thus:

𝝉𝑇 ሶ𝜽 = 𝓕𝑇𝓥

𝝉 = 𝑱𝑇 𝜽 𝓕

𝓥 = 𝑱 𝜽 ሶ𝜽

where 𝓕 ∈ ℝ𝑟 is the wrench generated by the robot, 𝑱 ∈ ℝ𝑟×𝑛 
is the corresponding geometric or analytic Jacobian matrix, and 
dim T−Space = 𝑟 (𝑟 ≤ 6).
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Statics and Kinematic Redundancy

Note: If an external wrench 𝓕ext is applied to the end-effector 
when the robot is at equilibrium, 𝝉 = 𝑱𝑇𝓕 calculates the joint 
torques 𝝉 needed to generate the opposing wrench 𝓕, keeping 
the robot at equilibrium.

Note: If the robot has to support itself against gravity to 
maintain static equilibrium, the torques 𝝉ℱ = 𝑱𝑇𝓕 must 
be added to the torques 𝝉𝑔 that compensate gravity:

Assume a 𝑛-DOF robot that is not at a singular configuration and dim T−Space = 𝑟,
• If 𝑛 = 𝑟, the embedding the end-effector in concrete will immobilize the robot.
• If 𝑛 > 𝑟, then the robot is redundant, and even if the end-effector is embedded in 

concrete, the joint torques may cause internal motions of the links. The static 
equilibrium assumption is no longer satisfied, and we need to include dynamics to know 
what will happen to the robot.

𝓕

𝓕ext = −𝓕

𝑏

𝑠

(external wrench)

(generated wrench)

𝝉joint = 𝑱𝑇𝓕 + 𝝉𝑔
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Kineto-Statics Duality

𝒩 𝑱𝑇

𝓕 = 𝓕ℛ + 𝓕𝒩

ℝ𝑛

ℛ 𝑱𝑇

𝟎

𝒩 𝑱

𝟎

ℛ 𝑱
ℝ𝑟

dim 𝒩 𝑱𝑇 = 𝑟 − 𝜌 dim 𝒩 𝑱 = 𝑛 − 𝜌

dim ℛ 𝑱𝑇 = 𝜌dim ℛ 𝑱 = 𝜌

𝓕ℛ ∈ ℝ𝑟

𝑱𝑇𝓕 = 𝝉

𝓕𝒩 ∈ ℝ𝑟

𝝉 ∈ ℝ𝑛

𝑱𝑇𝓕ℛ = 𝝉

𝑱𝑇𝓕𝒩 = 𝟎

Consider static equation 𝝉 = 𝑱𝑇 𝜽 𝓕 where 𝑱 𝜽 ∈ ℝ𝑟×𝑛, 𝝉 ∈ ℝ𝑛, 𝓕 ∈ ℝ𝑟, and rank 𝑱 = 𝜌.

ത𝝉 = 𝝉 + 𝝉𝒩

𝝉𝒩 ∈ ℝ𝑛

𝓕 that does not 
require any balancing 

𝝉, in a given 
configuration, due to 

𝑟 − 𝜌 singularities.

𝝉 that can be 
balanced by 𝓕, in a 
given configuration.

𝝉 that is unreachable 
(or does not produce 

any 𝓕), due 𝑛 − 𝜌 
degrees of redundancy.

𝓕 𝝉
𝑱𝑇 𝜽

• If the Jacobian is full-rank (robot is not at a singular configuration) and 𝑛 > 𝑟 (robot is redundant): 
dim ℛ 𝑱 = 𝑟, dim 𝒩 𝑱 = 𝑛 − 𝑟, and dim 𝒩 𝑱𝑇 = 0. 
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Manipulability
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Preliminary: Ellipsoid Representation

Therefore, for the ellipsoid,
• Directions of the principal axes are 𝒖𝑖 ,

• Lengths of the principal semi-axes are 𝜆𝑖  ,

• Volume is proportional to 𝜆1𝜆2 ⋯ 𝜆𝑚 = det(𝑨−1) .

For any symmetric positive-definite 𝑨 ∈ ℝ𝑚×𝑚, the set of vectors 𝒙 ∈ ℝ𝑚 satisfying 
𝒙𝑇𝑨𝒙 = 1 defines an ellipsoid (function of 𝒙) in the 𝑚-dimensional space.

Assume that 𝒖𝑖 ∈ ℝ𝑚 are eigenvectors and 𝜆𝑖 ∈ ℝ are eigenvalues of 𝑨−1 (𝑖 = 1, … , 𝑚).  

𝑢1𝑢2

𝑢2

Amin Fakhari, Fall 2024 MEC529 • Ch6: Velocity Kinematics and Statics P43

Geometric Jacobian

Geometric Jacobian
Analytic Jacobian

Analytic Jacobian
Singularity Analysis

Singularity Analysis
Inverse Velocity Kin.  Redundancy Analysis

Inverse Velocity Kin. & Redundancy Analysis
Statics

Statics
Manipulability

Manipulability



Velocity Manipulability Ellipsoid

1 = ሶ𝜽𝑇 ሶ𝜽
= 𝑱+𝓥 𝑇 𝑱+𝓥

= 𝓥𝑇𝑱+𝑇𝑱+𝓥

= 𝓥𝑇 𝑱𝑱𝑇 −1𝓥

𝓥 = 𝑱 𝜽 ሶ𝜽 𝓥 ∈ ℝ𝑟, ሶ𝜽 ∈ ℝ𝑛, 𝑱 ∈ ℝ𝑟×𝑛 

At a nonsingular configuration:

𝑱𝑱𝑇 ∈ ℝ𝑟×𝑟 is square, symmetric, 
and positive definite, as is 𝑱𝑱𝑇 −1.

𝑱+ = 𝑱𝑇 𝑱𝑱𝑻 −1

- Directions of the principal axes: 𝒖𝑖

- Lengths of the principal semi-axes: 𝜎𝑖 = 𝜆𝑖   (𝜎𝑖  are the singular values of 𝑱)

- Volume is proportional to 𝜆1𝜆2 ⋯ 𝜆𝑟 = det 𝑱𝑱𝑇 if 𝑛 = 𝑟
= det 𝑱

The velocity manipulability ellipsoid corresponds to the end-effector velocities 𝓥 ∈ ℝ𝑟 for 

joint rates ሶ𝜽 ∈ ℝ𝑛 satisfying ሶ𝜽 = ሶ𝜽𝑇 ሶ𝜽 = 1 (the points on the surface of a sphere).

𝑛 ≥ 𝑟

(the points on the surface of an ellipsoid)

Assume that 𝒖𝑖 ∈ ℝ𝑟 are eigenvectors and 𝜆𝑖 ∈ ℝ are eigenvalues of 𝑱𝑱𝑇 (𝑖 = 1, … , 𝑟).  

𝑢1
𝑢2

𝑢2
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Velocity Manipulability Ellipsoid

• Along the direction of the major axis of the ellipsoid, the end-effector can move at large 
velocity, while along the direction of the minor axis small end-effector velocities are 
obtained.

• The closer the ellipsoid is to a sphere, the better the end-effector can move isotropically 
along all directions of the operational space.

• Velocity manipulability ellipsoid is used to visualize and characterize how close a 
nonsingular configuration of a robot is to being singular.

Velocity manipulability ellipses for 
a 2R planar arm (for 𝑙1 = 𝑙2 = 1):
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Velocity Manipulability Measures

Velocity manipulability measures:

(2) The ratio of the largest to smallest principal semi-axes:

(3) The ratio of the largest to smallest eigenvalues:

𝑤2 𝜽 =
𝜎max

𝜎min
=

𝜆max 𝑱𝑱𝑇

𝜆min 𝑱𝑱𝑇
=

𝜆max 𝑱𝑱𝑇

𝜆min 𝑱𝑱𝑇
≥ 1

𝑤3 𝜽 = 𝑤2 𝜽 2 =
𝜆max 𝑱𝑱𝑇

𝜆min 𝑱𝑱𝑇
≥ 1

(𝑤2 is called condition number of 𝑱)

𝑢1
𝑢2

𝑢2

(1) The volume of the ellipsoid (proportional to 𝜆1𝜆2 …): 

𝑤1 𝜽 = 𝜎1𝜎2 ⋯ = 𝜆1𝜆2 ⋯ = det 𝑱𝑱𝑇 ≥ 0
if 𝑛 = 𝑟 = det 𝑱

(nonredundant)

• As the robot approaches a singularity, 𝑤1 𝜽  goes to 0.

• When 𝑤2 𝜽  or 𝑤3 𝜽  is low (close to 1), the ellipsoid is nearly spherical or isotropic.
• As the robot approaches a singularity, 𝑤2 𝜽  or 𝑤3 𝜽  goes to infinity.
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Force Manipulability Ellipsoid

The force manipulability ellipsoid corresponds to forces 𝓕 generated at the end-effector 
by joint rates 𝝉 satisfying 𝝉 = 𝝉𝑇𝝉 = 1 (the points on the surface of a sphere).

𝝉 = 𝑱𝑇 𝜽 𝓕

1 = 𝝉𝑇𝝉 = 𝓕𝑇𝑱𝑱𝑇𝓕

• The principal axes of the force manipulability ellipsoid coincide with the principal axes of 
the velocity manipulability ellipsoid.

• The lengths of the respective principal semi-axes are in inverse proportion (1/ 𝜆𝑖). 

(the points on the surface of an ellipsoid)

Force manipulability ellipses for a 
2R planar arm (for 𝑙1 = 𝑙2 = 1):
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Remarks

• According to the concept of force/velocity duality, 
a direction along which it is easy to generate a tip 
velocity is a direction along which it is difficult to 
generate a force, and vice versa.

For a 2R Planar Robot:

• The product of the volumes of the velocity and 

force manipulability ellipsoids (∝ 𝜆1𝜆2 ⋯ and 

∝ 1/ 𝜆1𝜆2 ⋯ , respectively) is constant over 𝜽.  

𝑓𝑦

𝑓𝑥

𝑓𝑦

𝑓𝑥

ሶ𝑦

ሶ𝑥

ሶ𝑦

ሶ𝑥

• At a singularity,
o the velocity manipulability ellipsoid collapses to a line segment (it loses dimension, and 

its area drops to zero). EE motion capability becomes zero in one (or more) direction(s),
o the force manipulability ellipsoid becomes infinitely long in a direction orthogonal to 

the velocity manipulability ellipsoid line segment and skinny in the orthogonal direction 
(its area goes to infinity). EE can resist infinite force in one (or more) direction(s).
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Visualizing Manipulability Ellipsoids

If it is desired to geometrically visualize manipulability in a space of dimension greater than 
3, it is worth separating the components of linear velocity (or force) from those of angular 
velocity (or moment), also avoiding problems due to nonhomogeneous dimensions of the 
relevant quantities (e.g., m/s vs rad/s).

𝑱(𝜽) =
𝑱𝜔(𝜽)
𝑱𝑣(𝜽)

∈ ℝ6×𝑛
angular velocity/moment ellipsoids 

linear velocity/force ellipsoids 

𝑱𝜔(𝜽) ∈ ℝ3×𝑛 → 

𝑱𝑣(𝜽) ∈ ℝ3×𝑛 →

• When calculating the linear-velocity manipulability ellipsoid, it generally makes more sense to use 
the body Jacobian 𝑱𝑏 or geometric Jacobian 𝑱𝑔 instead of the space Jacobian 𝑱𝑠, since we are usually 

interested in the linear velocity of a point at the origin of the end-effector frame rather than that of 
a point at the origin of the fixed-space frame.
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