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Inverse Kinematics

The inverse kinematics of a robot refers to the calculation of the joint coordinates 𝜽 from 
the position and orientation (pose) of its end-effector frame.

𝑠

𝑏

𝑻 𝜽  or 𝒇 𝜽

• “Geometric” inverse kinematics:

Given 𝑻𝑠𝑏 = 𝑻 𝜽 ∈ 𝑆𝐸 3 , Find 𝜽 ∈ ℝ𝑛

Given 𝒙 = 𝒇 𝜽 ∈ ℝ𝑟, Find 𝜽 ∈ ℝ𝑛

𝑻: ℝ𝑛 → 𝑆𝐸 3

• “Minimum-Coordinate” inverse kinematics:

𝒇: ℝ𝑛 → ℝ𝑟
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Complexities of Inverse Kinematics

• The equations to solve are in general nonlinear. Thus, it is not always possible to find a 
closed-form solution.

• Multiple (finite) solutions may exist.
• Infinite solutions may exist (e.g., in the case of a kinematically redundant manipulator).
• There might be no admissible solutions (e.g., when the given EE pose does not belong to 

the manipulator dexterous workspace.).

► Solving Inverse Kinematics Problems:

• Analytic Methods: Finding closed-form solutions using algebraic intuition or geometric 
intuition.

• Iterative Numerical Methods: When there are no (or it is difficult to find) closed-form 
solutions.
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Analytic Methods
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Analytic Inverse Kinematics

Most of the existing manipulators are typically formed by an arm and a spherical wrist 
(where three consecutive revolute joint axes intersect at a common point 𝒑𝑊). Thus, we 
can decouple the solution for the position (i.e., point 𝒑𝑊 at the intersection of the three 
revolute axes) from that for the orientation.

PUMA Arm (6R) Stanford Arm (RRPRRR) 3R Planar Arm

𝒑𝑊

𝒑𝑊
𝒑𝑊

 Therefore, it is possible to solve the inverse kinematics for the arm separately from the 
inverse kinematics for the spherical wrist.

𝒑𝑊
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Example 1: 6R PUMA-Type Arms

𝑻 𝜽 =
𝑹𝑠𝑏 𝒑

𝟎 1
= 𝑒 𝑺1 𝜃1𝑒 𝑺2 𝜃2𝑒 𝑺3 𝜃3𝑒 𝑺4 𝜃4𝑒 𝑺5 𝜃5𝑒 𝑺6 𝜃6𝑴

Wrist joints intersect orthogonally at a common point 𝒑𝑊

By having 𝒑, we can find 𝒑𝑊 =

𝑝𝑊𝑥, 𝑝𝑊𝑦 , 𝑝𝑊𝑧 , and then, we 

can find 𝜃1, 𝜃2, 𝜃3  as follows.

𝑏

ොy𝑠

ොx𝑠

ොz𝑠

𝑠

𝑝𝑊𝑥

𝑝𝑊𝑦

𝑝𝑊𝑧

𝒑𝑊

𝒑
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Example 1: 6R PUMA-Type Arms (cont.)

𝑝𝑊𝑥 = 𝑐1 𝑎2𝑐2 + 𝑎3𝑐23 = 𝑐1𝑟

𝑝𝑊𝑦 = 𝑠1 𝑎2𝑐2 + 𝑎3𝑐23 = 𝑠1𝑟

𝑝𝑊𝑧 = 𝑎2𝑠2 + 𝑎3𝑠23

𝑝𝑊𝑥
2 + 𝑝𝑊𝑦

2 + 𝑝𝑊𝑧
2 = 𝑎2

2 + 𝑎3
2 + 2𝑎2𝑎3𝑐3

𝑐3 =
𝑝𝑊𝑥

2 + 𝑝𝑊𝑦
2 + 𝑝𝑊𝑧

2 − 𝑎2
2 − 𝑎3

2

2𝑎2𝑎3

𝑠3 = ± 1 − 𝑐3
2

𝜃3 = atan2 𝑠3, 𝑐3
𝜃3,I ∈ −𝜋, 𝜋

𝜃3,II = −𝜃3,𝐼

𝑝𝑊𝑥

𝑝𝑊𝑦

𝑝𝑊𝑧

❖ Inverse position problem of finding 𝜃1, 𝜃2, 𝜃3  using algebraic intuition:
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Example 1: 6R PUMA-Type Arms (cont.)

𝑎2𝑐2 + 𝑎3𝑐23 = ± 𝑝𝑊𝑥
2 + 𝑝𝑊𝑦

2 = ±𝑟𝑝𝑊𝑥
2 + 𝑝𝑊𝑦

2 = 𝑎2𝑐2 + 𝑎3𝑐23
2

𝑝𝑊𝑧 = 𝑎2𝑠2 + 𝑎3𝑠23

𝑐2 =

± 𝑝𝑊𝑥
2 + 𝑝𝑊𝑦

2 𝑎2 + 𝑎3𝑐3 + 𝑝𝑊𝑧𝑎3𝑠3

𝑎2
2 + 𝑎3

2 + 2𝑎2𝑎3𝑐3

𝑠2 =

𝑝𝑊𝑧 𝑎2 + 𝑎3𝑐3 − ± 𝑝𝑊𝑥
2 + 𝑝𝑊𝑦

2 𝑎3𝑠3

𝑎2
2 + 𝑎3

2 + 2𝑎2𝑎3𝑐3

𝑠23 = 𝑠2𝑐3 + 𝑠3𝑐2

𝑐23 = 𝑐2𝑐3 − 𝑠2𝑠3

𝜃2 = atan2 𝑠2, 𝑐2

For each 𝜃3, we have two solutions for 𝜃2:

𝜃3,I

𝜃3,II

𝜃2,I    (+𝑟)

𝜃2,II   (−𝑟)

𝜃2,III  (+𝑟)

𝜃2,IV   (−𝑟)

𝜃3,I → 𝜃2,I, 𝜃2,II

𝜃3,II → 𝜃2,III, 𝜃2,IV
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Example 1: 6R PUMA-Type Arms (cont.)

𝑝𝑊𝑥 = ±𝑐1 𝑝𝑊𝑥
2 + 𝑝𝑊𝑦

2

𝑝𝑊𝑦 = ±𝑠1 𝑝𝑊𝑥
2 + 𝑝𝑊𝑦

2

𝜃1,I = atan2 𝑝𝑊𝑦 , 𝑝𝑊𝑥

𝜃1,II = atan2 −𝑝𝑊𝑦 , −𝑝𝑊𝑥

𝑝𝑊𝑥 = 𝑐1 𝑎2𝑐2 + 𝑎3𝑐23

𝑝𝑊𝑦 = 𝑠1 𝑎2𝑐2 + 𝑎3𝑐23

𝑎2𝑐2 + 𝑎3𝑐23 = ± 𝑝𝑊𝑥
2 + 𝑝𝑊𝑦

2 = ±𝑟

𝜃1,I, 𝜃2,I, 𝜃3,I

𝜃1,I, 𝜃2,III, 𝜃3,II

𝜃1,II, 𝜃2,II, 𝜃3,I

𝜃1,II, 𝜃2,IV, 𝜃3,II

Thus, in total, there exist four solutions:

𝜃3,I

𝜃3,II

𝜃2,I    (+𝑟)

𝜃2,II   (−𝑟)

𝜃2,III  (+𝑟)

𝜃2,IV   (−𝑟)

𝜃1,I

𝜃1,I

𝜃1,II

𝜃1,II
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Example 1: 6R PUMA-Type Arms (cont.)

Note: When 𝑝𝑊𝑥 = 𝑝𝑊𝑦 = 0, the arm is in a kinematically singular configuration, 

and there are infinitely many possible solutions for 𝜃1.

𝑒 𝑺4 𝜃4𝑒 𝑺5 𝜃5𝑒 𝑺6 𝜃6 = 𝑒− 𝑺3 𝜃3𝑒− 𝑺2 𝜃2𝑒− 𝑺1 𝜃1𝑻 𝜽 𝑴−1 = 𝑻′ = (𝑹′, 𝒑′)

❖ Inverse orientation problem of finding 𝜃4, 𝜃5, 𝜃6  after finding 
𝜃1, 𝜃2, 𝜃3 :

known

Assume that the joint axes 𝑺4, 𝑺5, 𝑺6  of the spherical wrist are aligned in the Ƹ𝑧𝑠, ො𝑦𝑠, ො𝑥𝑠  
directions, respectively:

𝑺𝜔4
= (0,0,1)

𝑺𝜔5
= (0,1,0)

𝑺𝜔6
= (1,0,0)

Rot ොz, 𝜃4 Rot ොy, 𝜃5 Rot ොx, 𝜃6 = 𝑹′ This corresponds to 
the ZYX Euler angles.

𝜃4, 𝜃5, 𝜃6
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Example 2: Stanford-Type Arms
𝒑𝑊

൝
𝜃1 = atan2 𝑝𝑊𝑦 , 𝑝𝑊𝑥

𝜃2 = atan2(𝑠, 𝑟)
 ,

𝑟2 = 𝑝𝑊𝑥
2 + 𝑝𝑊𝑦

2

𝑠 = 𝑝𝑊𝑧 − 𝑑1

൝
𝜃1 = 𝜋 + atan2 𝑝𝑊𝑦, 𝑝𝑊𝑥

𝜃2 = 𝜋 − atan2(𝑠, 𝑟)

𝜃3 + 𝑎2
2 = 𝑟2 + 𝑠2 𝜃3 = 𝑟2 + 𝑠2 − 𝑎2 = 𝑝𝑊𝑥

2 + 𝑝𝑊𝑦
2 + 𝑝𝑊𝑧 − 𝑑1

2 − 𝑎2

❖ Inverse position problem of finding 𝜃1, 𝜃2, 𝜃3  using geometric intuition:

   Thus, there are 2 solutions to the inverse kinematics problem.

If 𝑝𝑊𝑥, 𝑝𝑊𝑦 ≠ 0:

❖ Inverse orientation problem of finding 𝜃4, 𝜃5, 𝜃6  is similar to PUMA.

𝑝𝑊𝑧

𝑝𝑊𝑥

𝜃3

𝑝𝑊𝑦
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Iterative Numerical Methods
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Numerical Method:
The Simplest IK Method Using IVK

Velocity kinematics equation 𝓥 = 𝑱 𝜽 ሶ𝜽 can be used to tackle the inverse kinematics 
problem. Suppose that the end-effector motion 𝓥𝑑 𝑡  and the initial robot configuration 

𝜽 0  are given. The aim is to determine a feasible joint position and velocity 𝜽 𝑡 , ሶ𝜽 𝑡  

that reproduces the given end-effector motion 𝓥𝑑 𝑡 .

ሶ𝜽 = 𝑱+ 𝜽 𝓥𝑑 𝜽 𝑡 = න
0

𝑡

ሶ𝜽 𝜍 𝑑𝜍 + 𝜽 0 .

Using Euler integration 
method and an integration 
interval Δ𝑡 = 𝑡𝑘+1 − 𝑡𝑘:

𝜽 𝑡𝑘+1 = 𝜽 𝑡𝑘 + ሶ𝜽 𝑡𝑘 Δ𝑡 = 𝜽 𝑡𝑘 + 𝑱+ 𝜽 𝑡𝑘 𝓥𝑑 𝑡𝑘 Δ𝑡

From Inverse Velocity Kinematics (IVK): then,

However, due to drift phenomena in numerical integration, small velocity errors are likely 
to accumulate over time, resulting in increasing position error 𝜽 and the end-effector pose 
corresponding to the computed joint variables differs from the desired one. 

Thus, an end-effector pose feedback in algorithm is required to keep the end-effector 
following the desired pose/motion.
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Jacobian (Pseudo-)Inverse 
Method
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Preliminary: Newton–Raphson Method

Newton–Raphson Method is an iterative method for 
numerically finding the roots of a nonlinear equation 
𝑓 𝑥 = 0 where 𝑓: ℝ → ℝ is differentiable.

If 𝑥0 is an initial guess for the solution, Taylor expansion 
of 𝑓 𝑥  at 𝑥0 is

𝑓 𝑥 = 𝑓 𝑥0 +
d𝑓

d𝑥
𝑥0 𝑥 − 𝑥0 + higher−order terms (h.o.t)

𝑥𝑘+1 = 𝑥𝑘 −
d𝑓

d𝑥
𝑥𝑘

−1

𝑓 𝑥𝑘

𝑥 = 𝑥0 −
d𝑓

d𝑥
𝑥0

−1

𝑓 𝑥0𝑓 𝑥 = 0
≅ 0

Using 𝑥 as the new guess for the solution and repeating:

►

The iteration is repeated until some stopping criterion is satisfied, e.g., 𝑓 𝑥𝑘+1 − 𝑓 𝑥𝑘

𝑓 𝑥𝑘
≤ 𝜖

𝜖: a given threshold value
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Jacobian (Pseudo-)Inverse Method
(Minimum-Coordinate IK – Configuration Level)

Assume that the EE pose is represented by the minimum number of coordinates, i.e., 𝒙 =
𝒇 𝜽 ∈ ℝ𝑟, 𝜽 ∈ ℝ𝑛 (𝒇: ℝ𝑛 → ℝ𝑟). Thus, given a desired EE pose 𝒙𝑑, the goal is to find joint 
coordinates 𝜽 = 𝜽𝑑 such that

(Assumption: 𝒇 is differentiable)𝒙𝑑 = 𝒇 𝜽𝑑

• We use a method similar to the Newton–Raphson method for nonlinear root-finding.

Given an initial guess 𝜽0 which is “close to” a solution 𝜽𝑑, and using the Taylor expansion:

𝒙𝑑 = 𝒇 𝜽 = 𝒇 𝜽0 +
ถ

ቚ
𝜕𝒇

𝜕𝜽 𝜽0

𝑱𝑎 𝜽0 ∈ℝ𝑟×𝑛

𝜽 − 𝜽0

Δ𝜽

+ h.o.t.

Analytical Jacobian at 𝜽0

𝑱𝑎 𝜽0 Δ𝜽 = 𝒙𝑑 − 𝒇 𝜽0Approximately:

(h.o.t. = 0)
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Jacobian (Pseudo-)Inverse Method
(Minimum-Coordinate IK – Configuration Level)

Δ𝜽 = 𝑱𝑎
+ 𝜽0 𝒙𝑑 − 𝒇 𝜽0 If 𝑱𝑎 is not square or not invertible (due to singularity):

𝑱𝑎
+: Moore–Penrose pseudoinverse

Note: If robot is redundant (𝑛 > 𝑟) and 𝑱𝑎 is full rank (rank 𝑱𝑎 = min 𝑟, 𝑛 ), i.e., the robot 
is not at a singularity:

𝑱𝑎
+ = 𝑱𝑎

𝑇 𝑱𝑎𝑱𝑎
𝑇 −1

Δ𝜽 = 𝑱𝑎
−1 𝜽0 𝒙𝑑 − 𝒇 𝜃0 If 𝑱𝑎 is square (𝑟 = 𝑛) and invertible:

𝜽𝑘+1 = 𝜽𝑘 + 𝜆 𝑱𝑎
−1 𝜽𝑘 𝒙𝑑 − 𝒇 𝜽𝑘 , 𝑘 = 0,1,2, …

𝜽𝑘+1 = 𝜽𝑘 + 𝜆 𝑱𝑎
+ 𝜽𝑘 𝒙𝑑 − 𝒇 𝜽𝑘 , 𝑘 = 0,1,2, …

where 0 < 𝜆 ≤ 1 is the step length. 𝜽0,𝜽1,𝜽2, ... → 𝜽𝑑
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Remarks

• If there are multiple inverse kinematics solutions, the iterative process tends to converge 
to the solution that is “closest” to the initial guess 𝜽0.

• The step length 𝜆 can be adjusted to aid convergence. It may be chosen as a scalar 𝜆 ∈ ℝ 
or as a diagonal matrix 𝚲 ∈ ℝ𝑛×𝑛 (to scale each component of the configuration 𝜽 
separately).

𝜽𝑘+1 = 𝜽𝑘 + 𝚲 𝑱𝑎
+ 𝜽𝑘 𝒙𝑑 − 𝒇 𝜽𝑘 , 𝑘 = 0,1,2, …

• Methods of optimization are needed in situations where an exact solution may not exist 
and we seek the closest approximate solution; or, conversely, an infinity of inverse 
kinematics solutions exists (i.e., if the robot is kinematically redundant) and we seek a 
solution that is optimal with respect to some criterion/constraints. 

The step length 𝜆 or 𝚲 can be either a constant or as a function of 𝑘.
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Algorithm for Minimum-Coordinate Representation

a) Initialization: Given 𝒙𝑑 ∈ ℝ𝑟 and an initial guess 𝜽0 ∈ ℝ𝑛, set 𝑘 = 0.

b) Iteration: Set 𝒆 = 𝒙𝑑 − 𝒇 𝜽𝑘 . While 𝒆 > 𝜖 for some small 𝜖 ∈ ℝ:

• Set 𝜽𝑘+1 = 𝜽𝑘 + 𝜆 𝑱+(𝜽𝑖)𝒆.
• Increment 𝑘.

max_iterations = 20;

k = 0;

lambda = 1;

Theta = Theta_0;

e = X_d - FK(Theta);

while norm(e) > epsilon && k < max_iterations

Theta = Theta + lambda * pinv(J(Theta)) * e;

    k = k + 1;

e = X_d - FK(Theta);

end

Algorithm in MATLAB:

0 < 𝜆 ≤ 1: step length parameter

Note: For the motion of a robot along a given desired trajectory, a good choice for the 
initial guess 𝜽0 is to use the solution to the IK at the previous time step.
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Algorithm for Transformation Matrix Representation

Assume that the EE pose is represented by a Transformation Matrix, i.e., 𝑻𝑠𝑏 = 𝑻 𝜽 ∈
𝑆𝐸 3 , 𝜽 ∈ ℝ𝑛. Thus, given a desired EE pose 𝑻𝑠𝑑, the goal is to find joint coordinates 
𝜽 = 𝜽𝑑 such that

𝑻𝑠𝑑 = 𝑻 𝜽𝑑

a) Initialization: Given 𝑻𝑠𝑑 ∈ 𝑆𝐸 3  and an initial guess 𝜽0 ∈ ℝ𝑛, set 𝑘 = 0.

b) Iteration: Set 𝓔𝑏 = log 𝑻𝑏𝑑 𝜽𝑘 = log 𝑻𝑠𝑏
−1 𝜽𝑘 𝑻𝑠𝑑 . While 𝓔𝑏,𝜔 > 𝜖𝜔 or 𝓔𝑏,𝑣 > 𝜖𝑣 

for some small 𝜖𝜔 , 𝜖𝑣 ∈ ℝ, where 𝓔𝑏 = 𝓔𝑏,𝜔 , 𝓔𝑏,𝑣 :

• Set 𝜽𝑘+1 = 𝜽𝑘 + 𝜆 𝑱𝑏
+(𝜽𝑘)𝓔𝑏.

• Increment 𝑘.

a) Initialization: Given 𝑻𝑠𝑑 ∈ 𝑆𝐸 3  and an initial guess 𝜽0 ∈ ℝ𝑛, set 𝑘 = 0.

b) Iteration: Set 𝓔𝑠 = Ad𝑻𝑠𝑏
log 𝑻𝑏𝑑 𝜽𝑘 = Ad𝑻𝑠𝑏

log 𝑻𝑠𝑏
−1 𝜽𝑘 𝑻𝑠𝑑 . While 𝓔𝑠,𝜔 > 𝜖𝜔 

or 𝓔𝑠,𝑣 > 𝜖𝑣  for some small 𝜖𝜔 , 𝜖𝑣 ∈ ℝ, where 𝓔𝑠 = 𝓔𝑠,𝜔 , 𝓔𝑠,𝑣 :

• Set 𝜽𝑘+1 = 𝜽𝑘 + 𝜆 𝑱𝑠
+(𝜽𝑘)𝓔𝑠.

• Increment 𝑘.

Algorithm in Body Frame:

(𝓔𝑠 is the twist that takes 𝑻𝑠𝑏  to 𝑻𝑠𝑑 in 1s)

𝑠

𝑑

𝑏

𝑻𝑠𝑏 𝜽𝑖
𝑻𝑠𝑑

𝑻𝑏𝑑 𝜽𝑖

(𝓔𝑏 is the twist that takes 𝑻𝑠𝑏  to 𝑻𝑠𝑑 in 1s)

Algorithm in Space Frame:

(𝜖𝜔 has the unit of radian and the dimension of 𝜖𝑣 is length)

(0 < 𝜆 ≤ 1)
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Jacobian (Pseudo-)Inverse Method
(Minimum-Coordinate IK – Velocity Level)

Assume that the end-effector pose is represented by the minimum number of coordinates, 

i.e., 𝒙 = 𝒇 𝜽 ∈ ℝ𝑟, 𝜽 ∈ ℝ𝑛 (𝒇: ℝ𝑛 → ℝ𝑟), and ሶ𝒙 = 𝑱𝑎 𝜽 ሶ𝜽. Let 𝒙𝑑 𝑡  be the desired end-
effector trajectory. Thus, the end-effector pose error, and its derivative are defined as

𝒆 = 𝒙𝑑 − 𝒙 = 𝒙𝑑 − 𝒇 𝜽

ሶ𝜽 = 𝑱𝑎
−1 𝜽 ( ሶ𝒙𝑑 + 𝑲𝒆)

On the assumption that matrix 𝑱𝑎 is square (𝑛 = 𝑟) and nonsingular, the choice

where 𝑲 ∈ ℝ𝑟×𝑟 is a positive definite (usually diagonal) matrix, leads to the closed-loop 
system ሶ𝒆 + 𝑲𝒆 = 𝟎 which is a linear system and is asymptotically stable.

𝒇 𝜽

𝑲 𝑱𝑎
−1 𝜽

𝜽ሶ𝜽𝒆

𝒙

𝒙𝑑

ሶ𝒙𝑑Thus, the error 𝒆 tends to zero along the 
trajectory with a convergence rate that depends 
on the eigenvalues of matrix 𝑲 (the larger the 
eigenvalues, the faster the convergence).

()

ሶ𝒆 = ሶ𝒙𝑑 − ሶ𝒙 = ሶ𝒙𝑑 − 𝑱𝑎 𝜽 ሶ𝜽
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Jacobian (Pseudo-)Inverse Method
(Minimum-Coordinate IK – Velocity Level)

𝑘 = 0,1,2, …

𝜽 𝑡𝑘+1 = 𝜽 𝑡𝑘 + ሶ𝜽 𝑡𝑘 Δ𝑡 = 𝜽 𝑡𝑘 + 𝑱𝑎
−1 𝜽 𝑡𝑘 ሶ𝒙𝑑 𝑡𝑘 + 𝑲𝒆 𝑡𝑘 Δ𝑡

= 𝜽 𝑡𝑘 + 𝑱𝑎
−1 𝜽 𝑡𝑘 ሶ𝒙𝑑 𝑡𝑘 + 𝑲 𝒙𝑑 𝑡𝑘 − 𝒇 𝜽 𝑡𝑘 Δ𝑡

Note: This equation for ሶ𝒙𝑑 = 𝟎 (i.e., a constant end-effector pose 𝒙𝑑) corresponds to the 
configuration-level IK based on Newton–Raphson Method.

Note: In the case of a redundant manipulator, the solution () can be generalized into

ሶ𝜽 = 𝑱𝑎
+( ሶ𝒙𝑑 + 𝑲𝒆) + 𝑰𝑛 − 𝑱𝑎

+𝑱𝑎
ሶ𝜽0

𝒇 𝜽

𝑲 𝑱𝑎
+ 𝜽

𝜽ሶ𝜽𝒆

𝒙

𝒙𝑑

ሶ𝒙𝑑

𝑰𝑛 − 𝑱𝑎
+𝑱𝑎

ሶ𝜽0

+

+

ሶ𝜽 = 𝑱𝑎
−1 𝜽 ሶ𝒙𝑑 + 𝑲𝒆  →

Amin Fakhari, Fall 2024 MEC529 • Ch7: Inverse Kinematics P23

Inv. Kin.

Inv. Kin.
Analytic Methods

Analytic Methods
Numerical Methods

Numerical Methods
Jacobian Inverse Method

Jacobian Inverse Method
Jacobian Transpose Method

Jacobian Transpose Method
Orientation Error

Orientation Error



Jacobian Transpose Method
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Jacobian Transpose Method
(Minimum-Coordinate IK – Configuration Level)

Let’s define an optimization problem as min
𝜽

 𝐹 𝜽 = min
𝜽

1

2
𝒙𝑑 − 𝒇 𝜽

𝑇
𝒙𝑑 − 𝒇 𝜽

The gradient of the cost function 𝐹 𝜽 ∈ ℝ is 𝛁𝐹 𝜽 = −𝑱𝑎
𝑇 𝜽 (𝒙𝑑 − 𝒇 𝜽 ).

A Gradient Descent algorithm to minimize 𝐹 𝜽  is

𝜽𝑘+1 = 𝜽𝑘 − 𝜆 𝛁𝐹 𝜽𝑘 = 𝜽𝑘 + 𝜆 𝑱𝑎
𝑇 𝜽𝑘 𝒙𝑑 − 𝒇 𝜽𝑘

where 0 < 𝜆 ≤ 1 is the step length where can be adjusted to aid convergence.
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Jacobian Transpose vs Jacobian Inverse

IK using Jacobian inverse IK using Jacobian transpose

Consider the following 2R robot where the desired end-effector coordinate is 𝒙𝑑 = (0.2,1.3), the joint 
variables corresponding to 𝒙𝑑 are 𝜃1 = 0.5650 and 𝜃2 = 0.7062, the initial guess are 𝜃1 = 0.25 and 
𝜃2 = 0.75, and the step size is 0.75.

• Jacobian transpose method is computationally more efficient to compute than the 
Jacobian inverse method.

• Jacobian transpose does not suffer from kinematic singularities.
• The convergence of Jacobian transpose, in terms of number of iterations, may be slower 

than the Jacobian inverse method.
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Orientation Error

Amin Fakhari, Fall 2024 MEC529 • Ch7: Inverse Kinematics P27

Inv. Kin.

Inv. Kin.
Analytic Methods

Analytic Methods
Numerical Methods

Numerical Methods
Jacobian Inverse Method

Jacobian Inverse Method
Jacobian Transpose Method

Jacobian Transpose Method
Orientation Error

Orientation Error



Orientation Error for Minimum-Coordinate 
Representation

𝒆 =
𝒆𝑅

𝒆𝑝
=

𝒆𝑅

𝒑𝑑 − 𝒑

(1) Euler Angles: 𝒆𝑅 = 𝝓𝑑 − 𝝓 ∈ ℝ3

Assumption: There is no kinematic or representation singularities.

Computation of 𝒆𝑅 depends on the particular representation of end-effector orientation, 
namely, Euler angles, exponential coordinates (angle and axis), and unit quaternion:

𝒆𝑅 = EulerAngles 𝑹𝑠𝑏
𝑇 𝑹𝑠𝑑 = EulerAngles 𝑹𝑏𝑑 ∈ ℝ3

Method 1:

Method 2:
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Orientation Error for Minimum-Coordinate 
Representation

𝑹𝑏𝑑 = 𝑹𝑠𝑏
𝑇 𝑹𝑠𝑑 , UnitQuat 𝑹𝑏𝑑 =

cos Τ𝜃 2
sin Τ𝜃 2 ෝ𝝎𝑏

=

𝑞0

𝑞1

𝑞2

𝑞3
(in EE frame)

(2) Exponential Coordinates (Angle and Axis):

log(𝑹𝑏𝑑) = ෝ𝝎𝑏 𝜃     ,𝑹𝑏𝑑 = 𝑹𝑠𝑏
𝑇 𝑹𝑠𝑑 ,

(in EE frame)

𝒆𝑅 ≔ ෝ𝝎𝑏𝜃

𝒆𝑅 ≔ 𝑹𝑠𝑏 ෝ𝝎𝑏𝜃

(in EE frame)

(in base frame)

(3) Unit Quaternion:
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