Ch7: Inverse Kinematics

lnv. Kin.	Analytic Methods	Numerical Methods	Jacobian Inverse Method	Jacobian Transpose Method	Orientation Error	
00	000000	0	0000000	00	00	Stony Bro Universit

Inverse Kinematics

Inverse Kinematics

The inverse kinematics of a robot refers to the calculation of the joint coordinates θ from the position and orientation (**pose**) of its end-effector frame.

• "Geometric" inverse kinematics:

Given $T_{sb} = T(\theta) \in SE(3)$, Find $\theta \in \mathbb{R}^n$ $T: \mathbb{R}^n \to SE(3)$

"Minimum-Coordinate" inverse kinematics:

Given $x = f(\theta) \in \mathbb{R}^r$, Find $\theta \in \mathbb{R}^n$

 $f: \mathbb{R}^n \to \mathbb{R}^r$

Complexities of Inverse Kinematics

- The equations to solve are in general nonlinear. Thus, it is not always possible to find a closed-form solution.
- Multiple (finite) solutions may exist.
- Infinite solutions may exist (e.g., in the case of a kinematically redundant manipulator).
- There might be no admissible solutions (e.g., when the given EE pose does not belong to the manipulator dexterous workspace.).
- Solving Inverse Kinematics Problems:
- Analytic Methods: Finding closed-form solutions using <u>algebraic intuition</u> or <u>geometric</u> <u>intuition</u>.
- Iterative Numerical Methods: When there are no (or it is difficult to find) closed-form solutions.

lnv. Kin.	Analytic Methods	Numerical Methods	Jacobian Inverse Method	Jacobian Transpose Method	Orientation Error	*
00	000000	0	0000000	00	00	Stony Bro Universit

Analytic Methods

Analytic Inverse Kinematics

Jacobian Inverse Method

00000000

Jacobian Transpose Method

00

Orientation Error

00

Most of the existing manipulators are typically formed by an **arm** and a **spherical wrist** (where three consecutive revolute joint axes intersect at a common point p_W). Thus, we can <u>decouple</u> the solution for the position (i.e., point p_W at the intersection of the three revolute axes) from that for the orientation.

* Therefore, it is possible to solve the inverse kinematics for the arm separately from the inverse kinematics for the spherical wrist.

Inv. Kin.

00

Analytic Methods

000000

Numerical Methods

0

Example 1: 6R PUMA-Type Arms

00

Jacobian Transpose Method

Jacobian Inverse Method

00000000

Orientation Error

00

Inv. Kin.

00

Analytic Methods

000000

Numerical Methods

0

Stony Bro

Example 1: 6R PUMA-Type Arms (cont.)

 $p_{Wx} = c_1(a_2c_2 + a_3c_{23}) = c_1r$ $p_{Wy} = s_1(a_2c_2 + a_3c_{23}) = s_1r$ $p_{WZ} = a_2 s_2 + a_3 s_{23}$

Orientation Error

00

• Inverse position problem of finding $(\theta_1, \theta_2, \theta_3)$ using <u>algebraic intuition</u>:

$$p_{Wx}^2 + p_{Wy}^2 + p_{Wz}^2 = a_2^2 + a_3^2 + 2a_2a_3c_3$$

00

Example 1: 6R PUMA-Type Arms (cont.)

00

Jacobian Inverse Method

0000000

Jacobian Transpose Method

Orientation Error

00

$$p_{Wx}^{2} + p_{Wy}^{2} = (a_{2}c_{2} + a_{3}c_{23})^{2} \longrightarrow a_{2}c_{2} + a_{3}c_{23} = \pm \sqrt{p_{Wx}^{2} + p_{Wy}^{2}} = \pm r$$

$$p_{Wz} = a_{2}s_{2} + a_{3}s_{23}$$

$$s_{23} = s_{2}c_{3} + s_{3}c_{2}$$

$$c_{23} = c_{2}c_{3} - s_{2}s_{3}$$

Analytic Methods

0000000

Inv. Kin.

00

Numerical Methods

0

Stony Brook University Analytic MethodsNumerical MethodsJacobian Inverse MethodJacobian Transpose MethodOrientation ErrorOOOO●OOOOOOOOOO

Example 1: 6R PUMA-Type Arms (cont.)

$$p_{Wx} = c_1(a_2c_2 + a_3c_{23})$$

$$p_{Wy} = s_1(a_2c_2 + a_3c_{23})$$

$$p_{Wx} = \pm c_1\sqrt{p_{Wx}^2 + p_{Wy}^2}$$

$$p_{Wx} = \pm c_1\sqrt{p_{Wx}^2 + p_{Wy}^2}$$

$$p_{Wy} = \pm s_1\sqrt{p_{Wx}^2 + p_{Wy}^2}$$

$$\rho_{1,I} = atan2(p_{Wy}, p_{Wx})$$

$$\theta_{1,II} = atan2(-p_{Wy}, -p_{Wx})$$

Thus, in total, there exist four solutions:

Inv. Kin.

00

Stony Brool

Example 1: 6R PUMA-Type Arms (cont.)

Note: When $p_{Wx} = p_{Wy} = 0$, the arm is in a kinematically singular configuration, and there are infinitely many possible solutions for θ_1 .

✤ Inverse orientation problem of finding ($\theta_4, \theta_5, \theta_6$) after finding ($\theta_1, \theta_2, \theta_3$):

Numerical Methods

0

 $e^{[S_4]\theta_4}e^{[S_5]\theta_5}e^{[S_6]\theta_6} = e^{-[S_3]\theta_3}e^{-[S_2]\theta_2}e^{-[S_1]\theta_1}T(\theta)M^{-1} = T' = (R', p')$ known

Assume that the joint axes (S_4, S_5, S_6) of the spherical wrist are aligned in the $(\hat{z}_s, \hat{y}_s, \hat{x}_s)$ directions, respectively:

$$\begin{split} \boldsymbol{S}_{\omega_4} &= (0,0,1) \\ \boldsymbol{S}_{\omega_5} &= (0,1,0) \quad \Box \rangle \quad \operatorname{Rot}(\hat{z},\theta_4) \operatorname{Rot}(\hat{y},\theta_5) \operatorname{Rot}(\hat{x},\theta_6) = \boldsymbol{R'} \quad \Box \rangle \quad \begin{array}{c} \text{This corresponds to} \\ \text{the ZYX Euler angles.} \\ \boldsymbol{S}_{\omega_6} &= (1,0,0) \\ \end{array}$$

Inv. Kin.

00

Analytic Methods

 \hat{z}_0

Orientation Error

00

Jacobian Inverse Method

Jacobian Transpose Method OO

Orientation Error

Example 2: Stanford-Type Arms

 $r^2 = p_{Wx}^2 + p_{Wy}^2$ $s = p_{Wz} - d_1$

♦ Inverse position problem of finding $(\theta_1, \theta_2, \theta_3)$ using <u>geometric intuition</u>:

If
$$p_{Wx}, p_{Wy} \neq 0$$
:

$$\begin{cases} \theta_1 = \operatorname{atan2}(p_{Wy}, p_{Wx}) \\ \theta_2 = \operatorname{atan2}(s, r) \end{cases}, \qquad \begin{cases} \theta_1 = \pi + \operatorname{atan2}(p_{Wy}, p_{Wx}) \\ \theta_2 = \pi - \operatorname{atan2}(s, r) \end{cases}$$

$$(\theta_3 + a_2)^2 = r^2 + s^2 \longrightarrow \theta_3 = \sqrt{r^2 + s^2} - a_2 = \sqrt{p_{Wx}^2 + p_{Wy}^2 + (p_{Wz} - d_1)^2} - a_2$$

 \Rightarrow Thus, there are 2 solutions to the inverse kinematics problem.

• Inverse orientation problem of finding $(\theta_4, \theta_5, \theta_6)$ is similar to PUMA.

Inv. Kin.	Analytic Methods	Numerical Methods	Jacobian Inverse Method	Jacobian Transpose Method	Orientation Error	
00	000000	0	0000000	00	00	Stony Bro Universi

Iterative Numerical Methods

Numerical Method: The Simplest IK Method Using IVK

Jacobian Inverse Method

Jacobian Transpose Method

Orientation Error

Velocity kinematics equation $\mathcal{V} = J(\theta)\dot{\theta}$ can be used to tackle the inverse kinematics problem. Suppose that the end-effector motion $\mathcal{V}_d(t)$ and the initial robot configuration $\theta(0)$ are given. The aim is to determine a feasible joint position and velocity $(\theta(t), \dot{\theta}(t))$ that reproduces the given end-effector motion $\mathcal{V}_d(t)$.

From Inverse Velocity Kinematics (IVK): $\dot{\boldsymbol{\theta}} = \boldsymbol{J}^+(\boldsymbol{\theta})\boldsymbol{\mathcal{V}}_d$ then, $\boldsymbol{\theta}(t) = \int_0^t \dot{\boldsymbol{\theta}}(\varsigma)d\varsigma + \boldsymbol{\theta}(0).$

Using Euler integration method and an integration interval $\Delta t = t_{k+1} - t_k$: $\boldsymbol{\theta}(t_{k+1}) = \boldsymbol{\theta}(t_k) + \dot{\boldsymbol{\theta}}(t_k)\Delta t = \boldsymbol{\theta}(t_k) + \boldsymbol{J}^+(\boldsymbol{\theta}(t_k))\boldsymbol{\mathcal{V}}_d(t_k)\Delta t$

However, due to **drift phenomena** in numerical integration, small velocity errors are likely to <u>accumulate over time</u>, resulting in increasing position error θ and the end-effector pose corresponding to the computed joint variables differs from the desired one.

Thus, an end-effector pose feedback in algorithm is required to keep the end-effector following the desired pose/motion.

Analytic Methods

Inv. Kin.

00

Numerical Methods

lnv. Kin.	Analytic Methods	Numerical Methods	Jacobian Inverse Method	Jacobian Transpose Method	Orientation Error	*
00	000000	0	0000000	00	00	Stony B Univer

Jacobian (Pseudo-)Inverse Method

Preliminary: Newton–Raphson Method

Jacobian (Pseudo-)Inverse Method (Minimum-Coordinate IK – Configuration Level)

Assume that the EE pose is represented by the minimum number of coordinates, i.e., $x = f(\theta) \in \mathbb{R}^r$, $\theta \in \mathbb{R}^n$ ($f: \mathbb{R}^n \to \mathbb{R}^r$). Thus, given a desired EE pose x_d , the goal is to find joint coordinates $\theta = \theta_d$ such that

 $x_d = f(\theta_d)$ (Assumption: f is differentiable)

• We use a method similar to the Newton–Raphson method for nonlinear root-finding. Given an initial guess θ^0 which is "close to" a solution θ_d , and using the Taylor expansion:

Jacobian (Pseudo-)Inverse Method (Minimum-Coordinate IK – Configuration Level)

* If J_a is square (r = n) and invertible: $\Delta \theta = J_a^{-1}(\theta^0)(x_d - f(\theta^0))$

$$\Rightarrow \quad \boldsymbol{\theta}^{k+1} = \boldsymbol{\theta}^k + \lambda \boldsymbol{J_a}^{-1}(\boldsymbol{\theta}^k) \left(\boldsymbol{x}_d - \boldsymbol{f}(\boldsymbol{\theta}^k) \right), \qquad k = 0, 1, 2, \dots$$

where $0 < \lambda \leq 1$ is the step length.

 $\boldsymbol{\theta}^0, \boldsymbol{\theta}^1, \boldsymbol{\theta}^2, \dots \rightarrow \boldsymbol{\theta}_d$

* If J_a is not square or not invertible (due to singularity): $\Delta \theta = J_a^+(\theta^0)(x_d - f(\theta^0))$ J_a^+ : Moore–Penrose pseudoinverse

$$\Rightarrow \quad \boldsymbol{\theta}^{k+1} = \boldsymbol{\theta}^k + \lambda \boldsymbol{J}_a^{+}(\boldsymbol{\theta}^k) \left(\boldsymbol{x}_d - \boldsymbol{f}(\boldsymbol{\theta}^k) \right), \qquad k = 0, 1, 2, \dots$$

Note: If robot is redundant (n > r) and J_a is full rank $(rank(J_a) = min(r, n))$, i.e., the robot is not at a singularity:

$$\boldsymbol{J_a}^{+} = \boldsymbol{J_a}^{T} (\boldsymbol{J_a} \boldsymbol{J_a}^{T})^{-1}$$

Inv. Kin.

Analytic Methods

Inv. Kin. OO	Analytic Methods 0000000	Numerical Methods O	Jacobian Inverse Method ○○○●○○○○	Jacobian Transpose Method OO	Orientation Error OO	Stony Brook University			
Remarks									

• The step length λ can be adjusted to aid <u>convergence</u>. It may be chosen as a scalar $\lambda \in \mathbb{R}$ or as a diagonal matrix $\Lambda \in \mathbb{R}^{n \times n}$ (to scale each component of the configuration θ separately).

$$\boldsymbol{\theta}^{k+1} = \boldsymbol{\theta}^k + \Lambda \boldsymbol{J}_a^{\ +} (\boldsymbol{\theta}^k) (\boldsymbol{x}^d - \boldsymbol{f}(\boldsymbol{\theta}^k)), \qquad k = 0, 1, 2, ...$$

The step length λ or Λ can be either a constant or as a function of k.

- If there are multiple inverse kinematics solutions, the iterative process tends to converge to the solution that is "closest" to the initial guess θ^0 .
- Methods of optimization are needed in situations where an exact solution may not exist and we seek the closest approximate solution; or, conversely, an infinity of inverse kinematics solutions exists (i.e., if the robot is kinematically redundant) and we seek a solution that is optimal with respect to some criterion/constraints.

Algorithm for Minimum-Coordinate Representation

a) Initialization: Given $x_d \in \mathbb{R}^r$ and an initial guess $\theta^0 \in \mathbb{R}^n$, set k = 0.

b) Iteration: Set $e = x_d - f(\theta^k)$. While $||e|| > \epsilon$ for some small $\epsilon \in \mathbb{R}$:

• Set $\boldsymbol{\theta}^{k+1} = \boldsymbol{\theta}^k + \lambda \boldsymbol{J}^+(\boldsymbol{\theta}^i)\boldsymbol{e}$.

 $0 < \lambda \leq 1$: step length parameter

• Increment k.

Algorithm in MATLAB:

```
max_iterations = 20;
k = 0;
lambda = 1;
Theta = Theta_0;
e = X_d - FK(Theta);
while norm(e) > epsilon && k < max_iterations
Theta = Theta + lambda * pinv(J(Theta)) * e;
k = k + 1;
e = X_d - FK(Theta);
end
```

Note: For the motion of a robot along a given desired trajectory, a good choice for the initial guess θ^0 is to use the solution to the IK at the previous time step.

Algorithm for Transformation Matrix Representation

Assume that the EE pose is represented by a Transformation Matrix, i.e., $T_{sb} = T(\theta) \in SE(3)$, $\theta \in \mathbb{R}^n$. Thus, given a desired EE pose T_{sd} , the goal is to find joint coordinates $\theta = \theta_d$ such that $T_{sd} = T(\theta_d)$

Algorithm in Body Frame:

- a) Initialization: Given $T_{sd} \in SE(3)$ and an initial guess $\theta^0 \in \mathbb{R}^n$, set k = 0.
- **b)** Iteration: Set $[\mathcal{E}_b] = \log(T_{bd}(\theta^k)) = \log(T_{sb}^{-1}(\theta^k)T_{sd})$. While $||\mathcal{E}_{b,\omega}|| > \epsilon_{\omega}$ or $||\mathcal{E}_{b,\nu}|| > \epsilon_{\nu}$ for some small $\epsilon_{\omega}, \epsilon_{\nu} \in \mathbb{R}$, where $\mathcal{E}_b = (\mathcal{E}_{b,\omega}, \mathcal{E}_{b,\nu})$:
 - Set $\theta^{k+1} = \theta^k + \lambda J_b^+(\theta^k) \mathcal{E}_b$. • Increment k. (\mathcal{E}_b is the twist that takes T_{sb} to T_{sd} in 1s)

 $(0 < \lambda \leq 1)$

Algorithm in Space Frame:

a) Initialization: Given $T_{sd} \in SE(3)$ and an initial guess $\theta^0 \in \mathbb{R}^n$, set k = 0.

b) Iteration: Set
$$[\mathcal{E}_s] = [\operatorname{Ad}_{T_{sb}}] \log (T_{bd}(\theta^k)) = [\operatorname{Ad}_{T_{sb}}] \log (T_{sb}^{-1}(\theta^k)T_{sd})$$
. While $\|\mathcal{E}_{s,\omega}\| > \epsilon_{\omega}$

or
$$\|\mathcal{E}_{s,v}\| > \epsilon_v$$
 for some small $\epsilon_\omega, \epsilon_v \in \mathbb{R}$, where $\mathcal{E}_s = (\mathcal{E}_{s,\omega}, \mathcal{E}_{s,v})$:

• Set $\theta^{k+1} = \theta^k + \lambda J_s^+(\theta^k) \mathcal{E}_s$. • Increment k. (\mathcal{E}_s is the twist that takes T_{sb} to T_{sd} in 1s)

Jacobian (Pseudo-)Inverse Method (Minimum-Coordinate IK – Velocity Level)

Assume that the end-effector pose is represented by the minimum number of coordinates, i.e., $x = f(\theta) \in \mathbb{R}^r$, $\theta \in \mathbb{R}^n$ ($f: \mathbb{R}^n \to \mathbb{R}^r$), and $\dot{x} = J_a(\theta)\dot{\theta}$. Let $x_d(t)$ be the desired end-effector trajectory. Thus, the end-effector pose error, and its derivative are defined as

$$e = x_d - x = x_d - f(\theta)$$
 $\dot{e} = \dot{x}_d - \dot{x} = \dot{x}_d - J_a(\theta)\dot{\theta}$

On the assumption that matrix J_a is square (n = r) and nonsingular, the choice

$$\dot{\boldsymbol{\theta}} = \boldsymbol{J}_a^{-1}(\boldsymbol{\theta})(\dot{\boldsymbol{x}}_d + \boldsymbol{K}\boldsymbol{e}) \quad (*)$$

where $K \in \mathbb{R}^{r \times r}$ is a positive definite (usually diagonal) matrix, leads to the closed-loop system $\dot{e} + Ke = 0$ which is a linear system and is **asymptotically stable**.

Thus, the error e tends to zero along the trajectory with a convergence rate that depends on the eigenvalues of matrix K (the larger the eigenvalues, the faster the convergence).

00

Jacobian Transpose Method

Orientation Error

00

Jacobian Inverse Method

0000000

 $\dot{\boldsymbol{\theta}} = \boldsymbol{J}_a^{-1}(\boldsymbol{\theta})(\dot{\boldsymbol{x}}_d + \boldsymbol{K}\boldsymbol{e}) \rightarrow$

Numerical Methods

0

Analytic Methods

0000000

Inv. Kin.

00

$$\boldsymbol{\theta}(t_{k+1}) = \boldsymbol{\theta}(t_k) + \dot{\boldsymbol{\theta}}(t_k)\Delta t = \boldsymbol{\theta}(t_k) + \boldsymbol{J}_a^{-1} \big(\boldsymbol{\theta}(t_k)\big) \big(\dot{\boldsymbol{x}}_d(t_k) + \boldsymbol{K}\boldsymbol{e}(t_k)\big) \Delta t$$
$$= \boldsymbol{\theta}(t_k) + \boldsymbol{J}_a^{-1} \big(\boldsymbol{\theta}(t_k)\big) \big(\dot{\boldsymbol{x}}_d(t_k) + \boldsymbol{K}\big(\boldsymbol{x}_d(t_k) - \boldsymbol{f}\big(\boldsymbol{\theta}(t_k)\big)\big)\big) \Delta t \qquad k = 0, 1, 2, \dots$$

Note: This equation for $\dot{x}_d = 0$ (i.e., a constant end-effector pose x_d) corresponds to the configuration-level IK based on Newton–Raphson Method.

Note: In the case of a **redundant manipulator**, the solution (*) can be generalized into

$$\dot{\theta} = J_a^+(\dot{x}_d + Ke) + (I_n - J_a^+J_a)\dot{\theta}_0$$

$$\dot{x}_d + e + K + f_a^+(\theta) + f_a^+$$

tony Bro

Inv. Kin.	Analytic Methods	Numerical Methods	Jacobian Inverse Method	Jacobian Transpose Method	Orientation Error	*
00	000000	0	0000000	00	00	Stony Bro Universi

Jacobian Transpose Method

Orientation Error

00

Jacobian Transpose Method (Minimum-Coordinate IK – Configuration Level)

00

Jacobian Transpose Method

Let's define an optimization problem as $\min_{\boldsymbol{\theta}} F(\boldsymbol{\theta}) = \min_{\boldsymbol{\theta}} \frac{1}{2} (\boldsymbol{x}_d - \boldsymbol{f}(\boldsymbol{\theta}))^T (\boldsymbol{x}_d - \boldsymbol{f}(\boldsymbol{\theta}))$

The gradient of the cost function $F(\theta) \in \mathbb{R}$ is $\nabla F(\theta) = -J_a^T(\theta)(x_d - f(\theta))$.

Jacobian Inverse Method

00000000

A **Gradient Descent** algorithm to minimize $F(\theta)$ is

Numerical Methods

$$\boldsymbol{\theta}^{k+1} = \boldsymbol{\theta}^k - \lambda \, \nabla F(\boldsymbol{\theta}_k) = \boldsymbol{\theta}^k + \lambda \, \boldsymbol{J}_a^T(\boldsymbol{\theta}^k) \left(\boldsymbol{x}_d - \boldsymbol{f}(\boldsymbol{\theta}^k) \right)$$

where $0 < \lambda \leq 1$ is the step length where can be adjusted to aid convergence.

Inv. Kin.

00

Analytic Methods

Stony Brook

Jacobian Transpose vs Jacobian Inverse

- Jacobian transpose method is computationally more efficient to compute than the Jacobian inverse method.
- Jacobian transpose does not suffer from kinematic singularities.
- The convergence of Jacobian transpose, in terms of number of iterations, may be slower than the Jacobian inverse method.

Consider the following 2R robot where the desired end-effector coordinate is $x_d = (0.2, 1.3)$, the joint variables corresponding to x_d are $\theta_1 = 0.5650$ and $\theta_2 = 0.7062$, the initial guess are $\theta_1 = 0.25$ and $\theta_2 = 0.75$, and the step size is 0.75.

Iteration	$ heta_1$	$ heta_2$
1	-0.33284	2.6711
2	0.80552	2.1025
3	0.46906	1.9316
4	0.53554	1.7697
5	0.55729	1.7227
6	0.56308	1.7104
7	0.56455	1.7073
8	0.56492	1.7065
9	0.56501	1.7063
10	0.56503	1.7062

IK using Jacobian inverse

Iteration	$ heta_1$	θ_2
1	1.8362	1.3412
2	0.4667	1.1025
3	1.1215	1.6233
4	0.45264	1.415
5	0.83519	1.7273
26	0.56522	1.7063
27	0.56492	1.7061
28	0.56514	1.7063
29	0.56498	1.7062
30	0.5650	1.7062

IK using Jacobian transpose

Inv. Kin.	Analytic Methods	Numerical Methods	Jacobian Inverse Method	Jacobian Transpose Method	Orientation Error	
00	000000	0	0000000	00	00	Stony Bro Universit

Orientation Error

Orientation Error for Minimum-Coordinate Representation

$$oldsymbol{e} = egin{bmatrix} oldsymbol{e}_R \ oldsymbol{e}_p \end{bmatrix} = egin{bmatrix} oldsymbol{e}_R \ oldsymbol{p}_d - oldsymbol{p} \end{bmatrix}$$

Computation of e_R depends on the particular representation of end-effector orientation, namely, Euler angles, exponential coordinates (angle and axis), and unit quaternion:

(1) Euler Angles: Method 1:
$$e_R = \phi_d - \phi \in \mathbb{R}^3$$

Method 2: $e_R = \text{EulerAngles}(\mathbf{R}_{sb}^T \mathbf{R}_{sd}) = \text{EulerAngles}(\mathbf{R}_{bd}) \in \mathbb{R}^3$

Assumption: There is no kinematic or representation singularities.

Stony Broo

Orientation Error for Minimum-Coordinate Representation

Jacobian Inverse Method

00000000

(2) Exponential Coordinates (Angle and Axis):

Numerical Methods

0

$$\boldsymbol{R}_{bd} = \boldsymbol{R}_{sb}^T \boldsymbol{R}_{sd}, \quad \log(\boldsymbol{R}_{bd}) = [\widehat{\boldsymbol{\omega}}_b] \theta \quad , \quad \boldsymbol{e}_R \coloneqq \boldsymbol{\omega}_b \theta \quad \text{(in EE frame)} \\ (\text{in EE frame)} \quad \boldsymbol{e}_R \coloneqq \boldsymbol{R}_{sb} \widehat{\boldsymbol{\omega}}_b \theta \quad \text{(in base frame)}$$

00

Jacobian Transpose Method

Orientation Error

 \sim

(3) Unit Quaternion:

Analytic Methods

0000000

$$\boldsymbol{R}_{bd} = \boldsymbol{R}_{sb}^{T} \boldsymbol{R}_{sd} \text{, UnitQuat}(\boldsymbol{R}_{bd}) = \begin{bmatrix} \cos \theta / 2 \\ \sin \theta / 2 \, \widehat{\boldsymbol{\omega}}_{b} \end{bmatrix} = \begin{bmatrix} q_{0} \\ q_{1} \\ q_{2} \\ q_{3} \end{bmatrix}$$
(in EE frame)

Inv. Kin.

00

Stony Brool