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Inverse Kinematics

The inverse kinematics of a robot refers to the calculation of the joint coordinates @ from
the position and orientation (pose) of its end-effector frame.

* “Geometric” inverse kinematics:
GivenT,, = T(0) € SE(3),Find 8 € R"
NS T:R" - SE(3)

* “Minimum-Coordinate” inverse kinematics:
Given x = f(0) € R", Find 8 € R"

T(0) or f(0) f:R* > R”
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Complexities of Inverse Kinematics

The equations to solve are in general nonlinear. Thus, it is not always possible to find a
closed-form solution.

Multiple (finite) solutions may exist.

Infinite solutions may exist (e.g., in the case of a kinematically redundant manipulator).
There might be no admissible solutions (e.g., when the given EE pose does not belong to
the manipulator dexterous workspace.).

» Solving Inverse Kinematics Problems:

* Analytic Methods: Finding closed-form solutions using algebraic intuition or geometric
intuition.

* Iterative Numerical Methods: When there are no (or it is difficult to find) closed-form
solutions.
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Analytic Inverse Kinematics

Most of the existing manipulators are typically formed by an arm and a spherical wrist

(where three consecutive revolute joint axes intersect at a common pointpy,). Thus, we
can decouple the solution for the position (i.e., point py, at the interséction of the three
revolute axes) from that for the orientation.

Pw
O \;‘\
PUMA Arm (6R) Stanford Arm (RRPRRR) 3R Planar Arm

* Therefore, it is possible to solve the inverse kinematics for the arm separately from the
inverse kinematics for the spherical wrist.
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By having p, we can find py, =

(pr) pWy; pWZ), and then, we
can find (64, 8,, 63) as follows.

Yo
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Z0 7 |

Pwx = €1(azc; + azcyz) = ¢qr
Pwy = S1(azc; + azcy3) = s1r
: Pwz = QS T A3533
Yo
% Inverse position problem of finding (84, 8-, 63) using algebraic intuition:
2 2 2 _ 2.4 .2
Pwx + Pwy + Pz = a; + a5 + 2a,a3c;3
2 2 2 2 _ 2
. _ Pwx T Pwy T Pwz — Az — a3
3~ O, €E|—m,m
20,03 [> 05 = atan2(ss, c3) [> 31 € | ]

93,11 — _93,1
s3 =+ /1 — cf
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Example 1: 6R PUMA-Type Arms (cont)

-
Pivx + pl%l/y = (azc; + a3¢23)° — » aycy +azcy; = i\/pﬁ,x + P]%vy = xr

Pwz = A28 + A3S,3
Sp3 = SpC3 + S3C5

Cp3 = CpC3 — 5253

J
i\/pﬁ/x + pl%l/y(az + azcs) + pw,aszS3
Cr =
2 as + a3 + 2a,azcq
5 5 [> 0, = atan2(s,, cy)
pwz(a; + azcs) — i\/pr + PwyaszSs
52 = 2, 2
a; +az + 2a,asc
2 T4z 203C3 ; 0,1 (+7)
31
- . Have t utions for 0 O, (—7) 031 = (621, 6211)
or each 63, we have two solutions for ,:
3 2 93 . 92’111 (+7") 93,11 - (92,111! 92,IV)
© v (-7)
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Example 1: 6R PUMA-Type Arms (cont)

Pwx = €1(az¢z + azcy3) - 2 2
Pwy = S1 (azcz + Cl3C23) [> Pwx = —Cl\/pr + pWy 31,1 = atanz(pWy»pr)

ACy + A3C3 = i\/Pﬁ/x + Pﬁ/y = 4r Pwy = iSl\/pﬁ,x + pﬁ/y On = atanz(_pWy' _pr)

Thus, in total, there exist four solutions:

0,1 (+7) —> 04
"6 (=) — Oiq
Oy (+7) —> 64,

Oy (—=1) —> O

(61,1,62,1,6051)
(91,1: 02,111, 33,11)
(91,11; 02,11, 93,1)
(91,11: 02,1v, 93,11)
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Example 1: 6R PUMA-Type Arms (cont)

Note: When pyx = pwy = 0, the arm is in a kinematically singular configuration,
and there are infinitely many possible solutions for 6.

% Inverse orientation problem of finding (8,, 85, ;) after finding
(61,05, 03):

(54104 5[S5105 ,[S6166 — e—[53]93e—[Sz]Qze—[51]91T(g)M_1 =T = (R’,p’)
known

Assume that the joint axes (84, Ss, S¢) of the spherical wrist are aligned in the (Zg, J;, X;)
directions, respectively:

§w4 i Egig';; [> Rot(i, 94)R0t(§7, QS)RO'[()/Z, 86) _ R [> This corresponds to
ws — (M the ZYX Euler angles.

Sw, = (1,0,0)
[> (84r 851 66)
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Pw !

r? = pl%l/x + pl%l/y

S = pwz — dq

% Inverse position problem of finding (84, 8-, 83) using geometric intuition:

If Pw pWy +*+ 0: 61 = atanz(pWy' pr) ) 91 =1+ atanZ(pWy, pr)
6, = atan2(s, 1) 6, = m — atan2(s, 1)

(93 + az)z = 7"2 + SZ e 03 = \/Tz + S2 —ay = \/pﬁ;x + p%l/y + (pWZ - dl)z —ay
= Thus, there are 2 solutions to the inverse kinematics problem.

% Inverse orientation problem of finding (6,4, s, 8) is similar to PUMA.
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Iterative Numerical Methods
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Numerical Method:
The Simplest IK Method Using IVK

Velocity kinematics equation V = J(0)80 can be used to tackle the inverse kinematics
problem. Suppose that the end-effector motion V;(t) and the initial robot configuration

0(0) are given. The aim is to determine a feasible joint position and velocity (B(t),é(t))
that reproduces the given end-effector motion V4 (t).

t
From Inverse Velocity Kinematics (IVK): @ = J*(0)V, then, 0(t) = f 0(¢c)d¢ + 6(0).
0

Using Euler integration
method and an integration O(t,41) = 0(ty) + 0(t,)At = 0(t,) + ] (H(tk))vd(tk)At
interval At = tp 41 — tg:

However, due to drift phenomena in numerical integration, small velocity errors are likely
to accumulate over time, resulting in increasing position error 8 and the end-effector pose
corresponding to the computed joint variables differs from the desired one.

Thus, an end-effector pose feedback in algorithm is required to keep the end-effector
following the desired pose/motion.
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Jacobian (Pseudo-)inverse
Method
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Preliminary: Newton—Raphson Method

fix)
Newton—Raphson Method is an iterative method for »
numerically finding the roots of a nonlinear equation
f(x) = 0 where f: R — Ris differentiable.

After Second Iteration
ﬂl'_\]

If x© is an initial guess for the solution, Taylor expansion
0 N ._.-——"""_1 Xy 1 ¥ X
of f(x) at x" is I
= ( -1
= 0) + L (0 0 W fx) =0 df
fx)=f(x )+a(x )(x — x) + higher= rterms (h.o.t) V=4 . _ 0 _ a(XO) F(x%)

Using x as the new guess for the solution and repeating: xhtl =k _ (g (xk)> f(x*)

k+1Y _ k
The iteration is repeated until some stopping criterion is satisfied, e.g., |f(x ) f(x )l <€

f (x ) B

€: a given threshold value
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Jacobian (Pseudo-)Inverse Method
(Minimum-Coordinate IK — Configuration Level)

Assume that the EE pose is represented by the minimum number of coordinates, i.e., x =
f(@) e R", 0 € R" (f: R™ - R"). Thus, given a desired EE pose x4, the goal is to find joint

coordinates 8 = 0, such that
xg =f(0,) (Assumption: f is differentiable)

* We use a method similar to the Newton—Raphson method for nonlinear root-finding.
Given an initial guess 8° which is “close to” a solution 84, and using the Taylor expansion:

xg=f(0)=f(0)+ L . (0-6%+hot

——
]a(QO)ERrxn
Analytical Jacobian at 8°

Approximately: - ]a(BO)AH =x, — f(GO)
(hot.=0)
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Jacobian (Pseudo-)Inverse Method
(Minimum-Coordinate IK — Configuration Level)

* If J, is square (r = n) and invertible: AO = ]a_l(eo)(xd — f(HO))
= 01 =05+ 1J,71(0%) (xg - £(65)), k=012,

where 0 < A < 1 is the step length. 0°,01,0% .. >0,

* If J 4 is not square or not invertible (due to singularity): A8 = J,*(8°) (x4 — £(8%))

+ .
Jo : Moore—Penrose pseudoinverse

= 0 =05+1),7(0") (xa— £(6Y)), k=012

Note: If robot is redundant (n > r) and J 4 is full rank (rank(J,) = min(r,n)), i.e., the robot
is not at a singularity:

]a+ — ]aT(]alaT)_l
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Stony Brook
University

Remarks

* The step length A can be adjusted to aid convergence. It may be chosen asascalarA € R
or as a diagonal matrix A € R™*" (to scale each component of the configuration 0
separately).

okt = 0k + A J, " (6%) (x? - £(6¥)), k=012,..
The step length A or A can be either a constant or as a function of k.

* If there are multiple inverse kinematics solutions, the iterative process tends to converge
to the solution that is “closest” to the initial guess 6°.

* Methods of optimization are needed in situations where an exact solution may not exist
and we seek the closest approximate solution; or, conversely, an infinity of inverse
kinematics solutions exists (i.e., if the robot is kinematically redundant) and we seek a
solution that is optimal with respect to some criterion/constraints.

Amin Fakhari, Fall 2024 MEC529 e Ch7: Inverse Kinematics P19



Analytic Methods Numerical Methods Jacobian Inverse Method Jacobian Transpose Method Orientation Error

0000000 ©) O000e000 0]0) o]e

Algorithm for Minimum-Coordinate Representation

a) Initialization: Given x; € R" and an initial guess 8° € R", set k = 0.
b) Iteration: Sete = x; — f(Ok). While ||e|| > € for some small € € R:
* Set @%t1 = @% + 1]t (0Y)e.

0 < A < 1: step length parameter
* Increment k.

Algorithm in MATLAB:

max iterations = 20;

k = 0;

lambda = 1;

Theta = Theta 0;

e = X d - FK(Theta);

while norm(e) > epsilon && k < max iterations
Theta = Theta + lambda * pinv(J(Theta)) * e;
k =k + 1;
e = X d - FK(Theta);

end

Note: For the motion of a robot along a given desired trajectory, a good choice for the
initial guess @9 is to use the solution to the IK at the previous time step.
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Algorithm for Transformation Matrix Representation

Assume that the EE pose is represented by a Transformation Matrix, i.e., T, = T(0) €
SE(3), @ € R™. Thus, given a desired EE pose T4, the goal is to find joint coordinates

0 = 0, such that
Tsq =T(0,)

Algorithm in Body Frame:

a) Initialization: Given Ty; € SE(3) and an initial guess 8° € R", set k = 0.

b) Iteration: Set [€,] = log (de(ek)) log(T 57 (0%)Tsq). While ||| > €4 or [|Eby|| > €
for some small ¢, €, € R, where &, = (Sb'w,é‘b'v).

* Set @%*1 = 9% + 1} (6%)E,. (€, is the twist that takes Ty, to T4 in 1)

* Increment k. (€, has the unit of radian and the dimension of €, is length)
0<A<1)

Algorithm in Space Frame:
a) Initialization: Given T;4; € SE(3) and an initial guess 8° € R", set k = 0.
b) Iteration: Set [£] = [Ady, | log (Tpa(6%)) = [Adr,, ] log(T5(8%)T ). While || € || > €.,
or ||£Sv|| > €, for some small €, €, € R, where £, = (Es,w,é‘s,v):
 Set O%t1 = g% + 1 JF(0%)E;. . . .
. Increment k. Js(6%) (&, is the twist that takes T, to T4 in 1)

Amin Fakhari, Fall 2024 MEC529 e Ch7: Inverse Kinematics P21



Analytic Methods Numerical Methods Jacobian Inverse Method Jacobian Transpose Method Orientation Error

0000000 ©) O00000e0 0]0) o]e

Jacobian (Pseudo-)Inverse Method
(Minimum-Coordinate IK — Velocity Level)

Assume that the end-effector pose is represented by the minimum number of coordinates,
e, x=f(0) eR",0 e R"(f:R" - R"),and x = J,(0)0. Let x;(t) be the desired end-
effector trajectory. Thus, the end-effector pose error, and its derivative are defined as

e=x,—x=x4— f(0) e=x;—x=1x,—],00)0
On the assumption that matrix J, is square (n = r) and nonsingular, the choice

6 =J"(0)(xy +Ke) (%)

where K € R"™™" is a positive definite (usually diagonal) matrix, leads to the closed-loop
system e + Ke = 0 which is a linear system and is asymptotically stable.

Xq

Thus, the error e tends to zero along the

trajectory with a convergence rate that depends Xy s e :l v b - 0
on the eigenvalues of matrix K (the larger the — >0 K [ 0—Ja'(6) g, >
eigenvalues, the faster the convergence).

A

f(6)
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Jacobian (Pseudo-)Inverse Method
(Minimum-Coordinate IK — Velocity Level)

0=J1(0)(x; + Ke) -
0(trr1) = 0(ty) + 0(t )AL = 0(ty) +J71(0(tr) ) (x4 (ty) + Ke(ty))At
= 0(t0) +J21(0(t0) (alt) + K (xa(t) - £(6(5)))ac  k=012,..

Note: This equation for x; = O (i.e., a constant end-effector pose x;) corresponds to the
configuration-level IK based on Newton—Raphson Method.

Note: In the case of a redundant manipulator, the solution (*) can be generalized into

Xq

6 :]z(xd + Ke) + (In _]Z]a)éo

Xqg + € + + 0 r 0

e m K 0 2(9))4?’ J >

(In _]Z]a)go

\ 4

f(O)
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Jacobian Transpose Method
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Jacobian Transpose Method
(Minimum-Coordinate IK — Configuration Level)

1
Let’s define an optimization problemas ~ min F(0) = min > (x4 — f(B))T (xq — F(8))
The gradient of the cost function F(0) € Ris VF(8) = —J%(0)(xz — £(0)).

A Gradient Descent algorithm to minimize F(0) is

6+ = 9% — LVF () = 6% + AJ5(6%) (x4 — £(6¥))

where 0 < A < 1 is the step length where can be adjusted to aid convergence.
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Jacobian Transpose vs Jacobian Inverse

Jacobian transpose method is computationally more efficient to compute than the
Jacobian inverse method.

Jacobian transpose does not suffer from kinematic singularities.

The convergence of Jacobian transpose, in terms of number of iterations, may be slower
than the Jacobian inverse method.

Consider the following 2R robot where the desired end-effector coordinate is x; = (0.2,1.3), the joint

variables corresponding to x; are 8; = 0.5650 and 8, = 0.7062, the initial guess are 8; = 0.25 and
6, = 0.75, and the step size is 0.75.

Iteration X 09 Iteration X 2

1 —0.33284 | 2.6711 1 1.8362 | 1.3412
o Desired 2 0.80552 | 2.1025 2 0.4667 | 1.1025
il & Configuration 3 0.46906 | 1.9316 3 1.1215 | 1.6233
4 0.53554 | 1.7697 4 0.45264 | 1.415
>~ 05| 5 0.55729 | 1.7227 5 0.83519 | 1.7273
“Initial 6 0.56308 | 1.7104 26 0.56522 | 1.7063
0 e 7 0.56455 | 1.7073 27 | 0.56492 | 1.7061
o | 8 0.56492 | 1.7065 28 0.56514 | 1.7063
o b a1 I3 R 9 0.56501 | 1.7063 29 0.56498 | 1.7062
10 0.56503 | 1.7062 30 0.5650 | 1.7062

IK using Jacobian inverse IK using Jacobian transpose
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Orientation Error
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Orientation Error for Minimum-Coordinate
Representation

o[-
~|ep]l Ipa—D

Computation of ep depends on the particular representation of end-effector orientation,
namely, Euler angles, exponential coordinates (angle and axis), and unit quaternion:

(1) Euler Angles: Method1: eg = ¢y — ¢p € R3
Method 2: ep = EulerAngles(Rgbde) = EulerAngles(R, ;) € R3

Assumption: There is no kinematic or representation singularities.
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Orientation Error for Minimum-Coordinate
Representation

(2) Exponential Coordinates (Angle and Axis):

- ep = ;0 (in EE frame)
Rps = RL,Ryy, log(Ryy) = [@,10 , K b

er = Ry, @p0 (in base frame)
(in EE frame)

(3) Unit Quaternion:

do
_ pT : [ cosB/2 ]_ q1
Rys = R, R, UnitQuat(R,,) = [sin@/z o, = |4z
143

(in EE frame)
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