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Path, Time Scaling, and Trajectory

Trajectory 𝒞 𝑠 𝑡  or 𝒞 𝑡  specifies the robot configuration as a function of time, i.e., the 

combination of a path and a time scaling.

Path 𝒞 𝑠  is a purely geometric description of the sequence of configurations achieved by 
the robot:

Time Scaling 𝑠 𝑡  controls how fast the path is followed. It 
specifies the times when those robot configurations are 
reached:

𝑠 ∈ 0,1 : scalar path parameter
(0 at the start and 1 at the end of the path)

Robot’s C-space

• As 𝑠 increases from 0 to 1, the robot moves along the path.

start

end

𝑠: 0, 𝑇 → 0,1

𝒞: 0,1 → ℂ
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Trajectory Planning in Joint-Space vs Task-Space

• Since the control action on the robot is carried out in the joint space, if the trajectory 
planning is performed in the task space (𝒙 𝑡  or 𝑻 𝑡 ), we have to use inverse kinematics 
to reconstruct the corresponding time sequence of joint variables 𝜽 𝑡  along the path.

• In the presence of joint limits, motion near singular configuration, and redundant DOFs, 
trajectory planning in the task space may involve problems difficult to solve and it may 
be advisable to plan trajectory in the joint space to satisfy the constraints imposed on 
the trajectory.

• In the presence of path constraints (e.g., obstacles), trajectory planning in the task space 
may be advisable, because these constraints are typically better described in the task 
space.
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Point-to-Point Path Planning
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Point-to-Point Motion

Point-to-Point motion is the simplest type of motion which 
is from rest at one configuration (start) to rest at another 
configuration (end).

The path for point-to-point motion from a start configuration to an end configuration can 
be constructed in either joint space or task space.

𝑠

start

end
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(1) Point-to-Point Straight-Line Path in Joint Space 

Example: A 2R robot with joint limits: 0∘ ≤ 𝜃1 ≤ 180∘, 0∘ ≤ 𝜃2 ≤ 150∘.

J-space is a convex set

End-effector path is not 
necessarily a straight-line.

Workspace is not necessarily 
a convex set.

A straight line in J-space
(joint limits and singularity 

avoidance are satisfied)

𝜽 𝑠 = 𝜽start + 𝑠 𝜽end − 𝜽start 

𝑠 ∈ 0,1 ,  𝜽 ∈ ℝ𝑛 (𝑛: number of joints)

Straight-Line Path in Joint Space:

(𝜽min ≤ 𝜽 ≤ 𝜽max)

𝑥

𝑦
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(2.1) Point-to-Point Straight-Line Path in Task Space
(in Cartesian Space ℝ3) 

• If the EE frame is represented by a minimum set of coordinates, i.e., 𝒙 ∈ ℝ𝑟:

𝒙(𝑠) = 𝒙start + 𝑠 𝒙end − 𝒙start 

• If the EE frame is represented by position vector 𝒑 ∈ ℝ3 and the rotation matrix 𝑹 ∈ 𝑆𝑂 3 :

𝒑(𝑠) = 𝒑start + 𝑠 𝒑end − 𝒑start

𝑹(𝑠) = 𝑹start exp log 𝑹start
T 𝑹end 𝑠

𝑹start,end

ෝ𝝎start 𝜙 (axis of rotation is 
constant in start )

𝑠

start

end

start

end

(A Straight-Line 
Path in 𝑆𝑂 3 )

𝑹start,current 𝑠
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(2.1) Point-to-Point Straight-Line Path in Task Space 
(in Cartesian Space ℝ3) (cont.)

End-effector path is a straight-
line in Cartesian space.

Example: A 2R robot with joint limits: 0∘ ≤ 𝜃1 ≤ 180∘, 0∘ ≤ 𝜃2 ≤ 150∘.

• The path in the J-space may violate the joint limits.
• The path may pass near a kinematic singularity (where joint velocities become large).

𝑥

𝑦
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(2.1') Point-to-Point Circular Path in Task Space
(in Cartesian Space ℝ3) 

𝒓: unit vector of the circle axis
𝒅: a point along the circle axis
𝒑start: start point on the circle
𝒄: center of the circle
𝜌: radius of the circle
𝑜′  : a frame at the center of

          the circle

𝒄 = 𝒅 + 𝜹𝑇𝒓 𝒓

𝜹 = 𝒑start − 𝒅

𝒑(𝑠) = 𝒄 + 𝑹𝑠𝑜′

𝜌cos(𝛼𝑠)
𝜌sin(𝛼𝑠)

0

𝜌 = 𝒑start − 𝒄

Path corresponding motion of position vector 𝒑 ∈ ℝ3 of EE 
along a circle from 𝒑start by an angle 𝛼 (measured from 𝑥′-axis 
of 𝑜′ ) to reach 𝒑end when 𝑠 goes from 0 to 1:

𝑥

𝑦

𝑧

𝒅

𝒑start

𝜹

𝒄

𝒓
𝑧′

𝑥′

𝑦′

𝜌

𝑠

𝑜′

𝒑end
𝛼

circle axis
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(2.2) Point-to-Point Straight-Line Path in Task Space
(in SE(3)) 

𝑻 𝑠 = 𝑻start exp log 𝑻start 
−1 𝑻end 𝑠

If EE frame is represented by 𝑻 = 𝑹, 𝒑 ∈ 𝑆𝐸 3 : 

This path is equivalent to a constant screw motion of the EE frame 
(simultaneous rotation about and translation along a fixed screw 
axis 𝑺start) in Cartesian space ℝ3.

𝑻start,end

𝑺start 𝜙

Note: The origin of the EE frame does not generally follow a straight line in Cartesian space ℝ3.

screw path

start

end

𝑺start

𝑠

start

end
(A Straight-Line 
Path in 𝑆𝐸 3 )

𝑻start,current 𝑠
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Example

1

1

3

4 5 𝑥

𝑦

𝒑 0

𝒑 1

Give an expression for the path 𝒑 𝑠 = 𝑥 𝑠 , 𝑦 𝑠 ∈ ℝ2, 𝑠 ∈ 0,1 . Assume that point 𝐴 

is at 𝑠 = 0.5. 

𝐴
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Time Scaling a Path
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Time Scaling a Path

A time scaling 𝑠 𝑡  of a path should ensure that the motion is appropriately smooth, and it 
should satisfy any constraints on joint velocities, accelerations, or torques or EE velocities 
and accelerations.

ሶ𝜽 =
𝑑𝜽

𝑑𝑠
ሶ𝑠 = ሶ𝑠 𝜽end − 𝜽start 

 Joint velocities and accelerations for straight-line path in joint space:

ሷ𝜽 =
𝑑𝜽

𝑑𝑠
ሷ𝑠 +

𝑑2𝜽

𝑑𝑠2 ሶ𝑠2 = ሷ𝑠 𝜽end − 𝜽start 

The most common methods for time-scaling 𝑠 𝑡 :
1. 3rd-Order Polynomial Position Profile
2. 5th-Order Polynomial Position Profile
3. Trapezoidal Velocity Profile
4. S-Curve Velocity Profile

 EE velocities and accelerations for straight-line path in task space parametrized by a 
minimum set of coordinates 𝒙 ∈ ℝ𝑟:

ሶ𝒙 =
𝑑𝒙

𝑑𝑠
ሶ𝑠 = ሶ𝑠 𝒙end − 𝒙start ሷ𝒙 =

𝑑𝒙

𝑑𝑠
ሷ𝑠 +

𝑑2𝒙

𝑑𝑠2
ሶ𝑠2 = ሷ𝑠 𝒙end − 𝒙start 
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1. 3rd-Order Polynomial Position Profile

𝑠(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + 𝑎3𝑡3

𝑠 0 = 0
ሶ𝑠 0 = 0

𝑠 𝑇 = 1
ሶ𝑠 𝑇 = 0

Time scaling 𝑠 𝑡  using 3rd-order polynomial position profile with the motion time 𝑇:

𝑠 𝑡 =
3

𝑇2 𝑡2 + −
2

𝑇3 𝑡3

(constraints)

𝑇

2

𝑇

2

𝑡 ∈ 0, 𝑇
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1. 3rd-Order Polynomial Position Profile (cont.)

𝜽(𝑡) = 𝜽start +
3𝑡2

𝑇2 −
2𝑡3

𝑇3 𝜽end − 𝜽start

For a straight-line path in joint space (i.e., 𝜽 𝑠 = 𝜽start + 𝑠 𝜽end − 𝜽start ):

ሶ𝜽(𝑡) =
6𝑡

𝑇2
−

6𝑡2

𝑇3
𝜽end − 𝜽start 

ሷ𝜽(𝑡) =
6

𝑇2
−

12𝑡

𝑇3
𝜽end − 𝜽start 

ሶ𝜽max = ቚሶ𝜽
𝑡=𝑇/2

=
3

2𝑇
𝜽end − 𝜽start 

ሷ𝜽max/min = ቚሷ𝜽
𝑡=0 or 𝑇

= ±
6

𝑇2
𝜽end − 𝜽start 

Note: If there are given limits on the maximum joint velocities and accelerations (i.e., 
ሶ𝜽 ≤ ሶ𝜽limit, ሷ𝜽 ≤ ሷ𝜽limit), we can solve for the minimum possible motion time 𝑇 that 

satisfies both constraints.

(maximum joint velocities) (maximum joint accelerations and decelerations)

Note: For a straight-line path in task space parametrized by a minimum set of coordinates 

𝒙 ∈ ℝ𝑟, simply replace 𝜽, ሶ𝜽, and ሷ𝜽 by 𝒙, ሶ𝒙, and ሷ𝒙.
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2. 5th-Order Polynomial Position Profile

The discontinuous jump in acceleration at both 𝑡 = 0 and 𝑡 = 𝑇 of the 3rd-order polynomial 
position profile (which implies an infinite jerk 𝑑3𝑠/𝑑𝑡3) may cause vibration of the robot.

This problem can be solved by adding two constraints ሷ𝑠 0 = ሷ𝑠 𝑇 = 0 and using a 5th-order 
polynomial position profile for time scaling as

𝑠(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + 𝑎3𝑡3 + 𝑎4𝑡4 + 𝑎5𝑡5

𝑇

2

𝑇

2

𝑡 ∈ 0, 𝑇
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3. Trapezoidal Velocity Profile

This motion consists of a constant acceleration phase ሷ𝑠 = 𝑎 of time 𝑡𝑎, followed by a 
constant velocity phase ሶ𝑠 = 𝑣 of time 𝑇 − 2𝑡𝑎, followed by a constant deceleration phase 
ሷ𝑠 = −𝑎 of time 𝑡𝑎.

Disadvantage: It is not as smooth as the 3rd-order position profile time scaling.
Advantage: For example, in joint space, if there are known constant limits on the joint 

velocities ሶ𝜽limit ∈ ℝ𝑛 and joint accelerations ሷ𝜽limit ∈ ℝ𝑛, this motion with the largest 𝑣 
and 𝑎 satisfying

is the fastest straight-line motion possible (i.e., minimum total time 𝑇).

𝜽end − 𝜽start 𝑣 ≤ ሶ𝜽limit 

𝜽end − 𝜽start 𝑎 ≤ ሷ𝜽limit 

𝑡𝑎 =
𝑣

𝑎

න
0

𝑇

ሶ𝑠 𝑑𝑡 = 𝑠 𝑇 = 1

line

parabola
accelerate–coast–decelerate

𝑡𝑎 𝑇 − 𝑡𝑎
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3. Trapezoidal Velocity Profile (cont.)

accelerate–decelerate “bang-bang” motion

• If 𝑣2/𝑎 ≥ 1, the motion never reaches the velocity 𝑣 (or 

reaches only at 𝑇/2) and the velocity profile is triangular.

𝑇/2

𝑠 𝑡 =

𝑎𝑡2/2 0 ≤ 𝑡 ≤ 𝑣/𝑎

𝑣𝑡 −
𝑣2

2𝑎
𝑣/𝑎 < 𝑡 ≤ 𝑇 − 𝑣/𝑎

2𝑎𝑣𝑇 − 2𝑣2 − 𝑎2(𝑡 − 𝑇)2

2𝑎
𝑇 − 𝑣/𝑎 < 𝑡 ≤ 𝑇

Ǘ𝑠 𝑡 = ൞

𝑎𝑡 0 ≤ 𝑡 ≤ 𝑣/𝑎
𝑣 𝑣/𝑎 < 𝑡 ≤ 𝑇 − 𝑣/𝑎

−𝑎 𝑡 − 𝑇 𝑇 − 𝑣/𝑎 < 𝑡 ≤ 𝑇

ǃ𝑠(𝑡) =

𝑎 0 ≤ 𝑡 ≤ 𝑣/𝑎

0
𝑣

𝑎
< 𝑡 ≤ 𝑇 − 𝑣/𝑎

−𝑎 𝑇 − 𝑣/𝑎 < 𝑡 ≤ 𝑇

• If 𝑣2/𝑎 < 1, the motion reaches the velocity 𝑣 and the 
velocity profile is trapezoidal:

After choosing 𝑣 and 𝑎:

Note: Only two of 𝑣, 𝑎, and 𝑇 can be chosen independently, since they must satisfy 𝑠 𝑇 = 1.

* If 𝑣, 𝑎 are given, 𝑇 is derived from 0׬

𝑇
ሶ𝑠 𝑑𝑡 = 𝑠 𝑇 = 1 as: 𝑇 = Τ𝑎 + 𝑣2 𝑣𝑎
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4. S-Curve Velocity Profile

The discontinuous jump in acceleration at 𝑡 ∈ 0, 𝑡𝑎 , 𝑇 − 𝑡𝑎 , 𝑇  of the trapezoidal velocity 
profile (which implies an infinite jerk 𝑑3𝑠/𝑑𝑡3) may cause vibration of the robot.

This problem can be solved by using a smoother S-curve velocity profile for time scaling.

(7) constant positive jerk 𝐽
(1) constant positive jerk 𝐽

(2) constant acceleration 𝑎

(3) constant negative jerk −𝐽
(4) constant 𝑣

(5) constant negative jerk −𝐽

(6) constant deceleration −𝑎

It is fully specified by 7 quantities: 𝑡𝐽, 𝑡𝑎, 𝑡𝑣, 𝑇, 𝐽, 𝑎, 𝑣. The constraints are 𝑡𝐽𝐽 = 𝑎, 𝐽𝑡𝐽
2 + 𝑎𝑡𝑎 = 𝑣, 

4𝑡𝐽 + 2𝑡𝑎 + 𝑡𝑣 = 𝑇, 𝑠 𝑇 = 1. Therefore, 3 of the 7 quantities can be specified independently.

𝑡𝐽 𝑡𝐽 + 𝑡𝑎 2𝑡𝐽 + 𝑡𝑎

2𝑡𝐽 + 𝑡𝑎 + 𝑡𝑣

3𝑡𝐽 + 𝑡𝑎 + 𝑡𝑣

3𝑡𝐽 + 2𝑡𝑎 + 𝑡𝑣 4𝑡𝐽 + 2𝑡𝑎 + 𝑡𝑣 = 𝑇
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Polynomial Via Point 
Trajectories
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Polynomial Via Point Trajectories

If the goal is that the trajectories pass through a sequence of via points at specified times  
(e.g., to avoid obstacles or perform a specific task) without a strict specification on the 
shape of path between consecutive points, a simple solution is to use polynomial 
interpolation to directly find the trajectories in the joint space 𝜽 𝑡  or in the task space 
𝒙 𝑡  without first specifying a path 𝒄 𝑠  and then a time scaling 𝑠 𝑡 .
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Polynomial Via Point Trajectories

Using a single polynomial 𝜽 𝑡  or 𝒙 𝑡  which passes through all 𝑁 via points has the 
following disadvantages (𝑁 points → 𝑁 constraints → (𝑁 − 1)-order polynomial):
• As the order of a polynomial increases, its oscillatory behavior increases, and this may 

lead to trajectories which are not natural for the manipulator.
• Polynomial coefficients depend on all the assigned points; thus, if it is desired to change a 

point, all of them have to be recomputed.

These drawbacks can be overcome if a suitable number of low-order interpolating 
polynomials, continuous at the path points, are considered in place of a single high-order 
polynomial. The most common methods:

1. Using Cubic Polynomials
2. Using Linear and Quadratic Polynomials (B-Spline)
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1. Polynomial Via Point Trajectories Using
Cubic Polynomials

# of via points: 𝑁 

𝑘 ∈ 1, … , 𝑁

Position constraints:
𝛽 𝑡𝑘 = 𝛽𝑘

# of segments: 𝑁 − 1 

Let’s focus on a single trajectory 𝛽 𝑡 :
Note: 𝛽 𝑡  can be 𝜃𝑖 𝑡  in J-space or 
𝑥𝑖 𝑡  in T-space.

𝛽 𝑡 = ቐ
𝜋1 𝑡 0 ≤ 𝑡 ≤ 𝑡2

⋮ ⋮
𝜋𝑁−1 𝑡 𝑡𝑁−1 ≤ 𝑡 ≤ 𝑇

𝑡1 = 0 𝑡𝑁 = 𝑇

𝛽

𝑡

𝛽 𝑡2 = 𝛽2

𝜋1 𝑡

𝜋2 𝑡

𝜋3 𝑡
𝜋𝑁−1 𝑡

𝑡2 𝑡3

𝛽 𝑡1 = 𝛽1

𝛽 𝑡𝑁 = 𝛽𝑁

𝛽 𝑡3 = 𝛽3

𝜋𝑘 𝑡 = 𝑎𝑘,0 + 𝑎𝑘,1𝑡 + 𝑎𝑘,2𝑡2 + 𝑎𝑘,3𝑡3

where 𝑡1 = 0 and 𝑡𝑁 = 𝑇.
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(1.a) Cubic Polynomials with Imposed Velocities at Via 
Points

The desired velocity at each via point is given: ሶ𝛽(𝑡𝑘) = ሶ𝛽𝑘 𝑘 ∈ 1, … , 𝑁

𝜋𝑘 𝑡𝑘 = 𝛽𝑘

𝜋𝑘 𝑡𝑘+1 = 𝛽𝑘+1

ሶ𝜋𝑘 𝑡𝑘 = ሶ𝛽𝑘

ሶ𝜋𝑘 𝑡𝑘+1 = ሶ𝛽𝑘+1

𝑁 − 1 systems of four equations that 
can be solved independently. or 
simultaneously by forming 𝑨𝒙 = 𝒃.

𝑘 ∈ 1, … , 𝑁 − 1

• Typically, ሶ𝛽 0 = ሶ𝛽 𝑇 = 0 and continuity of 
velocity at the path points is ensured by setting 

ሶ𝜋𝑘 𝑡𝑘+1 = ሶ𝜋𝑘+1 𝑡𝑘+1 , 𝑘 ∈ 1, … , 𝑁 − 2 .

Note: The approach is easily generalized 
to the use of 5th-order polynomials by 
having accelerations at the via points. 𝑡1 = 0 𝑡𝑁 = 𝑇

𝛽

𝑡

𝛽 𝑡2 = 𝛽2

𝜋1 𝑡

𝜋2 𝑡

𝜋3 𝑡
𝜋𝑁−1 𝑡

𝑡2 𝑡3

𝛽 𝑡1 = 𝛽1

𝛽 𝑡𝑁 = 𝛽𝑁

𝛽 𝑡3 = 𝛽3
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(1.b) Cubic Polynomials with Computed Velocities at Via 
Points

If the desired velocity at each via point is not given, the velocity at each point can be 
computed by the assumption that the trajectory between two consecutive points is a 

linear segment. Thus, the velocities ሶ𝛽𝑘 can be computed as:

ሶ𝛽1 = 0

ሶ𝛽𝑘 = ൞
0 sgn 𝑣𝑘 ≠ sgn 𝑣𝑘+1

1

2
𝑣𝑘 + 𝑣𝑘+1 sgn 𝑣𝑘 = sgn 𝑣𝑘+1

ሶ𝛽𝑁 = 0,

where 𝑣𝑘 = 𝛽𝑘 − 𝛽𝑘−1 / 𝑡𝑘 − 𝑡𝑘−1  is the slope 

of the segment in the time interval 𝑡𝑘−1, 𝑡𝑘 .

Then, we use the method in (1.a).

𝑡1 = 0 𝑡𝑁 = 𝑇

𝛽

𝑡

𝛽 𝑡2 = 𝛽2

𝜋1 𝑡

𝜋2 𝑡

𝜋3 𝑡
𝜋𝑁−1 𝑡

𝑡2 𝑡3

𝛽 𝑡1 = 𝛽1

𝛽 𝑡𝑁 = 𝛽𝑁

𝛽 𝑡3 = 𝛽3

𝑘 ∈ 2, … , 𝑁 − 1

Drawback: At some via points the velocity is 0.
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(1.c) Cubic Polynomials with Continuous Velocities and 
Accelerations at Via Points (Splines)

𝑘 ∈ 2, … , 𝑁 − 1

Both (1.a) and (1.b) do not ensure continuity of accelerations at the via points. In this method:

𝜋1 0 = 𝛽1

ሶ𝜋1 0 = ሶ𝛽1

ሷ𝜋1 0 = ሷ𝛽1

𝜋𝑘 𝑡𝑘 = 𝛽𝑘

𝜋𝑘 𝑡𝑘 = 𝜋𝑘−1 𝑡𝑘

ሶ𝜋𝑘 𝑡𝑘 = ሶ𝜋𝑘−1 𝑡𝑘

ሷ𝜋𝑘 𝑡𝑘 = ሷ𝜋𝑘−1 𝑡𝑘

𝜋𝑁−1 𝑇 = 𝛽𝑁

ሶ𝜋𝑁−1 𝑇 = ሶ𝛽𝑁

ሷ𝜋𝑁−1 𝑇 = ሷ𝛽𝑁

3 Possible Solutions:
1. Eliminating ሷ𝜋1 0 = ሷ𝛽1 and ሷ𝜋𝑁−1 𝑇 = ሷ𝛽𝑁.
2. Using 4th-order polynomials only for 𝜋1 and 𝜋𝑁−1.
3. Introducing two virtual points arbitrarily in the intervals 

𝑡1, 𝑡2  and 𝑡𝑁−1, 𝑡𝑁 , for which continuity constraints on 
position, velocity and acceleration can be imposed, 
without specifying the actual positions:

# of cubic polynomials: 𝑁 + 1
# of unknowns: 4(𝑁 + 1)
# of Equations: 4 𝑁 − 2 + 6 + 3 + 3 

# of Cubic Polynomials: 𝑁 − 1,      # of Unknowns: 4(𝑁 − 1)     ≠      # of Equations: 4(𝑁 − 2) + 6! 

𝑡1 = 0 𝑡𝑁 = 𝑇

𝛽

𝑡

𝛽 𝑡2 = 𝛽2

𝜋1 𝑡

𝜋2 𝑡

𝜋3 𝑡
𝜋𝑁−1 𝑡

𝑡2 𝑡3

𝛽 𝑡1 = 𝛽1

𝛽 𝑡𝑁 = 𝛽𝑁

𝛽 𝑡3 = 𝛽3

Note: All the equations can be rewritten in the form 𝑨𝒙 = 𝒃 
and the solution to this system always exists and is unique.
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2. Polynomial Via Point Trajectories Using
Linear and Quadratic Polynomials (B-Spline)

𝛽

𝑡𝑡1 = 0 𝑡𝑁 = 𝑇𝑡2 𝑡3

𝛽 𝑡2 = 𝛽2

𝛽 𝑡1 = 𝛽1

𝛽 𝑡𝑁 = 𝛽𝑁

𝛽 𝑡3 = 𝛽3

The entire trajectory is composed of a sequence of linear and quadratic polynomials.

• This is an application of the trapezoidal velocity profile law to the via points problem.
• Trajectory does not ensure continuity of accelerations at the via points.
• The path does not pass exactly through the via points. However, it stays within convex 

hull of the via points (This can be important to ensure that joint limits or workspace 
obstacles are respected).

parabola

line
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