Ch11: Force and Impedance Control

Pure Force Control

Pure Force Control (Direct Force Control)

- When the task is not to create motions at the end-effector but to apply forces and torques to the environment, **force control** is needed.
- Pure force control is only possible if the environment provides resistance forces in every direction.

$$\boldsymbol{\tau} = \boldsymbol{M}(\boldsymbol{q})\boldsymbol{\ddot{q}} + \boldsymbol{C}(\boldsymbol{q},\boldsymbol{\dot{q}})\boldsymbol{\dot{q}} + \boldsymbol{g}(\boldsymbol{q}) + \boldsymbol{J}^{T}(\boldsymbol{q})\boldsymbol{\mathcal{F}}_{\mathrm{tip}}$$

During a force control
task:
$$\dot{q} = \ddot{q} \approx 0$$

 $\tau = g(q) + J^T(q)\mathcal{F}_{tip}$
Wrench applied by
manipulator to environment

(1) If only joint position feedback is available, the control law is: $\tau = g(q) + J^T(q)\mathcal{F}_d$

 $\boldsymbol{\mathcal{F}}_d$: desired wrench

• This requires a good model for gravity compensation and precise control of the torques at joints.

Pure Force Control

(2) If a six-axis force-torque sensor between the arm and the end-effector is available to directly measure ${\cal F}_{\rm tip}$, a PI force controller is

$$\boldsymbol{\tau} = \boldsymbol{g}(\boldsymbol{q}) + \boldsymbol{J}^{T}(\boldsymbol{q}) \big(\boldsymbol{\mathcal{F}}_{d} + \boldsymbol{K}_{p} \boldsymbol{\mathcal{F}}_{e} + \boldsymbol{K}_{i} \int \boldsymbol{\mathcal{F}}_{e}(t) \mathrm{d}t \big)$$

where $\mathcal{F}_e = \mathcal{F}_d - \mathcal{F}_{tip}$ and K_p and K_i are positive-definite matrices.

Closed-loop dynamics:

$$g(q) + J^{T}(q)\mathcal{F}_{tip} = g(q) + J^{T}(q) \big(\mathcal{F}_{d} + K_{p}\mathcal{F}_{e} + K_{i} \int \mathcal{F}_{e}(t) dt \big)$$
$$(K_{p} + I)\mathcal{F}_{e} + K_{i} \int \mathcal{F}_{e}(t) dt = \mathbf{0}$$
$$(K_{p} + I)\dot{\mathcal{F}}_{e} + K_{i}\mathcal{F}_{e} = \mathbf{0}$$

 \Rightarrow \mathcal{F}_{e} converges to zero for positive-definite matrices.

Pure Force Control

If there is nothing for the robot to push against, it will accelerate in a failing attempt to create end-effector forces. Since a typical force-control task requires little motion, we can limit this acceleration by adding velocity damping as

$$\boldsymbol{\tau} = \boldsymbol{g}(\boldsymbol{q}) + \boldsymbol{J}^{T}(\boldsymbol{q}) \big(\boldsymbol{\mathcal{F}}_{d} + \boldsymbol{K}_{p} \boldsymbol{\mathcal{F}}_{e} + \boldsymbol{K}_{i} \int \boldsymbol{\mathcal{F}}_{e}(t) \mathrm{d}t - \boldsymbol{K}_{\mathrm{damp}} \boldsymbol{\mathcal{V}} \big)$$

where K_{damp} is positive definite.

Stony Brook University

Natural and Artificial Constraints

Assume that the task space is r-dimensional, and the environment is infinitely stiff (rigid constraints) in k directions and unconstrained in r - k directions. Thus, there are k directions in which the robot can freely apply forces and the r - k directions of free motion.

Example: A robot firmly grasping a door handle has 6 - k = 1 motion freedom of its end-effector (rotation about the hinge), and k = 5 force freedoms.

Example: A robot writing on a chalkboard has 6 - k = 5 motion freedom of its end-effector, and k = 1 force freedoms.

- If there is friction at the contact, k = 3.
- If the robot move away from the board, k = 0. Thun, velocity constraint is inequality.

Example: A robot erasing a frictionless chalkboard using an eraser modeled as a rigid block has 6 - k = 3 motion freedom of its end-effector, and k = 3 force freedoms.

Natural and Artificial Constraints

Impedance Control

0000

 $\boldsymbol{\mathcal{V}}_{b} = \left(\underline{\omega_{x}, \omega_{y}}, \underline{\omega_{z}, v_{x}, v_{y}}, \underline{v_{z}}\right) \quad \boldsymbol{\mathcal{F}}_{b} = \left(\underline{m_{x}, m_{y}}, \underline{m_{z}, f_{x}, f_{y}}, f_{z}\right)$ 2 Ŷ ▲ The parameters that the robot can control. These motion and force specifications are ŷ called artificial constraints. $\omega_x = 0 \quad f_x = 0$ These constraints are called natural constraints, specified $\omega_y = 0$ $f_y = 0$

by the environment:

 $v_z = 0$ $m_z = 0$

	traint	artificial const	natural constraint
		$m_x = 0$ $m_x = 0$	$\omega_x = 0$
(An example set of artificial constraints)		$m_y \equiv 0$ $\omega_z = 0$	$\begin{aligned} \omega_y &= 0\\ m_z &= 0 \end{aligned}$
		$v_x = k_1$ $v_x = 0$	$\begin{array}{l} f_x = 0\\ f_x = 0 \end{array}$
	< 0	$f_z = k_2 < $	$\begin{array}{l} Jy = 0\\ v_z = 0 \end{array}$

Impedance Control

0000

Assume that an *n*-DOF open-chain manipulator is in contact with a rigid environment with k**natural constraints** on the velocity in 6-dimensional task space. Thus, forces can be applied in k constraint directions. These Pfaffian (holonomic and/or nonholonomic) constraints can be written w.r.t twist as

Task-space Dynamics:

$$\mathcal{F} = M_{C}(q)\dot{\mathcal{V}} + c_{C}(q,\mathcal{V}) + g_{C}(q) = M_{C}(q)\dot{\mathcal{V}} + h_{C}(q,\mathcal{V}) \quad (3)$$
$$\tau = J^{T}(q)\mathcal{F}$$

Constrained Dynamics: $\mathcal{F} = M_C(q)\dot{\mathcal{V}} + h_C(q,\mathcal{V}) + \underbrace{A^T(q)\lambda}_{(4)}$

 $\lambda \in \mathbb{R}^k$: Lagrange Multipliers $\mathcal{F}_{tip} \in \mathbb{R}^6$: Wrench that robot applies against the constraints

Note: Desired wrench \mathcal{F}_d must lie in the column space of $A^T(q)\lambda$.

Note: All velocity constraints are equality constraints, and the contact is frictionless.

Amin Fakhari, Spring 2024

Solving (4) for $\dot{\mathcal{V}}$, substituting into (2), solving for λ , and using $-A(q)\dot{\mathcal{V}} = \dot{A}(q)\mathcal{V}$:

$$\boldsymbol{\lambda} = \left(\boldsymbol{A}\boldsymbol{M}_{\boldsymbol{C}}^{-1}\boldsymbol{A}^{\mathrm{T}}\right)^{-1} \left(\boldsymbol{A}\boldsymbol{M}_{\boldsymbol{C}}^{-1}(\boldsymbol{\mathcal{F}} - \boldsymbol{h}_{\boldsymbol{C}}) - \boldsymbol{A}\dot{\boldsymbol{\mathcal{V}}}\right)$$
(5)

Substituting (5) into (4) and manipulating, the 6 equations of the constrained dynamics (4) can be expressed as the 6 - k independent motion equations:

$$P(q)\mathcal{F} = P(q)(M_C\dot{\mathcal{V}} + h_C)$$

$$P(q) = I - A^{\mathrm{T}}(AM_C^{-1}A^{\mathrm{T}})^{-1}AM_C^{-1} \in \mathbb{R}^n \qquad \operatorname{rank}(P) = 6 - k$$

$$I = \operatorname{diag}(1) \in \mathbb{R}^n$$

- **P** projects an arbitrary wrench \mathcal{F} onto the subspace of wrenches that move the endeffector tangent to the constraints (rank(\mathbf{P}) = 6 - k).
- I P projects an arbitrary wrench \mathcal{F} onto the subspace of wrenches that act against the constraints (rank(I P) = k).

$$\mathcal{F} = \underbrace{\mathbf{P}(\mathbf{q})\mathcal{F}}_{\mathcal{F}_{\text{motion}}} + \underbrace{\left(\mathbf{I} - \mathbf{P}(\mathbf{q})\right)\mathcal{F}}_{\mathcal{F}_{\text{tip}}}$$

Hybrid motion-force controller is the sum of a task-space motion controller (e.g., a computed torque control law), and a task-space force controller, each projected to generate forces in its appropriate subspace as

Impedance Control

0000

Impedance Control

Impedance Control (Indirect Force Control)

Impedance Control

0000

In **impedance control**, the robot end-effector is asked to render particular mass, spring, and damper properties (example: haptic surgical simulator).

Assume that a robot creating a 1-DOF mass-spring-damper virtual environment at the endeffector and a user applies a force f.

$$\mathbf{m}\ddot{x} + b\dot{x} + k\bar{x} = f$$

We can say that the robot **impedance is high** if one or more of the $\{m, b, k\}$ parameters, usually including bor k, is **large**, and the **impedance is low** if all these parameters are **small**.

Taking the Laplace transform: $(ms^2 + bs + k)X(s) = F(s)$

Impedance: Z(s) = F(s)/X(s)

Admittance: $Y(s) = Z^{-1}(s) = X(s)/F(s)$

Impedance and Admittance

- An ideal **motion controller** is characterized by high impedance or low admittance (since $\Delta X = Y \Delta F$, if Y is small, force disturbances ΔF produce only small change in motion ΔX).
- An ideal force controller is characterized by low impedance or high admittance (since $\Delta F = Z\Delta X$, if Z is small, motion disturbances ΔX produce only small change in force).

Goal of impedance control is to implement the mass-spring-damper behavior in task-space:

Minimum-Coordinate Representation :
$$M\ddot{x} + B\dot{x} + K\bar{x} = f_{ext}$$
 $\overline{x}, f_{ext} \in \mathbb{R}^m$ $M, B, K \in \mathbb{R}^{m \times m}$, PD $\overline{x} = (x - x_d)$ $\ddot{x}_d = \dot{x}_d = \mathbf{0}$

Note: There are two common ways to achieve the impedance behavior; (1) using an impedance controller, (2) using an admittance controller.

Impedance Controller

An impedance controller measures end-effector motions x(t), $\dot{x}(t)$, $\ddot{x}(t)$ using encoders, tachometers, and possibly accelerometers, and commands joint torques/forces to create end-effector forces ($-f_{ext}$) to mimic a mass-spring-damper system. Thus, the controller implements a transfer function Z(s) from motions to forces.

A control law is
$$\tau = J^T(q) \left(\underbrace{M_C(q)\ddot{x} + h_C(q,\dot{x})}_{\text{robot dynamics compensation}} - \underbrace{\left(\underbrace{M\ddot{x} + B\dot{x} + K\overline{x}}_{f_{\text{ext}}} \right) \right) \quad \overline{x} = (x - x_d)$$

Note: Since measurement of the acceleration \ddot{x} is likely to be noisy, it is not uncommon to eliminate the mass compensation term $M_C(q)\ddot{x}$ and to set M = 0. The mass of the arm will be apparent to the user, but impedance-controlled manipulators are often designed to be lightweight.

Note: It is not uncommon to assume small velocities and replace the nonlinear dynamics compensation with a simpler gravity-compensation model, i.e., $h_C(q, \dot{x}) = g_C(q)$.

$$\boldsymbol{\tau} = \boldsymbol{J}^T(\boldsymbol{q}) \left(\boldsymbol{g}_C(\boldsymbol{q}) - \left(\boldsymbol{B} \dot{\overline{\boldsymbol{x}}} + \boldsymbol{K} \overline{\boldsymbol{x}} \right) \right) = \boldsymbol{J}^T(\boldsymbol{q}) (\boldsymbol{K}(\boldsymbol{x}_d - \boldsymbol{x}) - \boldsymbol{B} \dot{\boldsymbol{x}}) + \boldsymbol{g}(\boldsymbol{q})$$

Admittance Controller

An admittance controller measures end-effector forces f_{ext} using a wrist force-torque sensor and creates end-effector motions x(t) to mimic a mass-spring-damper system. Thus, the controller implements a transfer function Y(s) from forces to motions.

A simple approach is to calculate the desired end-effector acceleration \ddot{x} by having the current state (x, \dot{x}) :

$$\ddot{\mathbf{x}} = \mathbf{M}^{-1}(\mathbf{f}_{\text{ext}} - \mathbf{B}\dot{\mathbf{x}} - \mathbf{K}\overline{\mathbf{x}})$$

Using definition $\dot{x} = J(q)\dot{q}$: $\ddot{q} = J^{\dagger}(q)(\ddot{x} - \dot{J}(q)\dot{q})$

Then, joint torques/forces are calculated by $\tau = M(q)\ddot{q} + h(q,\dot{q})$