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Dynamic Equations

The dynamic equations (equations of motion) of an open-chain manipulator are a set of 
2nd-order ordinary differential equations of the form

𝝉 = 𝑴 𝜽 ሷ𝜽 + 𝒉 𝜽, ሶ𝜽

𝜽 ∈ ℝ𝑛: Joint Variables (or joint coordinates or joint positions)

𝑴(𝜽) ∈ ℝ𝑛×𝑛: Mass Matrix

𝒉(𝜽, ሶ𝜽) ∈ ℝ𝑛: Coriolis, Centripetal, Gravitational, and Frictional Terms

𝝉 ∈ ℝ𝑛: Joint Torques/Forces (applied at the joints by the actuators)

= 𝑴 𝜽 ሷ𝜽 + 𝒄 𝜽, ሶ𝜽 + 𝒈 𝜽

𝒈 𝜽 ∈ ℝ𝑛: Gravitational Terms

𝒄 𝜽, ሶ𝜽 ∈ ℝ𝑛: Coriolis, Centripetal, and Frictional Terms
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Forward & Inverse Dynamics

Two equivalent approaches to derive dynamic equations:

1) Lagrangian Formulation (variational, based on energy)
2) Newton–Euler Formulation

Forward Dynamics:

Finding the acceleration ሷ𝜽 given the state 𝜽, ሶ𝜽, and the joint torques/forces 𝝉:

ሷ𝜽 = 𝑴−1(𝜽)(𝝉 − 𝒉(𝜽, ሶ𝜽))

Inverse Dynamics:

Finding the joint torques/forces 𝝉 given the state 𝜽, ሶ𝜽, and acceleration ሷ𝜽.

𝝉 = 𝑴(𝜽) ሷ𝜽 + 𝒉(𝜽, ሶ𝜽)
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Lagrangian Formulation
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Lagrangian Formulation

ℒ(𝒒, ሶ𝒒) = 𝒦(𝒒, ሶ𝒒) − 𝒫(𝒒)

𝒇 =
𝑑

𝑑𝑡

𝜕ℒ 𝒒, ሶ𝒒

𝜕 ሶ𝒒
−

𝜕ℒ(𝒒, ሶ𝒒)

𝜕𝒒

• Lagrangian function:

Kinetic 
Energy

Potential 
Energyℒ: ℝ𝑛 × ℝ𝑛 → ℝ+

𝒒 ∈ ℝ𝑛: Generalized Independent Coordinates

𝒇 ∈ ℝ𝑛: Generalized (Nonconservative) Forces (e.g., external forces/torques or friction 
forces) such that 𝒇 and ሶ𝒒 are dual to each other, i.e., the 𝒇𝑇 ሶ𝒒 corresponds to power.

• Equations of Motion:

𝑓𝑖 =
𝑑

𝑑𝑡

𝜕ℒ 𝒒, ሶ𝒒

𝜕 ሶ𝑞𝑖
−

𝜕ℒ 𝒒, ሶ𝒒

𝜕𝑞𝑖
In components:

(Due only to conservative forces such as 
gravitational energy and energy stored in springs.)

𝑖 = 1, ⋯ , 𝑛
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Example 1

Consider the 1-DOF mechanism. It consists of a rigid link formed by two parts, of lengths 𝑙1 
and 𝑙2, whose masses 𝔪1 and 𝔪2 are, for simplicity, considered to be concentrated at their 
respective centers of mass, located at the ends. The angle 𝜑 is constant. The mechanism 
possesses only revolute motion about the 𝑧0 axis, the angle of which is represented by 𝜃. 
Derive equations of motion for the mechanism moving in the presence of gravity.

𝔪1

𝔪2

𝜃

𝑔
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Example 2

Derive equations of motion for a planar 2R open chain moving in the presence of gravity.

For the sake of simplicity, model the links as point masses 
𝔪1, 𝔪2 concentrated at the ends of each link.

Note:
For an 𝑛-link open-chain manipulator:

Generalized coordinates: 𝜽 ∈ ℝ𝑛

Generalized forces: 𝝉 ∈ ℝ𝑛
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Example 2 (cont.)

𝜏1 = 𝔪1𝐿1
2 + 𝔪2 𝐿1

2 + 2𝐿1𝐿2cos 𝜃2 + 𝐿2
2 ሷ𝜃1

+𝔪2 𝐿1𝐿2cos 𝜃2 + 𝐿2
2 ሷ𝜃2 − 𝔪2𝐿1𝐿2sin 𝜃2 2 ሶ𝜃1

ሶ𝜃2 + ሶ𝜃2
2

+ 𝔪1 + 𝔪2 𝐿1𝑔cos 𝜃1 + 𝔪2𝑔𝐿2cos 𝜃1 + 𝜃2 ,

𝜏2 = 𝔪2 𝐿1𝐿2cos 𝜃2 + 𝐿2
2 ሷ𝜃1 + 𝔪2𝐿2

2 ሷ𝜃2 + 𝔪2𝐿1𝐿2
ሶ𝜃1
2sin 𝜃2

+𝔪2𝑔𝐿2cos 𝜃1 + 𝜃2 .

𝑴 𝜽 =
𝔪1𝐿1

2 + 𝔪2 𝐿1
2 + 2𝐿1𝐿2cos 𝜃2 + 𝐿2

2 𝔪2 𝐿1𝐿2cos 𝜃2 + 𝐿2
2

𝔪2 𝐿1𝐿2cos 𝜃2 + 𝐿2
2 𝔪2𝐿2

2

𝒄 𝜽, ሶ𝜽 =
−𝔪2𝐿1𝐿2sin 𝜃2 2 ሶ𝜃1

ሶ𝜃2 + ሶ𝜃2
2

𝔪2𝐿1𝐿2
ሶ𝜃1
2sin 𝜃2

𝒈 𝜽 =
𝔪1 + 𝔪2 𝐿1𝑔cos 𝜃1 + 𝔪2𝑔𝐿2cos 𝜃1 + 𝜃2

𝔪2𝑔𝐿2cos 𝜃1 + 𝜃2

We can gather terms together into an equation of the form: 𝝉 = 𝑴 𝜽 ሷ𝜽 + 𝒄 𝜽, ሶ𝜽 + 𝒈 𝜽
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Example 3

Derive equations of motion for a planar RP open chain moving in the presence of gravity.
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Example 4

Consider the 3-DOF Cartesian robot manipulator. The manipulator consists of three rigid 
links mutually orthogonal. The three joints of the robot are prismatic. Derive equations of 
motion for the robot manipulator moving in the presence of gravity.

𝔪3

𝔪2

𝜃1

𝔪1

𝜃2
𝜃3

𝜃2

𝜃1

𝜃3

𝑔
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Newton–Euler Formulation
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Dynamics of a Single Rigid Body: Method 1

𝒓 = 𝑥, 𝑦, 𝑧

𝑏

𝑑𝔪

COM

At COM: ׬ 𝒓𝑑𝔪 = ׬ 𝒓 𝑑𝔪 = 𝟎

𝑠

ሶ𝒓 = 𝒗𝑏 + 𝝎𝑏 × 𝒓

ሷ𝒓 = ሶ𝒗𝑏 +
𝑑

𝑑𝑡
𝝎𝑏 × 𝒓 + 𝝎𝑏 ×

𝑑

𝑑𝑡
𝒓

= ሶ𝒗𝑏 + ሶ𝝎𝑏 × 𝒓 + 𝝎𝑏 × 𝒗𝑏 + 𝝎𝑏 × 𝒓

= ሶ𝒗𝑏 + ሶ𝝎𝑏 𝒓 + 𝝎𝑏 𝒗𝑏 + 𝝎𝑏
2𝒓

𝑑𝒎 = 𝒓 × 𝑑𝒇 = 𝒓 𝑑𝒇

𝒎𝑏

𝒇𝑏
=

׬ 𝑑𝒎

׬ 𝑑𝒇
 
Translational dynamics

Rotational dynamics

𝑰𝑏 = − න 𝒓 2𝑑𝔪 ∈ ℝ3×3Euler’s Equation=
𝑰𝑏 ሶ𝝎𝑏 + 𝝎𝑏 𝑰𝑏𝝎𝑏

𝔪 ሶ𝒗𝑏 + 𝝎𝑏 𝒗𝑏
 

Let assume that the body is moving with a body twist 𝓥𝑏 = 𝝎𝑏, 𝒗𝑏  and 𝑏  is at center of 
mass (COM).

=
ሶ𝒗𝑏 ׬ 𝒓 𝑑𝔪 + ׬ 𝒓 ሶ𝝎𝑏 𝒓𝑑𝔪 + 𝝎𝑏 𝒗𝑏 ׬ 𝒓 𝑑𝔪 + ׬ 𝒓 𝝎𝑏

2𝒓𝑑𝔪

ሶ𝒗𝑏 ׬ 𝑑𝔪 + ሶ𝝎𝑏 ׬ 𝒓𝑑𝔪 + 𝝎𝑏 𝒗𝑏 ׬ 𝑑𝔪 + 𝝎𝑏
2 ׬ 𝒓𝑑𝔪  

𝑑𝒇 = 𝑑𝔪 ሷ𝒓 = 𝑑𝔪 ሶ𝒗𝑏 + ሶ𝝎𝑏 𝒓 + 𝝎𝑏 𝒗𝑏 + 𝝎𝑏
2𝒓

𝟎 𝟎

𝟎 𝟎

𝒑

𝒗𝑏 = 𝑹𝑇 ሶ𝒑

𝑹: = 𝑹𝑠𝑏

𝝎𝑏 = 𝑹𝑇𝝎𝑠

Inertia Matrix in frame 𝑏
(symmetric and positive definite)

𝒇𝑏

𝒎𝑏
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Inertia Matrix

𝑰𝑏 = − ׬ 𝒓 2𝑑𝔪

=

׬ 𝑦2 + 𝑧2 𝑑𝔪 − ׬ 𝑥𝑦𝑑𝔪 − ׬ 𝑥𝑧𝑑𝔪

− ׬ 𝑥𝑦𝑑𝔪 ׬ 𝑥2 + 𝑧2 𝑑𝔪 − ׬ 𝑦𝑧𝑑𝔪

− ׬ 𝑥𝑧𝑑𝔪 − ׬ 𝑦𝑧𝑑𝔪 ׬ 𝑥2 + 𝑦2 𝑑𝔪

=

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧

𝐼𝑥𝑦 𝐼𝑦𝑦 𝐼𝑦𝑧

𝐼𝑥𝑧 𝐼𝑦𝑧 𝐼𝑧𝑧

 

𝐼𝑥𝑥 = 𝔪 𝑤2 + ℎ2 /12

𝐼𝑦𝑦 = 𝔪 𝓁2 + ℎ2 /12

𝐼𝑧𝑧 = 𝔪 𝓁2 + 𝑤2 /12

𝐼𝑥𝑥 = 𝔪 3𝑟2 + ℎ2 /12

𝐼𝑦𝑦 = 𝔪 3𝑟2 + ℎ2 /12

𝐼𝑧𝑧 = 𝔪𝑟2/2

𝐼𝑥𝑥 = 𝔪 𝑏2 + 𝑐2 /5

𝐼𝑦𝑦 = 𝔪 𝑎2 + 𝑐2 /5

𝐼𝑧𝑧 = 𝔪 𝑎2 + 𝑏2 /5

- If the body has uniform density:  𝑑𝔪 = 𝜌𝑑𝑉 = 𝜌𝑑𝑥𝑑𝑦𝑑𝑧

𝒦 =
1

2
𝝎𝑏

T𝑰𝑏𝝎𝑏

Rotational Kinetic Energy:

𝒓 = 𝑥, 𝑦, 𝑧 Note: Inertia matrix in body 
frame 𝑏  (𝑰𝑏) is constant.
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Expressing Inertia Matrix 𝑰𝑏 in a Rotated Frame 

Let 𝑰𝑐 be inertia matrix in a rotated frame 𝑐  described by 𝑹𝑏𝑐:

Rotational kinetic energy of the rotating body is independent of the chosen frame:

1

2
𝝎𝑐

T𝑰𝑐𝝎𝑐 =
1

2
𝝎𝑏

T𝑰𝑏𝝎𝑏

=
1

2
𝑹𝑏𝑐𝝎𝑐

T𝑰𝑏 𝑹𝑏𝑐𝝎𝑐

=
1

2
𝝎𝑐

T 𝑹𝑏𝑐
T 𝑰𝑏𝑹𝑏𝑐 𝝎𝑐

𝑰𝑐 = 𝑹𝑏𝑐
T 𝑰𝑏𝑹𝑏𝑐

𝑏
COM

𝑐
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Diagonalizing Inertia Matrix 𝑰𝑏

Let 𝒗1, 𝒗2, 𝒗3 be the eigenvectors of 𝑰𝑏 and 𝜆1, 𝜆2, 𝜆3 be the corresponding eigenvalues. 
• Principal Axes of Inertia are in the directions of 𝒗1, 𝒗2, 𝒗3 (expressed in 𝑏 ).
• Principal Moments of Inertia (about 𝒗1, 𝒗2, 𝒗3), are 𝜆1, 𝜆2, 𝜆3 > 0.

𝑰𝑏 =

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧

𝐼𝑥𝑦 𝐼𝑦𝑦 𝐼𝑦𝑧

𝐼𝑥𝑧 𝐼𝑦𝑧 𝐼𝑧𝑧

𝑰𝑐 = 𝑹𝑏𝑝
T 𝑰𝑏𝑹𝑏𝑝 =

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

𝑹𝑏𝑝 = 𝒗1, 𝒗2, 𝒗3

𝑝𝑏

𝒎𝑏 = 𝑰𝑏 ሶ𝝎𝑏 + 𝝎𝑏 𝑰𝑏𝝎𝑏 =

𝐼𝑥𝑥 ሶ𝜔𝑥 + 𝐼𝑧𝑧 − 𝐼𝑦𝑦 𝜔𝑦𝜔𝑧

𝐼𝑦𝑦 ሶ𝜔𝑦 + 𝐼𝑥𝑥 − 𝐼𝑧𝑧 𝜔𝑥𝜔𝑧

𝐼𝑧𝑧 ሶ𝜔𝑧 + 𝐼𝑦𝑦 − 𝐼𝑥𝑥 𝜔𝑥𝜔𝑦

𝝎𝑏 = 𝜔𝑥, 𝜔𝑦, 𝜔𝑧

- If 𝑏  is aligned with the principal axes of inertia : 
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Inertia Matrix: Steiner’s Theorem

Inertia matrix 𝑰𝑞 about a frame 𝑞  aligned with 𝑏  (at the center of mass), but at a point 

𝒒 = 𝑞𝑥 , 𝑞𝑦 , 𝑞𝑧  in 𝑏 :

𝒒

𝑏COM

𝑞

𝑥

𝑦𝑧

𝑥

𝑦𝑧

𝑰𝑞 = 𝑰𝑏 + 𝔪 𝒒T𝒒𝑰3 − 𝒒𝒒T

𝔪
𝑰3 = diag 1 ∈ ℝ3×3

Note: The inertia matrix of a compound/composite body is the sum of their inertias when 
expressed in a common frame.

= 𝑰𝑏 + 𝔪 𝒒 T 𝒒

(identity matrix)
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Example

A compound object consists of a uniform-density cylinder and a uniform-density rectangular 
prism. The mass of the cylinder is 2 kg and the mass of the prism is 1 kg. A frame 𝑎  is 
defined at the center of the cylinder, with the 𝑥-axis along the prism and the 𝑧-axis vertical.

(I) Where is the CM of the compound object in 𝑎 ?

(II) In a frame 𝑏  at the CM, aligned with 𝑎 , what is the inertia of the compound object? 
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Dynamics of a Single Rigid Body: Method 2
(in World Frame {𝑠})

𝑹: = 𝑹𝑠𝑏

𝑰𝑠 = 𝑹𝑰𝑏𝑹𝑇

𝑏
COM

𝑠

𝒑

𝒇

𝒎

Let 𝒇 be the net force applied at the center of mass of the rigid body expressed in 𝑠  and 
𝒎 be the net moment applied to the rigid body expressed in {𝑠}.

(𝔪 ሶ𝒑 : linear momentum)

(𝑰𝑠𝝎𝑠: angular momentum)

𝒎 =
𝑑

𝑑𝑡
𝑰𝑠𝝎𝑠 =

𝑑

𝑑𝑡
𝑹𝑰𝑏𝑹𝑇𝝎𝑠 = 𝑹𝑰𝑏𝑹𝑇 ሶ𝝎𝑠 + ሶ𝑹𝑰𝑏𝑹𝑇𝝎𝑠 + 𝑹𝑰𝑏

ሶ𝑹𝑇𝝎𝑠

= 𝑹𝑰𝑏𝑹𝑇 ሶ𝝎𝑠 + ถሶ𝑹𝑹𝑇

𝝎𝑠

𝑹𝑰𝑏𝑹𝑇

𝑰𝑠

𝝎𝑠 + 𝑹𝑰𝑏𝑹𝑇

𝑰𝑠

ถ𝑹 ሶ𝑹𝑇

− 𝝎𝑠

𝝎𝑠

𝟎

= 𝑰𝑠 ሶ𝝎𝑠 + 𝝎𝑠 𝑰𝑠𝝎𝑠

𝒇 =
𝑑

𝑑𝑡
𝔪 ሶ𝒑 = 𝔪 ሷ𝒑

𝒎
𝒇 =

𝑰𝑠 ሶ𝝎𝑠 + 𝝎𝑠 𝑰𝑠𝝎𝑠

𝔪 ሷ𝒑

(𝑰𝑠: Inertia matrix of body about COM in a frame aligned with 𝑠 )
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Dynamics of a Single Rigid Body: Method 2
(in Body Frame {𝑏})

𝒎𝑏 = 𝑹𝑇𝒎 = ถ𝑹𝑻𝑹
𝑰3

𝑰𝑏 ሶ𝝎𝑏 + ถ𝑹𝑇 ሶ𝑹
𝝎𝑏

𝑰𝑏𝝎𝑏

𝒗𝑏 = 𝑹𝑇 ሶ𝒑

𝑹: = 𝑹𝑠𝑏

𝝎𝑏 = 𝑹𝑇𝝎𝑠 𝑰𝑠 = 𝑹𝑰𝑏𝑹𝑇

𝒇𝑏 = 𝑹𝑇𝒇 = ถ𝑹𝑻𝑹
𝑰3

𝔪 ሶ𝒗𝑏 + ถ𝑹𝑻 ሶ𝑹
𝝎𝑏

𝔪𝒗𝑏

𝒎 =
𝑑

𝑑𝑡
𝑰𝑠𝝎𝑠 =

𝑑

𝑑𝑡
𝑹𝑰𝑏𝑹𝑇𝝎𝑠 =

𝑑

𝑑𝑡
(𝑹𝑰𝑏 ถ𝑹𝑇𝑹

𝑰3

𝝎𝑏) =
𝑑

𝑑𝑡
𝑹𝑰𝑏𝝎𝑏 = 𝑹𝑰𝑏 ሶ𝝎𝑏 + ሶ𝑹𝑰𝑏𝝎𝑏

𝒇 =
𝑑

𝑑𝑡
𝔪 ሶ𝒑 =

𝑑

𝑑𝑡
𝔪𝑹𝒗𝑏 = 𝔪𝑹 ሶ𝒗𝑏 + 𝔪 ሶ𝑹𝒗𝑏

𝒎𝑏

𝒇𝑏
=

𝑰𝑏 ሶ𝝎𝑏 + 𝝎𝑏 𝑰𝑏𝝎𝑏

𝔪 ሶ𝒗𝑏 + 𝝎𝑏 𝒗𝑏
𝒇𝑏 = 𝑹𝑇𝒇

𝒎𝑏 = 𝑹𝑇𝒎

𝑏
COM

𝑠

𝒑

𝒇𝑏

𝒎𝑏

Let 𝒇𝑏 be the net force applied at the center of mass of the rigid body expressed in 𝑏  and 
𝒎𝑏 be the net moment applied to the rigid body expressed in {𝑏}.
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Twist–Wrench Formulation

𝓕𝑏 =
𝒎𝑏

𝒇𝑏
=

𝑰𝑏 ሶ𝝎𝑏 + 𝝎𝑏 𝑰𝑏𝝎𝑏

𝔪 ሶ𝒗𝑏 + 𝝎𝑏 𝒗𝑏
=

𝑰𝑏 𝟎
𝟎 𝔪𝑰3

ሶ𝝎𝑏

ሶ𝒗𝑏
+

𝝎𝑏 𝟎

𝟎 𝝎𝑏

𝑰𝑏 𝟎
𝟎 𝔪𝑰3

𝝎𝑏

𝒗𝑏

=
𝑰𝑏 𝟎
𝟎 𝔪𝑰3

ሶ𝝎𝑏

ሶ𝒗𝑏
+

𝝎𝑏 𝒗𝑏

𝟎 𝝎𝑏

𝑰𝑏 𝟎
𝟎 𝔪𝑰3

𝝎𝑏

𝒗𝑏

=
𝑰𝑏 𝟎
𝟎 𝔪𝑰3

ሶ𝝎𝑏

ሶ𝒗𝑏
−

𝝎𝑏 𝟎

𝒗𝑏 𝝎𝑏

T
𝑰𝑏 𝟎
𝟎 𝔪𝑰3

𝝎𝑏

𝒗𝑏

𝓥𝑏: Body 
Twist

Body 
Wrench

𝓖𝑏 ∈ ℝ6×6:
Spatial Inertia Matrix

(symmetric & positive definite)

Total Kinetic Energy =
1

2
𝝎𝑏

T𝑰𝑏𝝎𝑏 +
1

2
𝔪𝒗𝑏

T𝒗𝑏 =
1

2
𝓥𝑏

T𝓖𝑏𝓥𝑏

𝓕𝑏 = 𝓖𝑏
ሶ𝓥𝑏 − ad𝓥𝑏

T
𝓖𝑏𝓥𝑏

ad𝓥𝑏

(Inverse Dynamics of Rigid Body)

(Forward Dynamics of Rigid Body)ሶ𝓥𝑏 = 𝓖𝑏
−1 𝓕𝑏 + ad𝓥𝑏

T
𝓖𝑏𝓥𝑏
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Lie Bracket of Two Twists

ad𝓥 =
[𝝎] 𝟎
[𝒗] [𝝎]

∈ ℝ6×6,         𝓥 = 𝝎, 𝒗

Given two twists 𝓥1 = 𝝎1, 𝒗1 ∈ ℝ6 and 𝓥2 = 𝝎2, 𝒗2 ∈ ℝ6, the Lie Bracket of 𝓥1 and 

𝓥2 is defined as ad𝓥1
𝓥2 ∈ ℝ6 where

This is generalization of the cross product to two twists 𝓥1 and 𝓥2.
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Dynamics in Other Frames

Kinetic energy of the rigid body is independent of the frame of representation:

1

2
𝓥𝑎

T𝓖𝑎𝓥𝑎 =
1

2
𝓥𝑏

T𝓖𝑏𝓥𝑏

=
1

2
Ad𝑻𝑏𝑎

𝓥𝑎
T

𝓖𝑏 Ad𝑻𝑏𝑎
𝓥𝑎

=
1

2
𝓥𝑎

T Ad𝑻𝑏𝑎

T
𝓖𝑏 Ad𝑻𝑏𝑎

𝓖𝑎

𝓥𝑎

𝓖𝑎 = Ad𝑻𝑏𝑎

T
𝓖𝑏 Ad𝑻𝑏𝑎

This is a generalization 

of Steiner’s theorem.

𝓕𝑎 = 𝓖𝑎
ሶ𝓥𝑎 − ad𝓥𝑎

𝑇
𝓖𝑎𝓥𝑎

𝓕𝑎 = Ad𝑻𝑏𝑎

𝑇
𝓕𝑏

= Ad𝑻𝑏𝑎

𝑇
𝓖𝑏

ሶ𝓥𝑏 − Ad𝑻𝑏𝑎

𝑇
ad𝓥𝑏

𝑇
𝓖𝑏𝓥𝑏

= Ad𝑻𝑏𝑎

𝑇
𝓖𝑏 Ad𝑻𝑏𝑎

ሶ𝓥𝑎 − Ad𝑻𝑏𝑎

𝑇
ad𝓥𝑏

𝑇
𝓖𝑏 Ad𝑻𝑏𝑎

𝓥𝑎

= 𝓖𝑎
ሶ𝓥𝑎 − ad𝓥𝑎

𝑇
𝓖𝑎𝓥𝑎

𝑏COM

𝑎

𝑥

𝑦𝑧
𝑥

𝑦
𝑧

The form of the equations of motion is 
independent of the frame of representation.
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Dynamics of an Open Chain Manipulator

Consider an 𝑛-link open chain manipulator connected by 1 DOF joints. Attach 
a frame {0} to the base, frames {1} to {𝑛} to the centers of mass of links 1 to 
𝑛, and a frame {𝑛 + 1} at the end-effector, fixed in the frame {𝑛}. 

𝓖𝑖 ∈ ℝ6×6: spatial inertia matrix of link 𝑖 in 𝑖 :

𝑴𝑖,𝑖−1 ∈ 𝑆𝐸 3 : 𝑖 − 1  in 𝑖  at home configuration (𝜽 = 𝟎).

𝓐𝑖 ∈ ℝ6: screw axis of joint 𝑖 in 𝑖 .

𝓥𝑖 = 𝝎𝑖 , 𝒗𝑖 ∈ ℝ6: twist of link 𝑖 in 𝑖 .

𝓥0 = 𝝎0, 𝒗0 = 𝟎   (for a fixed-base manipulator)

ሶ𝓥0 = ሶ𝝎0, ሶ𝒗0 = 𝟎, −𝖌 𝖌 ∈ ℝ3 gravity vector in 0

𝓕𝑛+1 = 𝓕tip ∈ ℝ6: wrench applied to the environment 

by end-effector in 𝑖 + 1 .

𝓐𝑖 = Ad𝑴0,𝑖
−1 𝓢𝑖 = Ad𝑴0,𝑖

−1
𝓢𝑖

𝓕𝑖 = 𝒎𝑖 , 𝒇𝑖 ∈ ℝ6: wrench at joint 𝑖 in 𝑖 .

𝓖𝑖 =
𝑰𝑖 0
0 𝔪𝑖𝑰3

ሶ𝓥𝑖
𝓥𝑖

𝓕𝑖
− Ad𝑻𝑖+1,𝑖

T
𝓕𝑖+1

𝑖

𝓐𝑖

Joint 1

Joint 𝑛

𝓕tip

𝖌

For given 𝑴𝑖−1,𝑖: 𝑴𝑖,𝑖−1 = 𝑴𝑖−1,𝑖
−1

. (𝑴0,𝑖 = 𝑴0,1𝑴1,𝟐 … 𝑴𝑖−1,𝑖)

(𝓢𝑖  is screw axis of joint 𝑖 in {0})
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Recursive Newton-Euler Inverse Dynamics 
Algorithm

𝑻𝑖,𝑖−1 = 𝑒− 𝓐𝑖 𝜃𝑖𝑴𝑖,𝑖−1 ∈ 𝑆𝐸 3

𝓥𝑖 = Ad𝑻𝑖,𝑖−1
𝓥𝑖−1 + 𝓐𝑖

ሶ𝜃𝑖

ሶ𝓥𝑖 = Ad𝑻𝑖,𝑖−1
ሶ𝓥𝑖−1 +

𝑑

𝑑𝑡
Ad𝑻𝑖,𝑖−1

𝓥𝑖−1 + 𝓐𝑖
ሷ𝜃𝑖

= Ad𝑻𝑖,𝑖−1
ሶ𝓥𝑖−1 + ad𝓥𝑖

𝓐𝑖
ሶ𝜃𝑖 + 𝓐𝑖

ሷ𝜃𝑖

𝓕𝑖 = Ad𝑻𝑖+1,𝑖

T
𝓕𝑖+1 + 𝓖𝑖

ሶ𝓥𝑖 − ad𝓥𝑖

T
𝓖𝑖𝓥𝑖

𝝉𝑖 = 𝓕𝑖
T𝓐𝑖

Backward Iterations: Determining wrenches 𝓕𝑖  experienced by each link, and then, the 
joint torques/forces 𝝉𝑖 by moving inward from the tip to the base. For 𝑖 = 𝑛 to 1, find

Forward Iterations: Determining twists 𝓥𝑖  and accelerations ሶ𝓥𝑖  of 

each link by moving outward from the base to the tip. Given 𝜽, ሶ𝜽, ሷ𝜽, 
for 𝑖 = 1 to 𝑛, find

(𝑻𝑛+1,𝑛 = 𝑴𝑛+1,𝑛)

ሶ𝓥𝑖
𝓥𝑖

𝓕𝑖
− Ad𝑻𝑖+1,𝑖

T
𝓕𝑖+1

𝑖

𝓐𝑖

Joint 1

Joint 𝑛

𝓕tip

𝖌
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Dynamic Equations in Closed Form

𝓥base =

Ad𝑻10
𝓥0

0
⋮
0

∈ ℝ6𝑛, ሶ𝓥base =

Ad𝑻10
ሶ𝓥0

0
⋮
0

∈ ℝ6𝑛, ഥ𝓕tip =

0
⋮
0

Ad𝑻𝑛+1,𝑛

T 𝓕𝑛+1

∈ ℝ6𝑛

𝓥 =
𝓥1

⋮
𝓥𝑛

∈ ℝ6𝑛, 𝓕 =
𝓕1

⋮
𝓕𝑛

∈ ℝ6𝑛,Let define some stacked vectors and matrices:

ad𝓐 ሶ𝜽 =

ad𝓐1
ሶ𝜃1

0 ⋯ 0

0 ad𝓐2
ሶ𝜃2

⋯ 0

⋮ ⋮ ⋱ ⋮
0 ⋯ ⋯ ad𝓐𝑛

ሶ𝜃𝑛

∈ ℝ6𝑛×6𝑛,

ad𝓥 =

ad𝓥1
0 ⋯ 0

0 ad𝓥2
⋯ 0

⋮ ⋮ ⋱ ⋮
0 ⋯ ⋯ ad𝓥𝑛

∈ ℝ6𝑛×6𝑛, 𝓐 =

𝓐1 0 ⋯ 0
0 𝓐2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 ⋯ ⋯ 𝓐𝑛

∈ ℝ6𝑛×𝑛,

𝓖 =

𝓖1 0 ⋯ 0
0 𝓖2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 ⋯ ⋯ 𝓖𝑛

∈ ℝ6𝑛×6𝑛,

Note: 𝓐 and 𝓖 are constant block-diagonal matrices. 𝓐 contains only the kinematic parameters while 
𝓖 contains only the mass and inertial parameters for each link.
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Dynamic Equations in Closed Form

𝓦 𝜽 =

0 0 ⋯ 0 0
Ad𝑻21

0 ⋯ 0 0

0 Ad𝑻32
⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ Ad𝑻𝑛,𝑛−1

0

∈ ℝ6𝑛×6𝑛

With these definitions, the recursive inverse dynamics algorithm can be assembled into a 
set of matrix equations:

𝓥 = 𝓦 𝜽 𝓥 + 𝓐 ሶ𝜽 + 𝓥base 

ሶ𝓥 = 𝓦 𝜽 ሶ𝓥 + 𝓐 ሷ𝜽 − ad𝓐 ሶ𝜽 𝓦 𝜽 𝓥 + 𝓥base + ሶ𝓥base 

𝓕 = 𝓦T 𝜽 𝓕 + 𝓖 ሶ𝓥 − ad𝓥
T𝓖𝓥 + ഥ𝓕tip ,

𝝉 = 𝓐T𝓕

𝓥 = 𝑰6𝑛 − 𝓦 𝜽
−1

𝓐 ሶ𝜽 + 𝓥base 

ሶ𝓥 = 𝑰6𝑛 − 𝓦 𝜽
−1

𝓐 ሷ𝜽 − ad𝓐 ሶ𝜽 𝓦 𝜽 𝓥 + 𝓥base + ሶ𝓥base 

𝓕 = 𝑰6𝑛 − 𝓦 𝜽
−𝑇

𝓖 ሶ𝓥 − ad𝓥
T𝓖𝓥 + ഥ𝓕tip ,

𝝉 = 𝓐T𝓕
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Dynamic Equations in Closed Form

The matrix 𝓦 𝜽 ∈ ℝ6𝑛×6𝑛 has the property that 𝓦 𝜽 𝑛 = 𝟎 (such a matrix is said to be 
Nilpotent of order 𝑛), and

(𝑰6𝑛 − 𝓦 𝜽 )−1 = 𝑰6𝑛 + 𝓦 𝜽 + ⋯ + 𝓦𝑛−1 𝜽

=

𝑰𝑛 0 0 ⋯ 0

Ad𝑻21
𝑰𝑛 0 ⋯ 0

Ad𝑻31
Ad𝑻32

𝑰𝑛 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
Ad𝑻𝑛1

Ad𝑻𝑛2
Ad𝑻𝑛3

⋯ 𝑰𝑛

∈ ℝ6𝑛×6𝑛

By defining 𝓛 𝜽 = (𝑰6𝑛 − 𝓦 𝜽 )−1, the equations can be reorganized as:

𝓥 = 𝓛 𝜽 𝓐 ሶ𝜽 + 𝓥base 

ሶ𝓥 = 𝓛 𝜽 𝓐 ሷ𝜽 − ad𝓐 ሶ𝜽 𝓦 𝜽 𝓥 + 𝓥base + ሶ𝓥base 

𝓕 = 𝓛𝑇 𝜽 𝓖 ሶ𝓥 − ad𝓥
T𝓖𝓥 + ഥ𝓕tip ,

𝝉 = 𝓐T𝓕

Amin Fakhari, Spring 2024 MEC549 • Ch2: Robot Dynamics – Part 1 P28

Dynamic Equations Lagrangian Formulation Newton–Euler Formulation


	Contents
	Slide 1: Ch2: Robot Dynamics – Part 1

	Dynamic Equations
	Slide 2: Dynamic Equations
	Slide 3: Dynamic Equations
	Slide 4: Forward & Inverse Dynamics

	Lagrangian Formulation
	Slide 6: Lagrangian Formulation
	Slide 7: Lagrangian Formulation
	Slide 11: Example 1
	Slide 13: Example 2
	Slide 16: Example 2 (cont.)
	Slide 19: Example 3
	Slide 23: Example 4

	Newton–Euler Formulation
	Slide 26: Newton–Euler Formulation
	Slide 27: Dynamics of a Single Rigid Body: Method 1
	Slide 30: Inertia Matrix
	Slide 32: Expressing Inertia Matrix bold italic cap I. sub b  in a Rotated Frame 
	Slide 33: Diagonalizing Inertia Matrix bold italic cap I. sub b 
	Slide 35: Inertia Matrix: Steiner’s Theorem
	Slide 37: Example
	Slide 40: Dynamics of a Single Rigid Body: Method 2 (in World Frame open brace s close brace )
	Slide 41: Dynamics of a Single Rigid Body: Method 2 (in Body Frame open brace b close brace )
	Slide 42: Twist–Wrench Formulation
	Slide 44: Lie Bracket of Two Twists
	Slide 46: Dynamics in Other Frames
	Slide 48: Dynamics of an Open Chain Manipulator
	Slide 50: Recursive Newton-Euler Inverse Dynamics Algorithm
	Slide 52: Dynamic Equations in Closed Form
	Slide 53: Dynamic Equations in Closed Form
	Slide 54: Dynamic Equations in Closed Form


