Ch2: Robot Dynamics – Part 2

Inverse Dynamics

Inverse Dynamic Equations in Closed Form

Inverse dynamic equations of an open-chain manipulator (finding τ given θ , $\dot{\theta}$, $\ddot{\theta}$, \mathcal{F}_{tip}) can be organized into a closed-form as

$$\begin{aligned} \boldsymbol{\tau} &= \boldsymbol{M}(\boldsymbol{\theta})\ddot{\boldsymbol{\theta}} + \boldsymbol{h}\big(\boldsymbol{\theta},\dot{\boldsymbol{\theta}}\big) + \boldsymbol{J}^{\mathrm{T}}(\boldsymbol{\theta})\boldsymbol{\mathcal{F}}_{\mathrm{tip}} \\ &= \boldsymbol{M}(\boldsymbol{\theta})\ddot{\boldsymbol{\theta}} + \boldsymbol{c}\big(\boldsymbol{\theta},\dot{\boldsymbol{\theta}}\big) + \boldsymbol{g}(\boldsymbol{\theta}) + \boldsymbol{J}^{\mathrm{T}}(\boldsymbol{\theta})\boldsymbol{\mathcal{F}}_{\mathrm{tip}} \\ &= \boldsymbol{M}(\boldsymbol{\theta})\ddot{\boldsymbol{\theta}} + \boldsymbol{C}\big(\boldsymbol{\theta},\dot{\boldsymbol{\theta}}\big)\dot{\boldsymbol{\theta}} + \boldsymbol{g}(\boldsymbol{\theta}) + \boldsymbol{J}^{\mathrm{T}}(\boldsymbol{\theta})\boldsymbol{\mathcal{F}}_{\mathrm{tip}} \\ &= \boldsymbol{M}(\boldsymbol{\theta})\ddot{\boldsymbol{\theta}} + \dot{\boldsymbol{\theta}}^{\mathrm{T}}\boldsymbol{\Gamma}(\boldsymbol{\theta})\dot{\boldsymbol{\theta}} + \boldsymbol{g}(\boldsymbol{\theta}) + \boldsymbol{J}^{\mathrm{T}}(\boldsymbol{\theta})\boldsymbol{\mathcal{F}}_{\mathrm{tip}} \end{aligned}$$

 $\boldsymbol{\theta} \in \mathbb{R}^n$: Joint Variables $\boldsymbol{\tau} \in \mathbb{R}^n$: Joint Torques/Forces $\boldsymbol{M}(\boldsymbol{\theta}) \in \mathbb{R}^{n \times n}$: Mass Matrix $\boldsymbol{g}(\boldsymbol{\theta}) \in \mathbb{R}^n$: Gravitational Terms

 $\boldsymbol{h}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) \in \mathbb{R}^{n}$: Coriolis and Centripetal, and Gravitational Terms

 $c(\theta, \dot{\theta}) \in \mathbb{R}^n$: Coriolis and Centripetal Terms (velocity-product term or quadratic velocity term)

 $C(\theta, \dot{\theta}) \in \mathbb{R}^{n \times n}$: Coriolis Matrix $\Gamma(\theta): n \times n \times n$ matrix of Christoffel symbols of the first kind

 $oldsymbol{J}(oldsymbol{ heta}) \in \mathbb{R}^{n imes 6}$: Jacobian in the same frame as $oldsymbol{\mathcal{F}}_{ ext{tip}}$

 $\mathcal{F}_{tip} \in \mathbb{R}^6$: Wrench applied to the environment by end-effector in the same frame as $J(\theta)$

Friction Torques/Forces at Joints

The Lagrangian and Newton–Euler dynamics do not account for friction at the joints. However, the friction torques/forces in gearheads and bearings may be significant.

Friction models often include a static friction term and a velocity-dependent viscous friction term.

Stony Broo University

Inverse Dynamic Equations in Closed Form

In the presence of the viscous and static friction torques/forces at the joints:

 $\tau = M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + g(\theta) + f_{v}(\dot{\theta}) + f_{s}(\theta,\dot{\theta}) + J^{T}(\theta)\mathcal{F}_{tip}$ = $M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + g(\theta) + \underbrace{F_{v}\dot{\theta} + F_{s}\operatorname{sgn}(\dot{\theta})}_{V} + J^{T}(\theta)\mathcal{F}_{tip}$

simplified models

 $\mathbf{F}_{v} \in \mathbb{R}^{n \times n}$: Diagonal matrix of viscous friction coefficients

 $\boldsymbol{F}_{s} \in \mathbb{R}^{n \times n}$: Diagonal matrix of Coulomb friction coefficients

 $sgn(\dot{\theta}) \in \mathbb{R}^{n \times 1}$: A vector whose components are the sign functions of $\dot{\theta}_i$

We can also add a disturbance $au_{
m dist}$ to represent inaccurately modeled dynamics, etc.

 $\boldsymbol{\tau} = \boldsymbol{M}(\boldsymbol{\theta}) \ddot{\boldsymbol{\theta}} + \boldsymbol{C} \big(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}} \big) \dot{\boldsymbol{\theta}} + \boldsymbol{g}(\boldsymbol{\theta}) + \boldsymbol{F}_{v} \dot{\boldsymbol{\theta}} + \boldsymbol{F}_{s} \mathbf{sg} \, \mathbf{n} \big(\dot{\boldsymbol{\theta}} \big) + \boldsymbol{\tau}_{dist} + \boldsymbol{J}^{T}(\boldsymbol{\theta}) \boldsymbol{\mathcal{F}}_{tip}$

Understanding Centripetal and Coriolis Terms

Consider a planar 2R open chain whose links are modeled as point masses concentrated at the ends of each link:

Accelerations of \mathfrak{m}_2 when $\boldsymbol{\theta} = (0, \pi/2)$ and $\ddot{\boldsymbol{\theta}} = \mathbf{0}$:

Understanding Mass Matrix

The total kinetic energy \mathcal{K} of a robot can be expressed as the sum of the kinetic energies of each link:

twist of link frame $\{i\}$ in $\{i\}$ spatial inertia matrix of link i in $\{i\}$

Let define $J_{ib}(\theta) \in \mathbb{R}^{6 \times n}$ as body Jacobian of link frame $\{i\}$ such that $\mathcal{V}_i = J_{ib}(\theta)\dot{\theta}$, i = 1. n thus:

$$\mathcal{K} = \frac{1}{2} \dot{\boldsymbol{\theta}}^{\mathrm{T}} \left(\sum_{i=1}^{n} J_{ib}^{\mathrm{T}}(\boldsymbol{\theta}) \mathcal{G}_{i} J_{ib}(\boldsymbol{\theta}) \right) \dot{\boldsymbol{\theta}} \qquad [\mathcal{V}_{i}] = T_{0i}^{-1} \dot{T}_{0i}$$

$$\mathcal{K} = \frac{1}{2} \dot{\boldsymbol{\theta}}^{\mathrm{T}} \left(\sum_{i=1}^{n} J_{ib}^{\mathrm{T}}(\boldsymbol{\theta}) \mathcal{G}_{i} J_{ib}(\boldsymbol{\theta}) \right) \dot{\boldsymbol{\theta}} \qquad [\mathcal{V}_{i}] = \mathcal{K} = T_{0i}^{-1} \dot{T}_{0i}$$

$$\mathcal{K} = \frac{1}{2} \dot{\boldsymbol{\theta}}^{\mathrm{T}} \mathcal{M}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}} \qquad [\mathcal{V}_{i}] = \frac{1}{2} \dot{\boldsymbol{\theta}}^{\mathrm{T}} \mathcal{M}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}}$$

$$\mathcal{K} = \frac{1}{2} \dot{\boldsymbol{\theta}}^{\mathrm{T}} \mathcal{M}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}}$$

• Mass matrix $M(\theta)$ is always symmetric and positive-definite $(x^T M(\theta) x > 0$ for all $x \in \mathbb{R}^n$, $x \neq 0$), and depends only on θ . Moreover, $M^{-1}(\theta)$ always exist.

Understanding Mass Matrix (cont.)

A mass matrix $M(\theta)$ presents a different effective mass in different acceleration directions. For better understanding, let represent $M(\theta)$ as an effective (or apparent) mass of the endeffector as $M_{C}(\theta)$, because it is possible to feel this mass directly by grabbing and moving the end-effector.

the coordinates.

If $\mathcal{V} = J(\theta)\dot{\theta}$ is the end-effector twist and $J(\theta)$ is invertible,

$$\mathcal{K} = \frac{1}{2} \dot{\boldsymbol{\theta}}^{\mathrm{T}} \boldsymbol{M}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}} = \frac{1}{2} \boldsymbol{\mathcal{V}}^{\mathrm{T}} \boldsymbol{M}_{C}(\boldsymbol{\theta}) \boldsymbol{\mathcal{V}} \qquad \begin{array}{l} \text{Kinetic energy of the} \\ \text{robot regardless of} \\ \text{the coordinates.} \end{array}$$
$$\dot{\boldsymbol{\theta}}^{\mathrm{T}} \boldsymbol{M}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}} = \dot{\boldsymbol{\theta}}^{\mathrm{T}} \boldsymbol{J}^{\mathrm{T}}(\boldsymbol{\theta}) \boldsymbol{M}_{C}(\boldsymbol{\theta}) \boldsymbol{J}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}} \\ M_{C}(\boldsymbol{\theta}) = \boldsymbol{J}^{-\mathrm{T}}(\boldsymbol{\theta}) \boldsymbol{M}(\boldsymbol{\theta}) \boldsymbol{J}^{-1}(\boldsymbol{\theta}) \end{array}$$

A general expression that applies to both redundant and nonredundant manipulators:

$$\boldsymbol{M}_{C}(\boldsymbol{\theta}) = \left(\boldsymbol{J}(\boldsymbol{\theta})\boldsymbol{M}(\boldsymbol{\theta})^{-1}\boldsymbol{J}^{\mathrm{T}}(\boldsymbol{\theta})\right)^{-1}$$

Understanding Mass Matrix (cont.)

Consider the 2R robot with $L_1 = L_2 = m_1 = m_2 = 1$. When the robot is at rest ($\dot{\theta} = 0$) and g = 0, $M_C(\theta)$ maps the endpoint acceleration (\ddot{x}, \ddot{y}) to (f_x, f_y) , i.e., $(f_x, f_y) = M_C(\theta)(\ddot{x}, \ddot{y})$.

Finding Dynamic Terms Using Lagrangian Formulation

$$\boldsymbol{\tau} = \frac{d}{dt} \left[\frac{\partial \mathcal{L}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}})}{\partial \dot{\boldsymbol{\theta}}} \right] - \frac{\partial \mathcal{L}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}})}{\partial \boldsymbol{\theta}}, \qquad \mathcal{L}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = \mathcal{K}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) - \mathcal{P}(\boldsymbol{\theta}), \qquad \mathcal{K}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = \frac{1}{2} \dot{\boldsymbol{\theta}}^{\mathrm{T}} \boldsymbol{M}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}}$$

$$\frac{\partial \mathcal{L}}{\partial \dot{\theta}} = \frac{\partial \mathcal{K}}{\partial \dot{\theta}} = M(\theta) \dot{\theta}, \qquad \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\theta}} = M(\theta) \ddot{\theta} + \dot{M}(\theta) \dot{\theta}, \qquad \frac{\partial \mathcal{L}}{\partial \theta} = \frac{1}{2} \frac{\partial}{\partial \theta} \left(\dot{\theta}^T M(\theta) \dot{\theta} \right) - \frac{\partial \mathcal{P}(\theta)}{\partial \theta}$$

$$\Rightarrow \quad \boldsymbol{\tau} = \boldsymbol{M}(\boldsymbol{\theta})\ddot{\boldsymbol{\theta}} + \dot{\boldsymbol{M}}(\boldsymbol{\theta})\dot{\boldsymbol{\theta}} - \frac{1}{2}\frac{\partial}{\partial\boldsymbol{\theta}}\left[\dot{\boldsymbol{\theta}}^{\mathrm{T}}\boldsymbol{M}(\boldsymbol{\theta})\dot{\boldsymbol{\theta}}\right] + \frac{\partial\mathcal{P}(\boldsymbol{\theta})}{\partial\boldsymbol{\theta}} \quad \begin{array}{c} \text{Comparing with} \\ \boldsymbol{\tau} = \boldsymbol{M}(\boldsymbol{\theta})\ddot{\boldsymbol{\theta}} + \boldsymbol{c}\big(\boldsymbol{\theta},\dot{\boldsymbol{\theta}}\big) + \boldsymbol{g}(\boldsymbol{\theta}) \end{array}$$

$$\Rightarrow \begin{cases} \boldsymbol{c}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = \dot{\boldsymbol{M}}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}} - \frac{1}{2} \frac{\partial}{\partial \boldsymbol{\theta}} [\dot{\boldsymbol{\theta}}^{\mathrm{T}} \boldsymbol{M}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}}] = \dot{\boldsymbol{M}}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}} - \frac{\partial \mathcal{K}}{\partial \boldsymbol{\theta}}, \\ \boldsymbol{g}(\boldsymbol{\theta}) = \frac{\partial \mathcal{P}}{\partial \boldsymbol{\theta}} \end{cases}$$

Finding Dynamic Terms Using Lagrangian Formulation (cont.)

Componentwise Analysis

• $\frac{\partial \mathcal{L}}{\partial \dot{\theta}_k} = \sum_{i=1}^n m_{kj}(\theta) \dot{\theta}_j$

$$\begin{aligned} \text{Componentwise Analysis:} \quad \tau_{k} &= \frac{d}{dt} \frac{\partial \mathcal{L}(\theta, \dot{\theta})}{\partial \dot{\theta}_{k}} - \frac{\partial \mathcal{L}(\theta, \dot{\theta})}{\partial \theta_{k}} \qquad k = 1, \dots, n \\ \bullet & \frac{\partial \mathcal{L}}{\partial \dot{\theta}_{k}} = \sum_{j=1}^{n} m_{kj}(\theta) \dot{\theta}_{j} \qquad \bullet & \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\theta}_{k}} = \sum_{j=1}^{n} \left(m_{kj}(\theta) \ddot{\theta}_{j} + \left[\frac{d}{dt} m_{kj}(\theta) \right] \dot{\theta}_{j} \right) \\ \bullet & \frac{\partial \mathcal{L}}{\partial \theta_{k}} = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial m_{ij}}{\partial \theta_{k}} \dot{\theta}_{i} \dot{\theta}_{i} - \frac{\partial P}{\partial \theta_{k}} \qquad = \sum_{j=1}^{n} m_{kj} \ddot{\theta}_{j} + \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{\partial m_{kj}}{\partial \theta_{i}} \dot{\theta}_{i} \dot{\theta}_{j} \\ \bullet & \left[\sum_{j=1}^{n} \sum_{i=1}^{n} \frac{\partial m_{kj}}{\partial \theta_{i}} \dot{\theta}_{i} \dot{\theta}_{j} - \frac{\partial P}{\partial \theta_{k}} \right] \dot{\theta}_{i} \dot{\theta}_{i} \end{aligned}$$

$$= \sum_{j=1}^{n} m_{kj} \ddot{\theta}_{j} + \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{2} \left[\frac{\partial m_{kj}}{\partial \theta_{i}} + \frac{\partial m_{ki}}{\partial \theta_{j}} - \frac{\partial m_{ij}}{\partial \theta_{k}} \right] \dot{\theta}_{j} \dot{\theta}_{i} + \frac{\partial P}{\partial \theta_{k}}, \qquad k = 1, \dots, n$$

$$\Gamma_{ijk}(\boldsymbol{\theta}) \qquad \qquad \Gamma_{ijk}(\boldsymbol{\theta}) \text{ is a } n \times n \times n \text{ matrix known as Christoffel symbols of the first kind.}$$

first kind.

Finding Dynamic Terms Using Lagrangian Formulation (cont.)

Thus, we can write the components of $m{c}(m{ heta}, \dot{m{ heta}})$ as

$$c_k(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = \sum_{i=1}^n \sum_{j=1}^n \Gamma_{ijk}(\boldsymbol{\theta}) \dot{\theta}_j \dot{\theta}_i$$

Finding Dynamic Terms Using Newton–Euler Formulation (Method 1: Closed Form)

Using the closed form of dynamic equations, we can write

$$\begin{aligned} \boldsymbol{\mathcal{V}} &= \mathcal{L}(\boldsymbol{\theta}) \big(\mathcal{A} \dot{\boldsymbol{\theta}} + \boldsymbol{\mathcal{V}}_{\text{base}} \big) \\ \dot{\boldsymbol{\mathcal{V}}} &= \mathcal{L}(\boldsymbol{\theta}) \big(\mathcal{A} \ddot{\boldsymbol{\theta}} - \big[\text{ad}_{\mathcal{A} \dot{\boldsymbol{\theta}}} \big] (\boldsymbol{\mathcal{W}}(\boldsymbol{\theta}) \boldsymbol{\mathcal{V}} + \boldsymbol{\mathcal{V}}_{\text{base}}) + \dot{\boldsymbol{\mathcal{V}}}_{\text{base}} \big) \\ \mathcal{F} &= \mathcal{L}^{T}(\boldsymbol{\theta}) \big(\mathcal{G} \dot{\boldsymbol{\mathcal{V}}} - [\text{ad}_{\boldsymbol{\mathcal{V}}}]^{T} \mathcal{G} \boldsymbol{\mathcal{V}} + \overline{\mathcal{F}}_{\text{tip}} \big), \\ \boldsymbol{\tau} &= \mathcal{A}^{T} \mathcal{F} \\ \mathbf{\tau} &= \mathcal{M}(\boldsymbol{\theta}) \ddot{\boldsymbol{\theta}} + c \big(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}} \big) + g(\boldsymbol{\theta}) + J^{T}(\boldsymbol{\theta}) \mathcal{F}_{\text{tip}} \\ \text{For a fixed based manipulator where } \boldsymbol{\mathcal{V}}_{0} = \mathbf{0}. \end{aligned}$$

$$M(\theta) = \mathcal{A}^{\mathrm{T}}\mathcal{L}^{T}(\theta)\mathcal{G}\mathcal{L}(\theta)\mathcal{A}$$

$$c(\theta, \dot{\theta}) = -\mathcal{A}^{\mathrm{T}}\mathcal{L}^{T}(\theta)(\mathcal{G}\mathcal{L}(\theta)[\mathrm{ad}_{\mathcal{A}\dot{\theta}}]\mathcal{W}(\theta) + [\mathrm{ad}_{\mathcal{V}}]^{\mathrm{T}}\mathcal{G})\mathcal{L}(\theta)\mathcal{A}\dot{\theta}$$

$$g(\theta) = \mathcal{A}^{\mathrm{T}}\mathcal{L}^{T}(\theta)\mathcal{G}\mathcal{L}(\theta)\dot{\mathcal{V}}_{\mathrm{base}}$$

Note: \dot{M} can be written explicitly as

$$\dot{\boldsymbol{M}} = -\boldsymbol{\mathcal{A}}^{\mathrm{T}}\boldsymbol{\mathcal{L}}^{\mathrm{T}}\boldsymbol{\mathcal{W}}^{\mathrm{T}}\left[\mathrm{ad}_{\boldsymbol{\mathcal{A}}\dot{\boldsymbol{\theta}}}\right]^{\mathrm{T}}\boldsymbol{\mathcal{L}}^{\mathrm{T}}\boldsymbol{\mathcal{G}}\boldsymbol{\mathcal{L}}\boldsymbol{\mathcal{A}} - \boldsymbol{\mathcal{A}}^{\mathrm{T}}\boldsymbol{\mathcal{L}}^{\mathrm{T}}\boldsymbol{\mathcal{G}}\boldsymbol{\mathcal{L}}\left[\mathrm{ad}_{\boldsymbol{\mathcal{A}}\dot{\boldsymbol{\theta}}}\right]\boldsymbol{\mathcal{W}}\boldsymbol{\mathcal{L}}\boldsymbol{\mathcal{A}}$$

Finding Dynamic Terms Using Newton–Euler Formulation (Method 2)

We know that using the recursive Newton-Euler inverse dynamics algorithm we can find au. Thus,

- Term g(heta) is computed by finding $au|_{\dot{ heta}=\ddot{ heta}=0,\,\mathcal{F}_{ ext{tip}}=0}$
- Term $c(heta, \dot{ heta})$ is computed by finding $au|_{\ddot{ heta}=0,\,\mathcal{F}_{ ext{tip}}=0,\,\mathfrak{g}=0}$
- Term $J^{\mathrm{T}}(\theta) \mathcal{F}_{\mathrm{tip}}$ is computed by finding $\tau|_{\dot{\theta}=\ddot{\theta}=0,\ \mathfrak{g}=0}$

Term
$$\boldsymbol{M}(\boldsymbol{\theta}) = [\boldsymbol{M}_1(\boldsymbol{\theta}), \dots, \boldsymbol{M}_n(\boldsymbol{\theta})]$$
 is computed by
$$\boldsymbol{M}_i(\boldsymbol{\theta}) = \boldsymbol{\tau} \Big|_{\dot{\boldsymbol{\theta}} = \boldsymbol{0}, \, \boldsymbol{\mathcal{F}}_{\mathrm{tip}} = \boldsymbol{0}, \, \boldsymbol{g} = \boldsymbol{0}, \, \ddot{\boldsymbol{\theta}}_i = 1, \, \ddot{\boldsymbol{\theta}}_j = 0, \, \forall j \neq i}$$

(Alternatively, we can use: $\boldsymbol{M}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \boldsymbol{J}_{ib}^{\mathrm{T}}(\boldsymbol{\theta}) \boldsymbol{G}_{i} \boldsymbol{J}_{ib}(\boldsymbol{\theta})$)

- Term $b(\theta, \dot{\theta}, \mathcal{F}_{tip}) = c(\theta, \dot{\theta}) + g(\theta) + J^{T}(\theta)\mathcal{F}_{tip}$ is computed by finding $\tau|_{\ddot{\theta}=0}$

Forward Dynamics

Forward Dynamics

Finding $\ddot{\theta}$ given the θ , $\dot{\theta}$, \mathcal{F}_{tip} , τ : $\tau = M(\theta)\ddot{\theta} + c(\theta, \dot{\theta}) + g(\theta) + J^{T}(\theta)\mathcal{F}_{\text{tip}}$

After computing $b(\theta, \dot{\theta}, \mathcal{F}_{tip}) = c(\theta, \dot{\theta}) + g(\theta) + J^{T}(\theta)\mathcal{F}_{tip}$ and $M(\theta)$, we can use <u>any</u> <u>efficient</u> algorithm to solve $M(\theta)\ddot{\theta} = \tau - b$ for $\ddot{\theta}$.

$$\ddot{\boldsymbol{\theta}} = \boldsymbol{M}^{-1}(\boldsymbol{\theta}) \left(\boldsymbol{\tau} - \boldsymbol{b} \big(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}, \boldsymbol{\mathcal{F}}_{\text{tip}} \big) \right)$$

or $\ddot{\boldsymbol{\theta}} = \boldsymbol{M}(\boldsymbol{\theta}) \setminus \left(\boldsymbol{\tau} - \boldsymbol{b} \big(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}, \boldsymbol{\mathcal{F}}_{\text{tip}} \big) \right)$ in MATLAB

Numerical Simulation of Robot Motion

Forward dynamics can be used to simulate the motion of the robot for $t \in [0, t_f]$ given $\tau(t)$, $\mathcal{F}_{tip}(t)$, and its initial state $\theta(0)$, $\dot{\theta}(0)$. These equations are coupled, non-linear ODEs, and they can be solved using numerical integration.

Properties of Dynamic Model

Amin Fakhari, Spring 2024

Properties of Robot Dynamic Equations

Fundamental properties of the dynamic model of n-DOF open-chain robots are of particular importance in the study of control systems for robot manipulators.

$$\tau = M(\theta)\ddot{\theta} + c(\theta,\dot{\theta}) + g(\theta)$$
$$= M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + g(\theta)$$

 $\boldsymbol{\theta} \in \mathbb{R}^n$: Joint Variables $\boldsymbol{\tau} \in \mathbb{R}^n$: Joint Torques/Forces

 $M(\theta) \in \mathbb{R}^{n \times n}$: Mass Matrix $g(\theta) \in \mathbb{R}^n$: Gravitational Terms

 $\boldsymbol{C}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) \in \mathbb{R}^{n \times n}$: Coriolis Matrix

 $c(\theta, \dot{\theta}) \in \mathbb{R}^n$: Coriolis and Centripetal Terms (velocity-product term or quadratic velocity term)

Properties of Mass or Inertia Matrix $M(\theta)$

• The total kinetic energy $\mathcal{K} \in \mathbb{R}_+$ of an open-chain robot:

$$\mathcal{K}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = \frac{1}{2} \dot{\boldsymbol{\theta}}^{\mathrm{T}} \boldsymbol{M}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}}$$

- $M(\theta)$ depends only on θ .
- $M(\theta)$ is always symmetric and positive-definite.
- $M^{-1}(\theta)$ always exist.
- $M(\theta)$ is bounded above and below: $\mu_1 I_n \leq M(\theta) \leq \mu_2 I_n$

$$\forall \boldsymbol{\theta} \in \mathbb{R}^n, \mu_1, \mu_2 \in \mathbb{R}_{++}$$

 $\boldsymbol{I}_n = \operatorname{diag}(1) \in \mathbb{R}^n$

$$\frac{1}{\mu_1} \boldsymbol{I}_n \geq \boldsymbol{M}^{-1}(\boldsymbol{\theta}) \geq \frac{1}{\mu_2} \boldsymbol{I}_n$$

- If the arm is revolute, μ_1, μ_2 are constants, and if the arm has prismatic joints, μ_1, μ_2 may depend on $\boldsymbol{\theta}$.

- This property can also be expressed as $m_1 \leq \|\boldsymbol{M}(\boldsymbol{\theta})\| \leq m_2$ $\forall \boldsymbol{\theta} \in \mathbb{R}^n$ $\|\cdot\|$ is any matrix norm, $m_1, m_2 \in \mathbb{R}_{++}$

Properties of Coriolis & Centripetal Terms

- $c(\theta, \dot{\theta}) = C(\theta, \dot{\theta})\dot{\theta} = \dot{\theta}^{\mathrm{T}}\Gamma(\theta)\dot{\theta}$ is quadratic in $\dot{\theta}$.
- $C(\theta, \dot{\theta})|_{\dot{\theta}=0} = 0.$
- $c(\theta, \dot{\theta})$ can be bounded above by a quadratic function of $\dot{\theta}$: $||c(\theta, \dot{\theta})|| \le c_b ||\dot{\theta}||^2$ $||\cdot||$ is any vector norm, $c_b \in \mathbb{R}_+, \forall \theta, \dot{\theta} \in \mathbb{R}^n$
 - If the arm is revolute, c_b is constant, and if the arm has prismatic joints, c_b may depend on θ .

- If
$$\|\cdot\|$$
 is 2-norm: $c_b = n^2 \left(\max \left| \Gamma_{k_{ij}}(\boldsymbol{\theta}) \right| \right)$

- Matrix $C(\theta, \dot{\theta})$ may be not unique, but the vector $C(\theta, \dot{\theta})\dot{\theta}$ is indeed unique.
 - In general, $\dot{\boldsymbol{\theta}}^{T} (\dot{\boldsymbol{M}} 2\boldsymbol{C}) \dot{\boldsymbol{\theta}} = \boldsymbol{0}.$

- We can always find the standard $C(\theta, \dot{\theta})$ that $S(\theta, \dot{\theta}) = \dot{M} - 2C \in \mathbb{R}^{n \times n}$ is **skew symmetric**, i.e., $x^T (\dot{M} - 2C) x = 0$, $\forall x \in \mathbb{R}^n$. (Passivity Property) For a standard $C(\theta, \dot{\theta}) = \dot{M} - C(\theta, \dot{\theta}) + C(\theta, \dot{\theta})^T$

- For a standard
$$C(\theta, \dot{\theta}), \ \dot{M} = C(\theta, \dot{\theta}) + C(\theta, \dot{\theta})^T$$
.

Properties of Coriolis & Centripetal Terms

• We can find the standard $C(\theta, \dot{\theta})$ as $C(\theta, \dot{\theta}) = 1/2(\dot{M} + U^T - U)$

 $\dot{\boldsymbol{M}}(\boldsymbol{\theta}) = \left(\dot{\boldsymbol{\theta}}^T \otimes \boldsymbol{I}_n\right) \frac{\partial \boldsymbol{M}}{\partial \boldsymbol{\theta}} \in \mathbb{R}^{n \times n}, \quad \boldsymbol{U}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = \left(\boldsymbol{I}_n \otimes \dot{\boldsymbol{\theta}}^T\right) \frac{\partial \boldsymbol{M}}{\partial \boldsymbol{\theta}} \in \mathbb{R}^{n \times n}, \quad \boldsymbol{I}_n = \operatorname{diag}(1) \in \mathbb{R}^n$ - We can find 2 other (non-standard) choices of $\boldsymbol{C}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}})$ as $\boldsymbol{C}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = \dot{\boldsymbol{M}} - 1/2\boldsymbol{U}$

 $\boldsymbol{C}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = \boldsymbol{U}^T - 1/2\boldsymbol{U}$

Properties of Gravitational Terms g(q)

• Let $\mathcal{P} \in \mathbb{R}_+$ be the total gravitational potential energy of an open-chain robot. Then,

 $\boldsymbol{g}(\boldsymbol{\theta}) = \frac{\partial \mathcal{P}}{\partial \boldsymbol{\theta}}$

- $g(\theta)$ depends only on θ .
- $g(\theta)$ is bounded above: $\|g(\theta)\| \le g_b$ $\forall \theta \in \mathbb{R}^n$

 $\|\cdot\|$ is any vector norm, $g_b \in \mathbb{R}_+$

- If the arm is revolute, g_b is constant, and if the arm has prismatic joints, g_b may depend on θ .

•
$$\int_0^{t_f} \boldsymbol{g}(\boldsymbol{\theta}(t))^T \dot{\boldsymbol{\theta}}(t) dt = \mathcal{P}(\boldsymbol{\theta}(t_f)) - \mathcal{P}(\boldsymbol{\theta}(0))$$

Example

Dynamic equations of a planar 2R open-chain in absence of friction terms:

$$\boldsymbol{\pi} = \boldsymbol{M}(\boldsymbol{\theta})\ddot{\boldsymbol{\theta}} + \boldsymbol{c}(\boldsymbol{\theta},\dot{\boldsymbol{\theta}}) + \boldsymbol{g}(\boldsymbol{\theta})$$

$$\boldsymbol{M}(\boldsymbol{\theta}) = \begin{bmatrix} m_1 L_1^2 + m_2 (L_1^2 + 2L_1 L_2 \cos \theta_2 + L_2^2) \\ m_2 (L_1 L_2 \cos \theta_2 + L_2^2) \end{bmatrix} m_2 (L_1 L_2 \cos \theta_2 + L_2^2) \\ m_2 L_2^2 \end{bmatrix} \begin{pmatrix} \hat{y} \\ L_1 \\ \mu_1 \\ \mu_1 \\ \mu_1 \\ \mu_1 \\ \mu_1 \\ \mu_1 \\ \mu_2 \\$$

Find the bounds on the $M(\theta)$, $c(\theta, \dot{\theta})$, $g(\theta)$. Suppose that the joint angles θ_1 and θ_2 are limited by $\pm \pi/2$.

Note: The selection of a suitable norm is not always straightforward. This choice often depends simply on which norm makes it possible to evaluate the bounds. Usually, 1-norm is an easy choice.

Example (cont.)

• The induced 1-norm for $M(\theta)$:

 $\|\boldsymbol{M}(\boldsymbol{\theta})\|_{1} = \left|\mathfrak{m}_{1}L_{1}^{2} + \mathfrak{m}_{2}(L_{1}^{2} + 2L_{1}L_{2}\cos\theta_{2} + L_{2}^{2})\right| + \left|\mathfrak{m}_{2}(L_{1}L_{2}\cos\theta_{2} + L_{2}^{2})\right|$

$$m_{1} \leq \|\boldsymbol{M}(\boldsymbol{\theta})\|_{1} \leq m_{2} \qquad \qquad m_{2} = (m_{1} + m_{2})L_{1}^{2} + 2m_{2}L_{2}^{2} + 3m_{2}L_{1}L_{2} m_{1} = (m_{1} + m_{2})L_{1}^{2} + 2m_{2}L_{2}^{2}$$

• The 1-norm of $\boldsymbol{c}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}})$: $\|\boldsymbol{c}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}})\|_{1} = |\mathfrak{m}_{2}L_{1}L_{2}\sin\theta_{2}(2\dot{\theta}_{1}\dot{\theta}_{2} + \dot{\theta}_{2}^{2})| + |\mathfrak{m}_{2}L_{1}L_{2}\dot{\theta}_{1}^{2}\sin\theta_{2}|$ $\leq \mathfrak{m}_{2}L_{1}L_{2}(|\dot{\theta}_{1}| + |\dot{\theta}_{2}|)^{2} \equiv c_{b}\|\dot{\boldsymbol{\theta}}\|_{1}^{2}$ $\|\boldsymbol{c}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}})\| \leq c_{b}\|\dot{\boldsymbol{\theta}}\|^{2}$ $c_{b} = \mathfrak{m}_{2}L_{1}L_{2}$

• The 1-norm of
$$\boldsymbol{g}(\boldsymbol{\theta})$$
: $\|\boldsymbol{g}(\boldsymbol{\theta})\|_1 = |(\mathfrak{m}_1 + \mathfrak{m}_2)L_1g\cos\theta_1 + \mathfrak{m}_2gL_2\cos(\theta_1 + \theta_2)|$
 $+|\mathfrak{m}_2gL_2\cos(\theta_1 + \theta_2)|$
 $\leq (\mathfrak{m}_1 + \mathfrak{m}_2)gL_1 + 2\mathfrak{m}_2gL_2 \equiv g_b$

Example (cont.)

- We can find the standard $C(\theta, \dot{\theta})$ where $c(\theta, \dot{\theta}) = C(\theta, \dot{\theta})\dot{\theta}$ as:

$$\boldsymbol{C}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = 1/2(\dot{\boldsymbol{M}} + \boldsymbol{U}^{T} - \boldsymbol{U}) = \begin{bmatrix} -\dot{\theta}_{2}\mathfrak{m}_{2}L_{1}L_{2}\sin\theta_{2} & -(\dot{\theta}_{1} + \dot{\theta}_{2})\mathfrak{m}_{2}L_{1}L_{2}\sin\theta_{2} \\ \dot{\theta}_{1}\mathfrak{m}_{2}L_{1}L_{2}\sin\theta_{2} & 0 \end{bmatrix}$$

where
$$\boldsymbol{U}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = (\boldsymbol{I}_n \otimes \dot{\boldsymbol{\theta}}^T) \frac{\partial \boldsymbol{M}}{\partial \boldsymbol{\theta}} = \begin{bmatrix} 0 & 0\\ -(2\dot{\theta}_1 + \dot{\theta}_2)\mathfrak{m}_2 L_1 L_2 \sin \theta_2 & -\dot{\theta}_1 \mathfrak{m}_2 L_1 L_2 \sin \theta_2 \end{bmatrix}$$
.

- Two other choices of $\pmb{C}(\pmb{ heta},\dot{\pmb{ heta}})$ are

$$C(\theta, \dot{\theta}) = \dot{M} - 1/2U = \begin{bmatrix} -2\dot{\theta}_2 m_2 L_1 L_2 \sin \theta_2 & -\dot{\theta}_2 m_2 L_1 L_2 \sin \theta_2 \\ (\dot{\theta}_1 - 1/2\dot{\theta}_2) m_2 L_1 L_2 \sin \theta_2 & 1/2\dot{\theta}_1 m_2 L_1 L_2 \sin \theta_2 \end{bmatrix}$$
$$C(\theta, \dot{\theta}) = U^T - 1/2U = \begin{bmatrix} 0 & -(2\dot{\theta}_1 + \dot{\theta}_2) m_2 L_1 L_2 \sin \theta_2 \\ (\dot{\theta}_1 + 1/2\dot{\theta}_2) m_2 L_1 L_2 \sin \theta_2 & 1/2\dot{\theta}_1 m_2 L_1 L_2 \sin \theta_2 \end{bmatrix}$$

Example (cont.)

Matrix of Christoffel symbols of the first kind $\Gamma(\theta)$:

$$\boldsymbol{\Gamma}(\boldsymbol{\theta}) = \begin{bmatrix} \boldsymbol{\Gamma}_{1}(\boldsymbol{\theta}) \\ \boldsymbol{\Gamma}_{2}(\boldsymbol{\theta}) \end{bmatrix} \qquad \boldsymbol{c}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = \dot{\boldsymbol{\theta}}^{\mathrm{T}} \boldsymbol{\Gamma}(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}} = \begin{bmatrix} \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \end{bmatrix}^{T} \underbrace{\begin{bmatrix} \boldsymbol{0} & -\mathbf{m}_{2}L_{1}L_{2}\sin\theta_{2} & -\mathbf{m}_{2}L_{1}L_{2}\sin\theta_{2} \\ -\mathbf{m}_{2}L_{1}L_{2}\sin\theta_{2} & -\mathbf{m}_{2}L_{1}L_{2}\sin\theta_{2} \end{bmatrix} \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \end{bmatrix}} \\ \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \end{bmatrix}^{T} \underbrace{\begin{bmatrix} \mathbf{m}_{2}L_{1}L_{2}\sin\theta_{2} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\boldsymbol{\Gamma}_{2}(\boldsymbol{\theta})} \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \end{bmatrix}} \end{bmatrix}$$

Using $\Gamma_1(\theta)$ and $\Gamma_2(\theta)$, we can find c_b in $\|c(\theta, \dot{\theta})\| \le c_b \|\dot{\theta}\|^2$ when $\|\cdot\|$ is 2-norm by

$$c_{b} = n^{2} \left(\max \left| \Gamma_{k_{ij}}(\boldsymbol{\theta}) \right| \right) \qquad \max_{\theta} \left| \Gamma_{1_{11}}(\boldsymbol{\theta}) \right| = 0, \qquad \max_{\theta} \left| \Gamma_{2_{11}}(\boldsymbol{\theta}) \right| = \mathfrak{m}_{2}L_{1}L_{2} \\ \max_{\theta} \left| \Gamma_{1_{12}}(\boldsymbol{\theta}) \right| = \mathfrak{m}_{2}L_{1}L_{2}, \qquad \max_{\theta} \left| \Gamma_{2_{12}}(\boldsymbol{\theta}) \right| = 0 \\ \max_{\theta} \left| \Gamma_{1_{21}}(\boldsymbol{\theta}) \right| = \mathfrak{m}_{2}L_{1}L_{2}, \qquad \max_{\theta} \left| \Gamma_{2_{22}}(\boldsymbol{\theta}) \right| = 0 \\ \max_{\theta} \left| \Gamma_{1_{22}}(\boldsymbol{\theta}) \right| = \mathfrak{m}_{2}L_{1}L_{2}, \qquad \max_{\theta} \left| \Gamma_{2_{22}}(\boldsymbol{\theta}) \right| = 0. \\ \Rightarrow c_{b} = 4\mathfrak{m}_{2}L_{1}L_{2}$$

Linearity in Dynamic Parameters

An important property of the dynamic model of an open-chain manipulator is the linearity with respect to a <u>suitable</u> set of parameters $\pi \in \mathbb{R}^p$, including dynamic parameters (mass m_i , first moment of inertia $m_i l_{C_x,i}, m_i l_{C_y,i}, m_i l_{C_z,i}$, the six components of inertia matrix $I_{b,i}$) and friction parameters ($F_{v,i}, F_{s,i}$) as

$$\tau = M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + g(\theta) + F_v\dot{\theta} + F_s \operatorname{sgn}(\dot{\theta}) = Y(\theta,\dot{\theta},\ddot{\theta})\pi$$
$$Y(\theta,\dot{\theta},\ddot{\theta}) \in \mathbb{R}^{n \times p} \text{ is called regressor.}$$

- This property is useful in **Adaptive Control**, where some or all the parameters maybe unknown.
- Note that $p \le 12n$, since not all the dynamic/friction parameters appear in dynamic equations or are unknown.

Example

Dynamic equations of a planar 2R open chain in presence of friction terms:

$$\begin{aligned} \tau_1 &= \left(\mathfrak{m}_1 L_1^2 + \mathfrak{m}_2 (L_1^2 + 2L_1 L_2 \cos \theta_2 + L_2^2) \right) \ddot{\theta}_1 \\ &+ \mathfrak{m}_2 (L_1 L_2 \cos \theta_2 + L_2^2) \ddot{\theta}_2 - \mathfrak{m}_2 L_1 L_2 \sin \theta_2 \left(2\dot{\theta}_1 \dot{\theta}_2 + \dot{\theta}_2^2 \right) \\ &+ (\mathfrak{m}_1 + \mathfrak{m}_2) L_1 g \cos \theta_1 + \mathfrak{m}_2 g L_2 \cos(\theta_1 + \theta_2) + F_{\nu,1} \dot{\theta}_1 + F_{s,1} \operatorname{sgn} \dot{\theta}_1 , \end{aligned}$$

$$\tau_{2} = \mathfrak{m}_{2}(L_{1}L_{2}\cos\theta_{2} + L_{2}^{2})\ddot{\theta}_{1} + \mathfrak{m}_{2}L_{2}^{2}\ddot{\theta}_{2} + \mathfrak{m}_{2}L_{1}L_{2}\dot{\theta}_{1}^{2}\sin\theta_{2} + \mathfrak{m}_{2}gL_{2}\cos(\theta_{1} + \theta_{2}) + F_{\nu,2}\dot{\theta}_{2} + F_{s,2}\operatorname{sgn}\dot{\theta}_{2}.$$

If the set of unknown parameters $\boldsymbol{\pi}$ is defined as $\boldsymbol{\pi} = [\mathfrak{m}_1, \mathfrak{m}_2, F_{s,1}, F_{v,1}, F_{s,2}, F_{v,2}]^T$, find $\boldsymbol{Y}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}, \ddot{\boldsymbol{\theta}})$ where $\boldsymbol{\tau} = \boldsymbol{Y}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}, \ddot{\boldsymbol{\theta}})\boldsymbol{\pi}$.

Example

We can find $Y(\theta, \dot{\theta}, \ddot{\theta})$ as

$$Y(\theta, \dot{\theta}, \ddot{\theta}) = \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} & Y_{14} & 0 & 0 \\ 0 & Y_{22} & 0 & 0 & Y_{25} & Y_{26} \end{bmatrix}$$

$$\begin{split} Y_{11} &= L_1^2 \ddot{\theta}_1 + g L_1 \cos \theta_1 \\ Y_{12} &= [L_1^2 + L_2^2 + 2L_1 L_2 \cos \theta_2] \ddot{\theta}_1 + [L_2^2 + L_1 L_2 \cos \theta_2] \ddot{\theta}_2 \\ &- L_1 L_2 (2 \dot{\theta}_1 \dot{\theta}_2 + \dot{\theta}_2^2) \sin \theta_2 + g L_1 \cos \theta_1 + g L_2 \cos(\theta_1 + \theta_2) \\ Y_{13} &= \mathrm{sgn}(\dot{\theta}_1) \\ Y_{14} &= \dot{\theta}_1 \\ Y_{22} &= [L_2^2 + L_1 L_2 \cos \theta_2] \ddot{\theta}_1 + L_2^2 \ddot{\theta}_2 + L_1 L_2 \dot{\theta}_1^2 \sin \theta_2 + g L_2 \cos(\theta_1 + \theta_2) \\ Y_{25} &= \mathrm{sgn}(\dot{\theta}_2) \\ Y_{26} &= \dot{\theta}_2 \end{split}$$