Ch3: Minimum-Time Trajectory Generation

Time-Optimal Time Scaling

Path, Time Scaling, and Trajectory

Path C(s) is a purely geometric description of the sequence of configurations achieved by the robot: $s \in [0,1]$: scalar path parameter Robot's C-space

 $s \in [0,1]$: scalar path parameter (0 at the start and 1 at the end of the path)

• As *s* increases from 0 to 1, the robot moves along the path.

Time Scaling s(t) specifies the times when those robot configurations are reached:

$$s{:}\left[0,t_{f}\right]\rightarrow\left[0,1\right]$$

Trajectory C(s(t)) or C(t) specifies the robot configuration as a function of time, i.e., the combination of a path and a time scaling.

Some Examples of Path Planning $\mathcal{C}(s), s \in [0,1]$

Point-to-Point Straight-Line Path in Joint Space:

 $\boldsymbol{\theta}(s) = \boldsymbol{\theta}_{\text{start}} + s(\boldsymbol{\theta}_{\text{end}} - \boldsymbol{\theta}_{\text{start}})$ $\boldsymbol{\theta} \in \mathbb{R}^n$

 $\{s\}$

• Point-to-Point Straight-Line Path in Task Space (in Cartesian Space \mathbb{R}^3):

$$x(s) = x_{\text{start}} + s(x_{\text{end}} - x_{\text{start}}) \qquad x \in \mathbb{R}^{m}: \text{ minimum set of coordinates}$$

or
$$p(s) = p_{\text{start}} + s(p_{\text{end}} - p_{\text{start}}) \qquad p \in \mathbb{R}^{3}, R \in SO(3)$$

$$R(s) = R_{\text{start}} \exp(\log(\frac{R_{\text{start}}^{T}R_{\text{end}}}{R_{\text{start,end}}})s)$$

Point-to-Point Straight-Line Path in Task Space (in *SE*(3)):
$$T(s) = T \qquad \exp(\log(T^{-1}, T_{n-1})s) \qquad T = (P, n) \in SE(3)$$

$$T(s) = T_{\text{start}} \exp(\log(\underbrace{T_{\text{start}}^{-1} T_{\text{end}}}_{T_{\text{start,end}}}) s) \qquad T = (R, p) \in SE(3)$$

Time-Optimal Time Scaling

Consider a case where the path C(s), $s \in [0,1]$, is fully specified by the task or an obstacleavoiding path planner. The **time-optimal time scaling** is finding a **time scaling** s(t) that minimizes the time of motion along the path, subject to the robot's <u>actuator limits</u>.

A time-optimal trajectory maximizes the robot's productivity.

Actuation Constraints as a Function of *s*

In practice, the robot dynamics and joint actuator limits dependent on $(\theta, \dot{\theta})$, thus, the maximum available velocities and accelerations change along the path.

$$\boldsymbol{\tau} = \boldsymbol{M}(\boldsymbol{\theta})\ddot{\boldsymbol{\theta}} + \dot{\boldsymbol{\theta}}^{\mathrm{T}}\boldsymbol{\Gamma}(\boldsymbol{\theta})\dot{\boldsymbol{\theta}} + \boldsymbol{g}(\boldsymbol{\theta}) \qquad (1)$$
$$\tau_{i}^{\mathrm{min}}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) \leq \tau_{i} \leq \tau_{i}^{\mathrm{max}}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) \qquad i = 1, \dots, n \quad (\text{actuation constraints}) \qquad (2)$$

A path C(s) can be always expressed in joint space $\theta(s) \in \mathbb{R}^n$ using inverse kinematics. Thus, $d\theta = d^2\theta$

$$\dot{\boldsymbol{\theta}} = \frac{d\boldsymbol{\theta}}{ds}\dot{s}, \quad \ddot{\boldsymbol{\theta}} = \frac{d\boldsymbol{\theta}}{ds}\ddot{s} + \frac{d^2\boldsymbol{\theta}}{ds^2}\dot{s}^2$$

Dynamics along the path:

$$(1) \rightarrow \tau = \underbrace{\left(M(\theta(s))\frac{d\theta}{ds}\right)}_{m(s)\in\mathbb{R}^{n}} \ddot{s} + \underbrace{\left(M(\theta(s))\frac{d^{2}\theta}{ds^{2}} + \left(\frac{d\theta}{ds}\right)^{\mathrm{T}}\Gamma(\theta(s))\frac{d\theta}{ds}\right)}_{c(s)\in\mathbb{R}^{n}} \dot{s}^{2} + \underbrace{g(\theta(s))}_{g(s)\in\mathbb{R}^{n}} \dot{s}^{2} + \underbrace{g(\theta(s))}_{g(s)\in\mathbb{R}^{n}}$$

Actuation Constraints as a Function of *s*

(2)
$$\rightarrow \tau_i^{\min}(s, \dot{s}) \le \tau_i \le \tau_i^{\max}(s, \dot{s})$$
 (4)

(3), (4) $\rightarrow \tau_i^{\min}(s, \dot{s}) \le m_i(s)\ddot{s} + c_i(s)\dot{s}^2 + g_i(s) \le \tau_i^{\max}(s, \dot{s})$ (5)

Let define $L_i(s, \dot{s})$ be the minimum \ddot{s} and $U_i(s, \dot{s})$ be the maximum \ddot{s} satisfying (5):

$$L_{i}(s, \dot{s}) = \frac{\tau_{i}^{\min}(s, \dot{s}) - c_{i}(s)\dot{s}^{2} - g_{i}(s)}{m_{i}(s)}$$

$$- \text{ If } m_{i}(s) > 0: \qquad U_{i}(s, \dot{s}) = \frac{\tau_{i}^{\max}(s, \dot{s}) - c_{i}(s)\dot{s}^{2} - g_{i}(s)}{m_{i}(s)}$$

$$- \text{ If } m_{i}(s) < 0: \qquad U_{i}(s, \dot{s}) = \frac{\tau_{i}^{\max}(s, \dot{s}) - c_{i}(s)\dot{s}^{2} - g_{i}(s)}{m_{i}(s)}$$

$$U_{i}(s, \dot{s}) = \frac{\tau_{i}^{\min}(s, \dot{s}) - c_{i}(s)\dot{s}^{2} - g_{i}(s)}{m_{i}(s)}$$

By defining $L(s, \dot{s}) = \max_{i} L_i(s, \dot{s})$ and $U(s, \dot{s}) = \min_{i} U_i(s, \dot{s})$ as the lower and upper bounds on \ddot{s} at (s, \dot{s}) , (5) can be written as $L(s, \dot{s}) \leq \ddot{s} \leq U(s, \dot{s})$

Time-optimal Time-scaling Problem

Given a path $\theta(s), s \in [0,1]$, an initial state $(s_0, \dot{s}_0) = (0,0)$, and a final state $(s_f, \dot{s}_f) = (1,0)$, find a monotonically increasing twice-differentiable time-scaling $s(t), s: [0, t_f] \rightarrow [0,1]$ that (a) satisfies: $s(0) = \dot{s}(0) = \dot{s}(t_f) = 0$ and $s(t_f) = 1$, (b) minimizes the total travel time t_f along the path while respecting the actuator constraints: $L(s, \dot{s}) \leq \ddot{s} \leq U(s, \dot{s})$

 $\equiv \dot{s}(t) \geq 0$ (robot moves only forward along the path)

This problem is easily visualized in the (s, \dot{s}) phase plane.

(s, \dot{s}) Phase Plane

(s, \dot{s}) Phase Plane

 (s, \dot{s}) phase plane is defined as a plane with s running from 0 to 1 on a horizontal axis and \dot{s} on a vertical axis.

A time scaling s(t) of the path is <u>any curve</u> $\dot{s}(s)$ in the phase plane that moves monotonically to the right from (0,0) to (1,0) in the top-right quadrant.

Among all these curves, we are looking for a time-optimal curve that satisfy the actuator/acceleration constraints $L(s, \dot{s}) \leq \ddot{s} \leq U(s, \dot{s})$.

Feasible Motion Cone

By drawing the range of feasible accelerations $L(s, \dot{s}) \leq \ddot{s} \leq U(s, \dot{s})$ according to the dynamics at any state (s, \dot{s}) , we find a cone called the **feasible motion cone**.

Note: Vector \dot{s} is proportional to the height of the point along the \dot{s} axis.

At each state (s, \dot{s}) , the tangent vector to the time scaling $\dot{s}(s)$ must lie **inside feasible motion cone** to satisfy the actuator limits (or the acceleration constraints).

Velocity Limit Curve

Let keep s constant but increase \dot{s} from 0:

At states on velocity limit curve, only <u>a single acceleration</u> is possible; at states above this curve, the robot leaves the path immediately (inadmissible states); and at states below the curve, there is a cone of possible tangent vectors (admissible states).

Bang-Bang Time Scaling

The total time of motion t_f can be written as

$$t_f = \int_0^{t_f} 1dt = \int_0^{t_f} \frac{ds}{ds} dt = \int_0^1 \frac{dt}{ds} ds = \int_0^1 \dot{s}^{-1}(s) ds$$

For a minimum-time motion, \dot{s}^{-1} should be as small as possible, and therefore, \dot{s} must be <u>as large as possible</u>, at all s, while still satisfying the acceleration constraints $L(s, \dot{s}) \leq \ddot{s} \leq U(s, \dot{s})$ and the boundary constraints $s(0) = \dot{s}(0) = \dot{s}(t_f) = 0$, $s(t_f) = 1$.

This implies that the time scaling must always operate either at the limit $U(s, \dot{s})$ (the upper edge of the motion cones) or at the limit $L(s, \dot{s})$ (the lower edge of the motion cones), and we should determine <u>switching point</u> s^* between these limits.

Time-optimal "bang-bang" time scaling

An example of a non-optimal time scaling

The curve must be normal to the *s*-axis when $\dot{s} = 0$.

Bang-Bang Time Scaling

In general, the time scaling is calculated by numerically integrating $\ddot{s} = U(s, \dot{s})$ (the maximum possible accelerations) forward in s from (0,0), integrating $\ddot{s} =$ $L(s, \dot{s})$ (the maximum possible decelerations) backward in s from (1,0), and finding the intersection (switching point s^*) of these curves.

However, in some cases, the existence of a velocity limit curve prevents a single-switch solution (two curves do not intersect and run into the velocity limit curve). In these cases, bang-bang control is not possible, and it requires an algorithm to find multiple switching points.

Since time-optimal trajectories consist of only maximum acceleration $U(s, \dot{s})$ and minimum acceleration $L(s, \dot{s})$, we need to find the switches between U and L:

Step 0: Find the velocity limit curve.

Step 1: Integrate $\ddot{s} = L(s, \dot{s})$ <u>backward</u> in time from (1,0) until (i) the velocity limit curve is penetrated $(L(s, \dot{s}) > U(s, \dot{s}))$ or (ii) s = 0. Call this curve F.

Step 2: Integrate $\ddot{s} = U(s, \dot{s})$ forward in time from (0,0) until (i) it intersects F or (ii) until the velocity limit curve is penetrated ($L(s, \dot{s}) > U(s, \dot{s})$). Call this curve A_0 .

- If (i) happens, the problem is solved.
- If (ii) happens, let $(s_{\lim}, \dot{s}_{\lim})$ be the point of penetration.

Step 3: Perform a <u>binary search</u> (or half-interval search) on the velocity in the range $[0, \dot{s}_{\lim}]$ at s_{\lim} to find the velocity \dot{s}' such that the curve integrating $\ddot{s} = L(s, \dot{s})$ <u>forward</u> in time from (s_{\lim}, \dot{s}') touches the velocity limit curve tangentially (or comes closest to the curve within a specified tolerance without hitting it) at $(s_{\tan}, \dot{s}_{\tan})$.

Step 4: Integrate $\ddot{s} = L(s, \dot{s})$ <u>backward</u> in time from (s_{tan}, \dot{s}_{tan}) until it intersects A_0 at (s_1, \dot{s}_1) . Call this curve A_1 . (s_1, \dot{s}_1) is the first switch point from maximum acceleration to maximum deceleration.

Step 5: Mark the tangent point (s_{tan}, \dot{s}_{tan}) as the switch point (s_2, \dot{s}_2) from maximum deceleration to maximum acceleration.

Step 6: Go back to **Step 2**, i.e., integrate $\ddot{s} = U(s, \dot{s})$ <u>forward</u> in time from (s_2, \dot{s}_2) until (i) it intersects For (ii) until the velocity limit curve is penetrated again $(L(s, \dot{s}) > U(s, \dot{s}))$. Call this curve A_2 .

- If (i) happens, the intersection point (s_3, \dot{s}_3) is the final switch point from maximum acceleration to maximum deceleration and the algorithm is complete.
- If (ii) happens, let $(s_{\text{lim}}, \dot{s}_{\text{lim}})$ be the new point of penetration and repeat the process from **Step 3**.

Another Method to Find Switch Points on Velocity Limit Curve

The only points on the velocity limit curve $(L(s, \dot{s}) = U(s, \dot{s}))$ that can be part of an optimal solution are those where the feasible motion vector $(\dot{s}, U(s, \dot{s}))$ is tangent to the velocity limit curve (s_{tan}, \dot{s}_{tan}) . Therefore, the binary search in the time-scaling algorithm (step 3) can be replaced by a more computationally efficient approach of numerical construction of the velocity limit curve and a searching on this curve for points where the motion vector is tangent to the curve.

The points that can belong to a time-optimal time scaling.

Time-Optimal Time ScalingPhase PlaneTime-Scaling Algorithm00000000000000000

An Example of Multi-Switch Time-Optimal Time Scaling

Example

