Ch3: Minimum-Time Trajectory Generation

Time-Optimal Time Scaling

Path, Time Scaling, and Trajectory

Path $C(s)$ is a purely geometric description of the sequence of configurations achieved by the robot: $C: [0,1] \to \mathbb{C}$ $s \in [0,1]$: scalar path paramete Robot's C-space

(0 at the start and 1 at the end of the path)

• As s increases from 0 to 1, the robot moves along the path.

Time Scaling $s(t)$ specifies the times when those robot configurations are reached:

$$
s\colon\bigl[0,t_f\bigr]\to\bigl[0,1\bigr]
$$

Trajectory $C(s(t))$ or $C(t)$ specifies the robot configuration as a function of time, i.e., the combination of a path and a time scaling.

Some Examples of Path Planning $C(s)$, $s \in [0,1]$

• Point-to-Point Straight-Line Path in Joint Space:

 $\theta(s) = \theta_{\text{start}} + s(\theta_{\text{end}} - \theta_{\text{start}})$ $\boldsymbol{\theta} \in \mathbb{R}^n$

s

• Point-to-Point Straight-Line Path in Task Space (in Cartesian Space \mathbb{R}^3):

$$
x(s) = x_{start} + s(x_{end} - x_{start})
$$

\nor
\n
$$
p(s) = p_{start} + s(p_{end} - p_{start})
$$

\n
$$
P(s) = R_{start} \exp(\log(R_{start}^T R_{end}) s)
$$

\n
$$
P(s) = R_{start} \exp(\log(R_{start}^T R_{end}) s)
$$

\n
$$
P(s) = R_{start} \exp(\log(R_{start}^T R_{end}) s)
$$

\n
$$
P(s) = R_{start} \exp(\log(R_{start}^T R_{end}) s)
$$

\n
$$
P(s) = R_{start} \exp(\log(R_{start}^T R_{end}) s)
$$

\n
$$
P(s) = R_{start} \exp(\log(R_{start}^T R_{end}) s)
$$

\n
$$
P(s) = R_{start} \exp(\log(R_{start}^T R_{end}) s)
$$

\n
$$
P(s) = R_{start} \exp(\log(R_{start}^T R_{end}) s)
$$

\n
$$
P(s) = R_{start} \exp(\log(R_{start}^T R_{end}) s)
$$

\n
$$
P(s) = R_{start} \exp(\log(R_{start}^T R_{end}) s)
$$

$$
T(s) = T_{\text{start}} \exp(\log(T_{\text{start}}^{-1} T_{\text{end}}) s) \qquad T = (R, p) \in SE(3)
$$

Time-Optimal Time Scaling

Consider a case where the **path** $C(s)$, $s \in [0,1]$, is fully specified by the task or an obstacleavoiding path planner. The **time-optimal time scaling** is finding a **time scaling** $s(t)$ that minimizes the time of motion along the path, subject to the robot's **actuator limits**.

A time-optimal trajectory maximizes the robot's productivity.

Actuation Constraints as a Function of

In practice, the robot dynamics and joint actuator limits dependent on $(\theta, \dot{\theta})$, thus, the maximum available velocities and accelerations change along the path.

$$
\boldsymbol{\tau} = \boldsymbol{M}(\boldsymbol{\theta})\ddot{\boldsymbol{\theta}} + \dot{\boldsymbol{\theta}}^{\mathrm{T}}\boldsymbol{\Gamma}(\boldsymbol{\theta})\dot{\boldsymbol{\theta}} + \boldsymbol{g}(\boldsymbol{\theta})
$$
 (1)

$$
\tau_i^{\min}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) \le \tau_i \le \tau_i^{\max}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) \quad i = 1, ..., n \quad \text{(activation constraints)}
$$
 (2)

A path $C(s)$ can be always expressed in joint space $\boldsymbol{\theta}(s) \in \mathbb{R}^n$ using inverse kinematics. Thus, $22a$

$$
\dot{\boldsymbol{\theta}} = \frac{d\boldsymbol{\theta}}{ds}\dot{s}, \quad \ddot{\boldsymbol{\theta}} = \frac{d\boldsymbol{\theta}}{ds}\ddot{s} + \frac{d^2\boldsymbol{\theta}}{ds^2}\dot{s}^2
$$

Dynamics along the path:

$$
(1) \rightarrow \tau = \underbrace{\left(M(\theta(s))\frac{d\theta}{ds}\right)}_{m(s)\in\mathbb{R}^n} \ddot{s} + \underbrace{\left(M(\theta(s))\frac{d^2\theta}{ds^2} + \left(\frac{d\theta}{ds}\right)^T \Gamma(\theta(s))\frac{d\theta}{ds}\right)}_{c(s)\in\mathbb{R}^n} \dot{s}^2 + \underbrace{g(\theta(s))}_{g(s)\in\mathbb{R}^n}
$$
\n
$$
= m(s)\ddot{s} + c(s)\dot{s}^2 + g(s) = m(s)\ddot{s} + h(s,\dot{s}) \quad (3)
$$

Actuation Constraints as a Function of

$$
(2) \quad \to \quad \tau_i^{\min}(s, \dot{s}) \le \tau_i \le \tau_i^{\max}(s, \dot{s}) \tag{4}
$$

(3), (4) $\to \tau_i^{\min}(s, \dot{s}) \leq m_i(s)\ddot{s} + c_i(s)\dot{s}^2 + g_i(s) \leq \tau_i^{\max}(s, \dot{s})$ (5)

Let define $L_i(s, \dot{s})$ be the minimum \ddot{s} and $U_i(s, \dot{s})$ be the maximum \ddot{s} satisfying (5):

$$
L_i(s, \dot{s}) = \frac{\tau_i^{\min}(s, \dot{s}) - c_i(s)\dot{s}^2 - g_i(s)}{m_i(s)}
$$

- If $m_i(s) > 0$:

$$
U_i(s, \dot{s}) = \frac{\tau_i^{\max}(s, \dot{s}) - c_i(s)\dot{s}^2 - g_i(s)}{m_i(s)}
$$

$$
L_i(s, \dot{s}) = \frac{\tau_i^{\max}(s, \dot{s}) - c_i(s)\dot{s}^2 - g_i(s)}{m_i(s)}
$$

- If $m_i(s) < 0$:

$$
U_i(s, \dot{s}) = \frac{\tau_i^{\min}(s, \dot{s}) - c_i(s)\dot{s}^2 - g_i(s)}{m_i(s)}
$$

By defining $L(s, \dot{s}) = \max$ $\max_{i} L_{i}(s, \dot{s})$ and $U(s, \dot{s}) = \min_{i} U_{i}(s, \dot{s})$ as the lower and upper bounds on \ddot{s} at (s, \dot{s}) , (5) can be written as $L(s, \dot{s}) \leq \ddot{s} \leq U(s, \dot{s})$

Time-optimal Time-scaling Problem

Given a path $\theta(s)$, $s \in [0,1]$, an initial state $(s_0, \dot{s}_0) = (0,0)$, and a final state (s_f, \dot{s}_f) = (1,0), find a monotonically increasing twice-differentiable time-scaling $s(t)$, s : $[0,t_f] \rightarrow$ $[0,1]$ that (a) satisfies: $|s(0) = \dot{s}(0) = \dot{s}(t_f) = 0$ and $s(t_f) = 1$, (b) minimizes the total travel time t_f along the path while respecting the actuator constraints: $L(s, \dot{s}) \leq \ddot{s} \leq U(s, \dot{s})$

 $\equiv \dot{s}(t) \geq 0$ (robot moves only forward along the path)

This problem is easily visualized in the (s, \dot{s}) **phase plane**.

 (s, \dot{s}) **Phase Plane**

(s, *s*) **Phase Plane**

 (s, \dot{s}) **phase plane** is defined as a plane with s running from 0 to 1 on a horizontal axis and s on a vertical axis.

A time scaling $s(t)$ of the path is any curve $\dot{s}(s)$ in the phase plane that moves monotonically to the right from $(0,0)$ to $(1,0)$ in the top-right quadrant.

Among all these curves, we are looking for a time-optimal curve that satisfy the actuator/acceleration constraints $L(s, \dot{s}) \leq \ddot{s} \leq U(s, \dot{s}).$

 \overline{S}

Feasible Motion Cone

ሶ

0 1

 $L(s, \dot{s})$

 $U(s, \dot{s})$

 (s, \dot{s})

By drawing the range of feasible accelerations $L(s, \dot{s}) \leq \ddot{s} \leq U(s, \dot{s})$ according to the dynamics at any state (s, \dot{s}) , we find a cone called the **feasible motion cone**.

Note: Vector *s* is proportional to the height of the point along the \dot{s} axis.

At each state (s, \dot{s}) , the tangent vector to the time scaling $\dot{s}(s)$ must lie **inside feasible motion cone** to satisfy the actuator limits (or the acceleration constraints).

Velocity Limit Curve

At states on velocity limit curve, only a single acceleration is possible; at states above this curve, the robot leaves the path immediately (inadmissible states); and at states below the curve, there is a cone of possible tangent vectors (admissible states).

Bang-Bang Time Scaling

The total time of motion t_f can be written as

$$
t_f = \int_0^{t_f} 1 dt = \int_0^{t_f} \frac{ds}{ds} dt = \int_0^1 \frac{dt}{ds} ds = \int_0^1 \dot{s}^{-1}(s) ds
$$

For a minimum-time motion, \dot{s}^{-1} should be as small as possible, and therefore, \dot{s} must be as large as possible, at all s, while still satisfying the acceleration constraints $L(s, \dot{s}) \leq \ddot{s} \leq$ $U(s, \dot{s})$ and the boundary constraints $s(0) = \dot{s}(0) = \dot{s}(t_f) = 0$, $s(t_f) = 1$.

This implies that the time scaling must always operate either at the limit $U(s, \dot{s})$ (the upper edge of the motion cones) or at the limit $L(s, \dot{s})$ (the lower edge of the motion cones), and we should determine switching point s^{*} between these limits. ሶ

Time-optimal "bang-bang" time scaling

An example of a non-optimal time scaling

The curve must be normal to the s-axis when $\dot{s} = 0$.

Bang-Bang Time Scaling

In general, the time scaling is calculated by numerically integrating $\ddot{s} = U(s, \dot{s})$ (the maximum possible accelerations) forward in s from $(0,0)$, integrating \ddot{s} = $L(s, \dot{s})$ (the maximum possible decelerations) backward in s from $(1,0)$, and finding the intersection (switching point s^*) of these curves.

However, in some cases, the existence of a velocity limit curve prevents a single-switch solution (two curves do not intersect and run into the velocity limit curve). In these cases, bang-bang control is not possible, and it requires an algorithm to find multiple switching points.

Since time-optimal trajectories consist of only maximum acceleration $U(s, \dot{s})$ and minimum acceleration $L(s, \dot{s})$, we need to find the switches between U and L:

Step 1: Integrate $\ddot{s} = L(s, \dot{s})$ backward in time from (1,0) until (i) the velocity limit curve is penetrated $(L(s, \dot{s}) > U(s, \dot{s}))$ or (ii) $s = 0$. Call this curve F.

Step 2: Integrate $\ddot{s} = U(s, \dot{s})$ forward in time from $(0,0)$ until (i) it intersects F or (ii) until the velocity limit curve is penetrated $(L(s, \dot{s}) > U(s, \dot{s}))$. Call this curve A_0 .

- If (i) happens, the problem is solved.
- If (ii) happens, let $(s_{\lim}, \dot{s}_{\lim})$ be the point of penetration.

Step 3: Perform a binary search (or half-interval search) on the velocity in the range $[0,\dot{s}_{\rm lim}]$ at $s_{\rm lim}$ to find the velocity \dot{s}' such that the curve integrating $\ddot{s} = L(s, \dot{s})$ forward in time from $(s_{\text{lim}}, \dot{s}')$ touches the velocity limit curve tangentially (or comes closest to the curve within a specified tolerance without hitting it) at (s_{tan}, \dot{s}_{tan}) .

Step 4: Integrate $\ddot{s} = L(s, \dot{s})$ backward in time from $(s_{\text{tan}}, \dot{s}_{\text{tan}})$ until it intersects A_0 at (s_1, \dot{s}_1) . Call this curve A_1 . (s_1, \dot{s}_1) is the first switch point from maximum acceleration to maximum deceleration.

Step 5: Mark the tangent point (s_{tan}, \dot{s}_{tan}) as the switch point (s_2, \dot{s}_2) from maximum deceleration to maximum acceleration.

Step 6: Go back to **Step 2**, i.e., integrate $\ddot{s} = U(s, \dot{s})$ forward in time from (s_2, \dot{s}_2) until (i) it intersects F or (ii) until the velocity limit curve is penetrated again $(L(s, \dot{s}) > U(s, \dot{s}))$. Call this curve A_2 .

- If (i) happens, the intersection point (s_3, \dot{s}_3) is the final switch point from maximum acceleration to maximum deceleration and the algorithm is complete.
- If (ii) happens, let $(s_{\lim}, \dot{s}_{\lim})$ be the new point of penetration and repeat the process from **Step 3**.

Another Method to Find Switch Points on Velocity Limit Curve

The only points on the velocity limit curve $(L(s, \dot{s}) = U(s, \dot{s}))$ that can be part of an optimal solution are those where the feasible motion vector $(s, U(s, \dot{s}))$ is tangent to the velocity limit curve (s_{tan}, \dot{s}_{tan}) . Therefore, the binary search in the time-scaling algorithm (step 3) can be replaced by a more computationally efficient approach of numerical construction of the velocity limit curve and a searching on this curve for points where the motion vector is tangent to the curve.

The points that can belong to a time-optimal time scaling.

[Time-Optimal Time Scaling](#page-1-0) [Phase Plane](#page-8-0) [Time-Scaling Algorithm](#page-14-0)
000000 00000 00000

An Example of Multi-Switch Time-Optimal Time Scaling

Example

