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Path, Time Scaling, and Trajectory

Path C(s) is a purely geometric description of the sequence of configurations achieved by

the robot: C:[0,1] » C 0
/ N o=
s € [0,1]: scalar path parameter Robot’s C-space

(0 at the start and 1 at the end of the path)

* As s increases from O to 1, the robot moves along the path.

Time Scaling s(t) specifies the times when those robot
configurations are reached:
s:|0,t¢| - [0,1]

Trajectory C’(S(t)) or C(t) specifies the robot configuration as a function of time, i.e., the
combination of a path and a time scaling.
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Some Examples of Path Planning C(s),s € [0,1]

* Point-to-Point Straight-Line Path in Joint Space: 0(s) = Ogrart + S(Oong — Ostart )
0 € R"

* Point-to-Point Straight-Line Path in Task Space (in Cartesian Space R3):

xX(S) = Xgtart + S(Xend — Xstart ) x € R™: minimum set of coordinates
or
P(S) = Pstart + S(Pend — Pstart) pER’ ReSO(3)
R(s) = Rstart eXp(log(R;FtartRend) S)
bl

R start,end

* Point-to-Point Straight-Line Path in Task Space (in SE(3)):

T(S) — Tstart exp(log(Ts_t%lrt Tend ) S) T = (R; P) € SE(B)
T
startend
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Time-Optimal Time Scaling

Consider a case where the path C(s), s € [0,1], is fully specified by the task or an obstacle-
avoiding path planner. The time-optimal time scaling is finding a time scaling s(t) that
minimizes the time of motion along the path, subject to the robot’s actuator limits.

A time-optimal trajectory maximizes the robot’s productivity. t =t
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Actuation Constraints as a Function of s

In practice, the robot dynamics and joint actuator limits dependent on (8, ), thus, the
maximum available velocities and accelerations change along the path.

T=M(0)0+0'T(0)06 + g(0) (1)
T{nin(B, 9) <7 < r{“ax(e, 9) i=1,..,n (actuation constraints) (2)

A path C(s) can be always expressed in joint space @(s) € R™ using inverse kinematics.

Thus, . de . do_ d*e
0=—"35 O=—5+—3?

Dynamics along the path:

de d’e (de\' de
GO (zw(e@)P +(%) r(e(s))E> 2+ g(6(5))

g(s)ER™

m(s)ER™ c(s)eR™

=m(s)s + c(s)s? + g(s) =m(s)s + h(s,s) (3)
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Actuation Constraints as a Function of s

(2) —  Thin(s,$) <7 < TMA(s, $) (4)

(3),(4) — TS 8) Sm(s)F + ci(s)$? + gi(s) < TH(s, 8) (5)

Let define L;(s, $) be the minimum § and U;(s, s) be the maximum § satisfying (5):

T (s,$) — ci(5)$% — gi(s)
m;(s)

"% (s, 8) — ¢ (5)$? — gi(s)
m;(s)

%% (s, 8) — ¢i(5)$? — gi(s)
m;(s)

T (s, $) — ci(5)$% — gi(s)

m;(s)

r Li(s,s) =
- |If mi(s) >0:

Ui(s,s) =

Li(S, S) —

-If m;(s) <O0:
\_ Ui(S,S‘) =

By defining L(s,$) = maxL;(s,s) and U(s,s) = minU,;(s, $) as the lower and upper
l l

bounds on § at (s, $), (5) can be written as L(s,$) <5< U(s,8)

Amin Fakhari, Spring 2024 MEC549 e Ch3: Minimum-Time Trajectory Generation P7



Time-Optimal Time Scaling Phase Plane Time-Scaling Algorithm

O0000e 00000 000000

Time-optimal Time-scaling Problem

Given a path 8(s), s € [0,1], an initial state (sy, Sg) = (0,0), and a final state (sf, S'f) =
(1,0), find a monotonically increasing twice-differentiable time-scaling s(t), s: [0, tf] -
[0,1] that
(a) satisfies: | s(0) =$(0) = s$(tr) = 0and s(tr) =1,

(b) minimizes|the total travel time t¢ along the path while respecting the actuator
constraints:

L(s,$) <s<U(s,5)

\ 4

= $(t) = 0 (robot moves only forward along the path)

This problem is easily visualized in the (s, s) phase plane.
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(s,S) Phase Plane
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(s,$) Phase Plane

(s,s) phase plane is defined as a plane with s running from 0 to 1 on a horizontal axis and

S on a vertical axis.

A time scaling s(t) of the path is any curve $(s) in the phase plane that moves
monotonically to the right from (0,0)[to (1,0) in the top-right quadrant.

tangent vector

time scaling
$(s)
! ! > g
0 1
v start (0,0) end (1,0)

Among all these curves, we are looking for a time-optimal curve that satisfy the
actuator/acceleration constraints L(s,s) < § < U(s, s).
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Feasible Motion Cone

By drawing the range of feasible accelerations
L(s,s) <§ < U(s,s) according to the dynamics
at any state (s, s), we find a cone called the
feasible motion cone.

Note: Vector s is proportional to the height of the point along
the s axis. 0 1

At each state (s, s), the tangent vector to the time scaling $(s) must lie inside feasible
motion cone to satisfy the actuator limits (or the acceleration constraints).

feasible
.S"“ feaSIbIe S,“ motion
motion tangent vector cone
cone tangent vector

This time scaling is This time scaling is not

feasible since it does not feasible since it violates
violate actuator limits. actuator limits.
T > g I > S
0 1 0 1
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Velocity Limit Curve

Let keep s constant but increase s from O:
~If L > U: the motion cone disappears, and

S A the robot is traveling too fast for the
actuators to keep the robot on the path.

Velocity |
Limit Curve If L = U: the motion cone collapses
S1im (S) to a single tangent vector.

Cone angle tends to
L<U ) shrink as S increases.

I - Example motion cones at
points on velocity limit curve.

\‘\‘ 1 S
Cones on the § = 0 line. W

At states on velocity limit curve, only a single acceleration is possible; at states above this
curve, the robot leaves the path immediately (inadmissible states); and at states below the
curve, there is a cone of possible tangent vectors (admissible states).
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Bang-Bang Time Scaling

The total time of motion tr can be written as

tf tf dS 1 dt 1
tr = f 1dt = j —dt=| —ds= j $71(s)ds
0 o ds g ds 0

For a minimum-time motion, s~ should be as small as possible, and therefore, § must be
as large as possible, at all s, while still satisfying the acceleration constraints L(s,s) < § <
U(s, s) and the boundary constraints s(0) = $(0) = $(tf) = 0, s(tf) = 1.

This implies that the time scaling must always operate
either at the limit U(s, §) (the upper edge of the s4 W\/
motion cones) or at the limit L(s, s) (the lower edge

of the motion cones), and we should determine
switching point s* between these limits.

accel. | decel.

Time-optimal “bang-bang” time scaling —

An example of a non-optimal time scaling /

The curve must be normal to the s-axis when s = 0.
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Bang-Bang Time Scaling

In general, the time scaling is calculated by numerically W\/
integrating § = U(s, $) (the maximum possible :

accelerations) forward in s from (0,0), integrating § = U(s,s)
L(s, $) (the maximum possible decelerations) backward in
s from (1,0), and finding the intersection (switching point
s*) of these curves.

max. | max.
accel. decel.

| = , > S
0 S 1
However, in some cases, the existence of a velocity limit S4 o
. . . Velocity Limit Curve
curve prevents a single-switch solution (two curves do
not intersect and run into the velocity limit curve). In
these cases, bang-bang control is not possible, and it
requires an algorithm to find multiple switching points.
S
-
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Time-Scaling Algorithm
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Time-Scaling Algorithm

Since time-optimal trajectories consist of only maximum acceleration U(s, s) and minimum
acceleration L(s, s), we need to find the switches between U and L:

SA

Step 0: Find the velocity limit curve. Velocity
Limit Curve
Step 1: Integrate § = L(s, $) backward in time from velocity
(1,0) until (i) the velocity limit curve is penetrated limit curve
(L(s,$) > U(s,$)) or (ii) s = 0. Call this curve F. 4
(s0,50)
. ¢ 1 >
0 1 S

Step 2: Integrate § = U(s, s) forward in time from (0,0) S A
until (i) it intersects F or (ii) until the velocity limit curve
is penetrated (L(s,$) > U(s, $)). Call this curve A4,.

(Slim s Qlim )

* If (i) happens, the problem is solved. (L)
. . : : F
* If (ii) happens, let (S)im, S1im) be the point of penetration.

0 1 s
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Time-Scaling Algorithm

5 A

Step 3: Perform a binary search (or half-interval search)
on the velocity in the range [0, $j;1] at sy to find the S
velocity s’ such that the curve integrating § = L(s, s)
forward in time from (s}i, ') touches the velocity limit
curve tangentially (or comes closest to the curve within

/

: ‘:'-‘.._( Stan f—étan)

e ) . : (L)
a specified tolerance without hitting it) at (Stan, Stan)-
==
0 Slim i S
Step 4: Integrate § = L(s, $) backward in time from
(Stan, Stan) until it intersects A, at (s4, $1). Call this
curve A;. (s, $1) is the first switch point from maximum
acceleration to maximum deceleration.
==
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Time-Scaling Algorithm

Step 5: Mark the tangent point (Stan, Stan) a@s the switch
point (S5, S,) from maximum deceleration to maximum
acceleration.

Step 6: Go back to Step 2, i.e., integrate § = U(s, $)
forward in time from (s,, $,) until (i) it intersects F
or (ii) until the velocity limit curve is penetrated again
(L(s,$) > U(s, $)). Call this curve A,.

* If (i) happens, the intersection point (s3, S3) is the final 53, 83)
switch point from maximum acceleration to maximum
deceleration and the algorithm is complete.

* If (ii) happens, let (Sjim, S1im) e the new point of

penetration and repeat the process from Step 3.

1
acc | dec ' acc 1dec
0 1 $2 53 4 s
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Another Method to Find Switch Points on Velocity Limit Curve

The only points on the velocity limit curve (L(s,$) = U(s, s)) that can be part of an optimal
solution are those where the feasible motion vector (sl, U(s, S')) is tangent to the velocity
limit curve (Stan, Stan)- Therefore, the binary search in the time-scaling algorithm (step 3)
can be replaced by a more computationally efficient approach of numerical construction of

the velocity limit curve and a searching on this curve for points where the motion vector is
tangent to the curve.

S—e

The points that can belong to a time-optimal time scaling.
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R |
§
velocity
limit curve
0 switch  switch switch switch switch 1 s
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Example

Draw the feasible time-optimal time-

. . . . no 100
scaling for a driver rushing home with

the max braking and max acceleration EBH #
integral curves shown. ~ B Zow
s=10 s=0.3 s=0.7 s=1
0 =0 km 6= 0.3 km # = 0.7 km #=1km
$ (km/h) |
200 ‘a%%%%%%%%%%
max braking integral curves "?%?aa?%%%a?a%%
i

max acceleration integral curves —

50 hH

mips%
|

s (km)
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