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Path, Time Scaling, and Trajectory

Trajectory 𝒞 𝑠 𝑡  or 𝒞 𝑡  specifies the robot configuration as a function of time, i.e., the 

combination of a path and a time scaling.

Path 𝒞 𝑠  is a purely geometric description of the sequence of configurations achieved by 
the robot:                                      𝒞: 0,1 → ℂ

Time Scaling 𝑠 𝑡  specifies the times when those robot 
configurations are reached:

𝑠: 0, 𝑡𝑓 → 0,1

𝑠 ∈ 0,1 : scalar path parameter
(0 at the start and 1 at the end of the path)

Robot’s C-space

• As 𝑠 increases from 0 to 1, the robot moves along the path.
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Some Examples of Path Planning 𝒞 𝑠 , 𝑠 ∈ 0,1

𝜽 𝑠 = 𝜽start + 𝑠 𝜽end − 𝜽start 

𝜽 ∈ ℝ𝑛

• Point-to-Point Straight-Line Path in Joint Space: 

• Point-to-Point Straight-Line Path in Task Space (in Cartesian Space ℝ3): 

𝒙 ∈ ℝ𝑚: minimum set of coordinates𝒙(𝑠) = 𝒙start + 𝑠 𝒙end − 𝒙start 

𝒑 ∈ ℝ3,  𝑹 ∈ 𝑆𝑂 3𝒑(𝑠) = 𝒑start + 𝑠 𝒑end − 𝒑start

𝑹(𝑠) = 𝑹start exp log 𝑹start
T 𝑹end 𝑠

𝑹start,end

𝑻 𝑠 = 𝑻start exp log 𝑻start 
−1 𝑻end 𝑠

𝑻start,end

𝑻 = 𝑹, 𝒑 ∈ 𝑆𝐸 3

• Point-to-Point Straight-Line Path in Task Space (in 𝑆𝐸 3 ): 

𝑠

start

end

or
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Time-Optimal Time Scaling

Consider a case where the path 𝒞 𝑠 , 𝑠 ∈ 0,1 , is fully specified by the task or an obstacle-
avoiding path planner. The time-optimal time scaling is finding a time scaling 𝑠 𝑡  that 
minimizes the time of motion along the path, subject to the robot’s actuator limits. 

A time-optimal trajectory maximizes the robot’s productivity. 

𝑠

start

end

𝒞 𝑠

𝑠 = 1

𝑠 = 0

𝑡 = 0

𝑡 = 𝑡𝑓
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Actuation Constraints as a Function of 𝑠

In practice, the robot dynamics and joint actuator limits dependent on (𝜽, ሶ𝜽), thus, the 
maximum available velocities and accelerations change along the path.

𝜏𝑖
min 𝜽, ሶ𝜽 ≤ 𝜏𝑖 ≤ 𝜏𝑖

max 𝜽, ሶ𝜽

𝝉 = 𝑴 𝜽 ሷ𝜽 + ሶ𝜽T𝚪 𝜽 ሶ𝜽 + 𝒈 𝜽

𝑖 = 1, … , 𝑛

𝝉 = 𝑴 𝜽 𝑠
𝑑𝜽

𝑑𝑠

𝒎 𝑠 ∈ℝ𝑛

ሷ𝑠 + 𝑴 𝜽 𝑠
𝑑2𝜽

𝑑𝑠2
+

𝑑𝜽

𝑑𝑠

T

𝚪 𝜽 𝑠
𝑑𝜽

𝑑𝑠

𝒄 𝑠 ∈ℝ𝑛

ሶ𝑠2 + 𝒈 𝜽 𝑠

𝒈 𝑠 ∈ℝ𝑛

A path 𝒞 𝑠  can be always expressed in joint space 𝜽 𝑠 ∈ ℝ𝑛 using inverse kinematics. 
Thus,

ሶ𝜽 =
𝑑𝜽

𝑑𝑠
ሶ𝑠, ሷ𝜽 =

𝑑𝜽

𝑑𝑠
ሷ𝑠 +

𝑑2𝜽

𝑑𝑠2
ሶ𝑠2

= 𝒎 𝑠 ሷ𝑠 + 𝒄 𝑠 ሶ𝑠2 + 𝒈 𝑠 = 𝒎 𝑠 ሷ𝑠 + 𝒉 𝑠, ሶ𝑠

(actuation constraints)

(1)     →

(1)

(2)

(3)

Dynamics along the path:
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Actuation Constraints as a Function of 𝑠

(2)     → 𝜏𝑖
min 𝑠, ሶ𝑠 ≤ 𝜏𝑖 ≤ 𝜏𝑖

max 𝑠, ሶ𝑠

𝜏𝑖
min(𝑠, ሶ𝑠) ≤ 𝑚𝑖(𝑠) ሷ𝑠 + 𝑐𝑖(𝑠) ሶ𝑠2 + 𝑔𝑖(𝑠) ≤ 𝜏𝑖

max(𝑠, ሶ𝑠)

𝐿𝑖(𝑠, ሶ𝑠) =
𝜏𝑖

min(𝑠, ሶ𝑠) − 𝑐𝑖(𝑠) ሶ𝑠2 − 𝑔𝑖(𝑠)

𝑚𝑖(𝑠)

𝑈𝑖(𝑠, ሶ𝑠) =
𝜏𝑖

max(𝑠, ሶ𝑠) − 𝑐𝑖(𝑠) ሶ𝑠2 − 𝑔𝑖(𝑠)

𝑚𝑖(𝑠)

𝐿𝑖(𝑠, ሶ𝑠) =
𝜏𝑖

max(𝑠, ሶ𝑠) − 𝑐𝑖(𝑠) ሶ𝑠2 − 𝑔𝑖(𝑠)

𝑚𝑖(𝑠)

𝑈𝑖(𝑠, ሶ𝑠) =
𝜏𝑖

min(𝑠, ሶ𝑠) − 𝑐𝑖(𝑠) ሶ𝑠2 − 𝑔𝑖(𝑠)

𝑚𝑖(𝑠)

- If  𝑚𝑖(𝑠) > 0 :

- If 𝑚𝑖 𝑠 < 0 :

(3), (4)     →

(4)

(5)

By defining 𝐿 𝑠, ሶ𝑠 = max
𝑖

𝐿𝑖 𝑠, ሶ𝑠  and 𝑈 𝑠, ሶ𝑠 = min
𝑖

𝑈𝑖 𝑠, ሶ𝑠  as the lower and upper 

bounds on ሷ𝑠 at 𝑠, ሶ𝑠 , (5) can be written as

Let define 𝐿𝑖(𝑠, ሶ𝑠) be the minimum ሷ𝑠 and 𝑈𝑖(𝑠, ሶ𝑠) be the maximum ሷ𝑠 satisfying (5):

𝐿(𝑠, ሶ𝑠) ≤ ሷ𝑠 ≤ 𝑈(𝑠, ሶ𝑠)
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Time-optimal Time-scaling Problem

Given a path 𝜽(𝑠), 𝑠 ∈ [0,1], an initial state 𝑠0, Ǘ𝑠0 = (0,0), and a final state 𝑠𝑓 , Ǘ𝑠𝑓 =

(1,0), find a monotonically increasing twice-differentiable time-scaling 𝑠 𝑡 , 𝑠: [0, 𝑡𝑓] →

[0,1] that
(a) satisfies:       𝑠(0) = Ǘ𝑠(0) = Ǘ𝑠(𝑡𝑓) = 0 and 𝑠(𝑡𝑓) = 1,

(b) minimizes the total travel time 𝑡𝑓 along the path while respecting the actuator 

constraints:
𝐿(𝑠, ሶ𝑠) ≤ ሷ𝑠 ≤ 𝑈(𝑠, ሶ𝑠)

This problem is easily visualized in the (𝑠, ሶ𝑠) phase plane.

≡ ሶ𝑠 𝑡 ≥ 0 (robot moves only forward along the path)
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(𝑠, ሶ𝑠) Phase Plane

Amin Fakhari, Spring 2024 MEC549 • Ch3: Minimum-Time Trajectory Generation P9

Time-Optimal Time Scaling Phase Plane Time-Scaling Algorithm



(𝑠, ሶ𝑠) Phase Plane

(𝑠, ሶ𝑠) phase plane is defined as a plane with 𝑠 running from 0 to 1 on a horizontal axis and 
ሶ𝑠 on a vertical axis.

A time scaling 𝑠 𝑡  of the path is any curve ሶ𝑠 𝑠  in the phase plane that moves 
monotonically to the right from (0,0) to (1,0) in the top-right quadrant.

Among all these curves, we are looking for a time-optimal curve that satisfy the 
actuator/acceleration constraints 𝐿 𝑠, ሶ𝑠 ≤ ሷ𝑠 ≤ 𝑈 𝑠, ሶ𝑠 .

𝑠, ሶ𝑠

start (0,0) end (1,0)

time scaling 
ሶ𝑠 𝑠  

ሶ𝑠

𝑠

ሶ𝑠

ሷ𝑠 tangent vector

0 1
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Feasible Motion Cone

By drawing the range of feasible accelerations 
𝐿 𝑠, ሶ𝑠 ≤ ሷ𝑠 ≤ 𝑈 𝑠, ሶ𝑠  according to the dynamics 
at any state 𝑠, ሶ𝑠 , we find a cone called the 
feasible motion cone.

ሶ𝑠

𝑠
0 1

𝑠, ሶ𝑠 ሶ𝑠

𝑈 𝑠, ሶ𝑠

𝐿 𝑠, ሶ𝑠

At each state 𝑠, ሶ𝑠 , the tangent vector to the time scaling ሶ𝑠 𝑠  must lie inside feasible 
motion cone to satisfy the actuator limits (or the acceleration constraints).

ሶ𝑠

𝑠
0 1

tangent vector

feasible 
motion 

cone

ሶ𝑠

𝑠
0 1

tangent vector

feasible 
motion 

cone

This time scaling is not 
feasible since it violates 

actuator limits.

This time scaling is 
feasible since it does not 

violate actuator limits.

Note: Vector ሶ𝑠 is proportional to the height of the point along 
the ሶ𝑠 axis.
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Velocity Limit Curve

Cones on the ሶ𝑠 = 0 line.

Cone angle tends to 
shrink as ሶ𝑠 increases. 

𝐿 < 𝑈

𝐿 < 𝑈

𝐿 = 𝑈

𝐿 > 𝑈

If 𝐿 = 𝑈: the motion cone collapses 
to a single tangent vector.

If 𝐿 > 𝑈: the motion cone disappears, and 
the robot is traveling too fast for the 
actuators to keep the robot on the path.

At states on velocity limit curve, only a single acceleration is possible; at states above this 
curve, the robot leaves the path immediately (inadmissible states); and at states below the 
curve, there is a cone of possible tangent vectors (admissible states).

Velocity 
Limit Curve 

ሶ𝑠lim 𝑠  

Let keep 𝑠 constant but increase ሶ𝑠 from 0: 

Example motion cones at 
points on velocity limit curve.
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Bang-Bang Time Scaling

The total time of motion 𝑡𝑓 can be written as

𝑡𝑓 = න
0

𝑡𝑓

1𝑑𝑡 = න
0

𝑡𝑓 𝑑𝑠

𝑑𝑠
𝑑𝑡 = න

0

1 𝑑𝑡

𝑑𝑠
𝑑𝑠 = න

0

1

ሶ𝑠−1 𝑠 𝑑𝑠

For a minimum-time motion, ሶ𝑠−1 should be as small as possible, and therefore, ሶ𝑠 must be 
as large as possible, at all 𝑠, while still satisfying the acceleration constraints 𝐿 𝑠, ሶ𝑠 ≤ ሷ𝑠 ≤
𝑈 𝑠, ሶ𝑠  and the boundary constraints 𝑠(0) = Ǘ𝑠(0) = Ǘ𝑠(𝑡𝑓) = 0, 𝑠(𝑡𝑓) = 1.

This implies that the time scaling must always operate 
either at the limit 𝑈 𝑠, ሶ𝑠  (the upper edge of the 
motion cones) or at the limit 𝐿 𝑠, ሶ𝑠  (the lower edge 
of the motion cones), and we should determine 
switching point 𝑠∗ between these limits.

Time-optimal “bang-bang” time scaling

𝐿 𝑠, ሶ𝑠

𝑈 𝑠, ሶ𝑠

𝑠∗

max. 
accel.

max. 
decel.

ሶ𝑠

𝑠
0 1

Velocity Limit Curve 

An example of a non-optimal time scaling

The curve must be normal to the 𝑠-axis when ሶ𝑠 = 0.
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Bang-Bang Time Scaling

In general, the time scaling is calculated by numerically 
integrating ሷ𝑠 = 𝑈 𝑠, ሶ𝑠  (the maximum possible 
accelerations) forward in 𝑠 from 0,0 , integrating ሷ𝑠 =
𝐿 𝑠, ሶ𝑠  (the maximum possible decelerations) backward in 
𝑠 from 1,0 , and finding the intersection (switching point 
𝑠∗) of these curves.

However, in some cases, the existence of a velocity limit 
curve prevents a single-switch solution (two curves do 
not intersect and run into the velocity limit curve). In 
these cases, bang-bang control is not possible, and it 
requires an algorithm to find multiple switching points.

𝐿 𝑠, ሶ𝑠

𝑈 𝑠, ሶ𝑠

𝑠∗

ሶ𝑠

𝑠
0 1

Velocity Limit Curve 

max. 
accel.

max. 
decel.

Velocity Limit Curve 

ሶ𝑠

𝑠

0 1
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Time-Scaling Algorithm
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Time-Scaling Algorithm

Since time-optimal trajectories consist of only maximum acceleration 𝑈 𝑠, ሶ𝑠  and minimum 
acceleration 𝐿 𝑠, ሶ𝑠 , we need to find the switches between 𝑈 and 𝐿:

Step 1: Integrate ሷ𝑠 = 𝐿 𝑠, ሶ𝑠  backward in time from 
(1,0) until (i) the velocity limit curve is penetrated 
(𝐿 𝑠, ሶ𝑠 > 𝑈 𝑠, ሶ𝑠 ) or (ii) 𝑠 = 0. Call this curve 𝐹.

• If (i) happens, the problem is solved.
• If (ii) happens, let (𝑠lim, ሶ𝑠lim) be the point of penetration.

Step 2: Integrate ሷ𝑠 = 𝑈 𝑠, ሶ𝑠  forward in time from (0,0) 
until (i) it intersects 𝐹 or (ii) until the velocity limit curve 
is penetrated (𝐿 𝑠, ሶ𝑠 > 𝑈 𝑠, ሶ𝑠 ). Call this curve 𝐴0.

(𝐿)

(𝑈)

(𝐿)

Step 0: Find the velocity limit curve. Velocity 
Limit Curve
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Time-Scaling Algorithm

Step 3: Perform a binary search (or half-interval search) 
on the velocity in the range 0, ሶ𝑠lim  at 𝑠lim to find the 
velocity ሶ𝑠′ such that the curve integrating ሷ𝑠 = 𝐿 𝑠, ሶ𝑠  
forward in time from 𝑠lim, ሶ𝑠′  touches the velocity limit 
curve tangentially (or comes closest to the curve within 
a specified tolerance without hitting it) at 𝑠tan, ሶ𝑠tan .

𝑠lim

ሶ𝑠′ 

motion 
cone

Step 4: Integrate ሷ𝑠 = 𝐿 𝑠, ሶ𝑠  backward in time from 
𝑠tan, ሶ𝑠tan  until it intersects 𝐴0 at 𝑠1, ሶ𝑠1 . Call this 

curve 𝐴1. 𝑠1, ሶ𝑠1  is the first switch point from maximum 
acceleration to maximum deceleration.

(𝑈)

(𝐿)

(𝑈)

(𝐿)
(𝐿)

motion 
cone
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Time-Scaling Algorithm

Step 5: Mark the tangent point 𝑠tan, ሶ𝑠tan  as the switch 
point 𝑠2, ሶ𝑠2  from maximum deceleration to maximum 
acceleration.

Step 6: Go back to Step 2, i.e., integrate ሷ𝑠 = 𝑈 𝑠, ሶ𝑠  
forward in time from 𝑠2, ሶ𝑠2  until (i) it intersects 𝐹 
or (ii) until the velocity limit curve is penetrated again 
(𝐿 𝑠, ሶ𝑠 > 𝑈 𝑠, ሶ𝑠 ). Call this curve 𝐴2.

• If (i) happens, the intersection point 𝑠3, ሶ𝑠3  is the final 
switch point from maximum acceleration to maximum 
deceleration and the algorithm is complete.

• If (ii) happens, let (𝑠lim, ሶ𝑠lim) be the new point of 
penetration and repeat the process from Step 3.

(𝑈)

(𝐿)
(𝐿)

(𝑈)

(𝐿)
(𝐿)

(𝑈)
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Another Method to Find Switch Points on Velocity Limit Curve

The only points on the velocity limit curve (𝐿 𝑠, ሶ𝑠 = 𝑈 𝑠, ሶ𝑠 ) that can be part of an optimal 

solution are those where the feasible motion vector ሶ𝑠, 𝑈 𝑠, ሶ𝑠  is tangent to the velocity 

limit curve 𝑠tan, ሶ𝑠tan . Therefore, the binary search in the time-scaling algorithm (step 3) 
can be replaced by a more computationally efficient approach of numerical construction of 
the velocity limit curve and a searching on this curve for points where the motion vector is 
tangent to the curve.

The points that can belong to a time-optimal time scaling.
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An Example of Multi-Switch Time-Optimal Time Scaling
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Example

Draw the feasible time-optimal time-
scaling for a driver rushing home with 
the max braking and max acceleration 
integral curves shown.

max braking integral curves 

max acceleration integral curves 
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