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System Description (Analytical)

Ordinary Differential 
Equation (ODE) 

Partial Differential 
Equation (PDE) 

(Flexible manipulator)(Rigid manipulator)

For analysis and design of control systems, the dynamic systems (i.e., mechanical, 
electrical, thermal, economic, biological, ...) must be mathematically modeled in terms of 
differential equations using fundamental physical laws (e.g., Newton-Euler’s laws for 
mechanical systems and Kirchhoff’s laws for electrical systems).

In obtaining a mathematical model, we must make a compromise between the simplicity 
of the model and the accuracy of the results of the analysis. We may simplify the system 
model in order to design a relatively simple controller.
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Continuous-time vs. Discrete-time Systems

System

A system is called a discrete-time system if it accepts discrete-time signals as its input and 
generates discrete-time signals as its output.

A system is called a continuous-time system if it accepts continuous-time signals as its 
input and generates continuous-time signals as its output.

System
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Single-variable vs. Multivariable Systems 

A system with only one input and only one output is called a single-variable system or a 
single-input single-output (SISO) system.

A system with two or more inputs and/or two or more outputs is called a multivariable 
system.

System
𝑢 𝑦

System𝑢2

𝑦1𝑢1

𝑦2

System𝑢2

𝑦
𝑢1

System
𝑢

𝑦1

𝑦2
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Linear vs. Nonlinear Systems

A system is Linear w.r.t. its inputs and outputs iff it obeys the Principle of Superposition:

Note: A differential equation is linear if the coefficients are constants or functions only of 
the independent variable.

A system is Nonlinear if the principle of superposition does not apply.

𝑎0 𝑡 𝑦 + 𝑎1 𝑡 ሶ𝑦 + 𝑎2 𝑡 ሷ𝑦 + ⋯ + 𝑎𝑛 𝑡 𝑦 𝑛 = 𝑢 𝑡

Example: Mass-Spring-Damper

Example: Pendulum

𝑔

𝜏
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Time-Invariant vs. Time Varying Systems

A system is said to be Time-Invariant (or Autonomous for nonlinear systems) if the 
relationship between the input and output is independent of time.
• If the response to 𝑢(𝑡) is 𝑦(𝑡), then the response to 𝑢(𝑡 − 𝑡0) is 𝑦(𝑡 − 𝑡0).

Ex. A mass-spring-damper system which its physical 
parameters remains constant.

A system is said to be Time-Varying/Varient (or Non-Autonomous for nonlinear systems) if 
the relationship between the input and output is dependent of time.

Ex. A spacecraft system which its mass changes due 
to fuel consumption.

LTI: Linear Time-Invariant
LTV: Linear Time-Varying
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System Representation

The ODE is not a satisfying representation because the system input 𝑢(𝑡) and output 𝑦(𝑡) 
appear throughout the equation. It is preferred a mathematical representation which the 
input, output, and system are separate parts and it can be modeled as a block diagram.

Two methods for representation of mathematical models of dynamic systems:

(1) Transfer Function (TF) in the Frequency Domain,
(2) State-Space (SS) Representation in the Time Domain.

e.g., a SISO LTI system: 𝑑𝑛𝑦 𝑡

𝑑𝑡𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑦 𝑡

𝑑𝑡𝑛−1
+ ⋯ + 𝑎0𝑦 𝑡 = 𝑏𝑚

𝑑𝑚𝑢 𝑡

𝑑𝑡𝑚
+ 𝑏𝑚−1

𝑑𝑚−1𝑢 𝑡

𝑑𝑡𝑚−1
+ ⋯ + 𝑏0𝑢 𝑡

𝑛 ≥ 𝑚
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Classical vs. Modern Control Theory

Classical (or Frequency-Domain or Transfer-Function) approach [Since 1920s] can be applied 
only to linear, time-invariant (LTI), SISO (Single-Input Single-Output) systems with zero initial 
conditions, or systems that can be approximated as such. It does not use any knowledge of 
the interior structure of the system.

Transfer Function

Modern (or Time-Domain or State-Space) approach [Since 1960s] can be applied to a wide 
range of systems including nonlinear, time variant (non-autonomous), MIMO (Multi-Input 
Multi-Output) systems with nonzero initial conditions and also LTI systems modeled by 
the classical approach.

State Space
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State-Space Representation
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Some Definitions

Linear Combination: A linear combination of 𝑛 variables, 𝑥𝑖, is given by

𝑥𝑛+1 = 𝑘1𝑥1 + 𝑘2𝑥2 + ⋯ + 𝑘𝑛𝑥𝑛     ,     𝑘𝑖 = constant (𝑖 = 1, … , 𝑛)

Linear Independence: A set of variables is said to be linearly independent if none of the 
variables can be written as a linear combination of the others.

State Variables: The smallest set of linearly independent system variables (𝑥1, … , 𝑥𝑛) such 
that knowledge of these variables at 𝑡 = 𝑡0 , together with knowledge of the input 𝒖 𝑡  for 
𝑡 ≥ 𝑡0 , completely determines the behavior of the system 𝒚 𝑡  for any time 𝑡 ≥ 𝑡0.

System Variable: Any variable that responds to an input or initial conditions in a system.

System
𝑟 input 𝑚 output

𝑢1, … , 𝑢𝑟 𝑦1, … , 𝑦𝑚

𝑛 state variables

𝑥1, … , 𝑥𝑛
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State-Space Representation

System

State Vector:

State-space Representation is a mathematical model of a physical system as a set of input 
𝒖 𝑡 ∈ ℝ𝑟, output 𝒚 𝑡 ∈ ℝ𝑚, and state variables 𝒙 𝑡 ∈ ℝ𝑛 related by 𝑛 simultaneous 
first-order differential equations.

The number of states (𝑛) 
is the order of the system.

Note: State variables need not be physically measurable or observable quantities.

State Equation

Output Equation

𝒇 and 𝒈 are 
vector functions.

Note: The choice of state variables of a system is not unique, but the number of 
states is unique. For all invertible 𝑻 ∈ ℝ𝑛×𝑛, ഥ𝒙(𝑡) = 𝐓𝒙(𝑡) can be also the system 
state variables.

𝑥 𝑡

𝑥1 = 𝑥

𝑥2 = ሶ𝑥

ሶ𝒙 𝑡 = 𝒇 𝒙 𝑡 , 𝒖 𝑡 , 𝑡
𝒚 𝑡 = 𝒈 𝒙 𝑡 , 𝒖 𝑡 , 𝑡

𝒖(𝑡) ∈ ℝ𝑟 𝒚(𝑡) ∈ ℝ𝑚

𝒙(𝑡) ∈ ℝ𝑛
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State-Space Representation

ሶ𝒙 𝑡 = 𝒇 𝒙, 𝒖, 𝑡
𝒚 𝑡 = 𝒈 𝒙, 𝒖, 𝑡

ሶ𝒙 𝑡 = 𝑨 𝑡 𝒙 𝑡 + 𝑩 𝑡 𝒖 𝑡
𝒚 𝑡 = 𝑪 𝑡 𝒙 𝑡 + 𝑫 𝑡 𝒖 𝑡

ሶ𝒙 𝑡 = 𝑨𝒙 𝑡 + 𝑩𝒖 𝑡
𝒚 𝑡 = 𝑪𝒙 𝑡 + 𝑫𝒖 𝑡

General Form:
MIMO, Nonlinear, Time 
Variant (General Form )

𝑨: State matrix,          𝑩: Input matrix
𝑪: Output matrix,       𝑫: Feedforward matrix

MIMO, Linear, 
Time Variant

MIMO, Linear, Time 
Invariant

ሶ𝒙 𝑡 = 𝑨𝒙 𝑡 + 𝑩𝑢 𝑡
𝑦 𝑡 = 𝑪𝒙 𝑡 + 𝑫𝑢 𝑡

SISO, Linear, Time Invariant
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Linear Systems
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State-Space Representation of Linear Systems

• An 𝑛th-order differential equation can be converted to 𝑛 simultaneous first-order 
differential equations.

• There are many ways to do this conversion and obtain state-space representations of 
systems, such as phase-variable form, controllable canonical form, observable canonical 
form, diagonal canonical form, and Jordan canonical form.

Consider a general, 𝑛th-order, linear differential equation with constant coefficients:

𝑑𝑛𝑥

𝑑𝑡𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑥

𝑑𝑡𝑛−1
+ ⋯ + 𝑎0𝑥 = 𝑏0𝑢

A convenient way to choose state variables is to choose 𝑥 𝑡  and its (𝑛 − 1) 
derivatives as the state variables, which are called phase variables.
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State-Space Representation of LTI Systems

𝑥1 = 𝑥 

𝑥2 =
𝑑𝑥

𝑑𝑡
⋮

𝑥𝑛 =
𝑑𝑛−1𝑥

𝑑𝑡𝑛−1

ሶ𝑥1 =
𝑑𝑥

𝑑𝑡

ሶ𝑥2 =
𝑑2𝑥

𝑑𝑡2

⋮

ሶ𝑥𝑛 =
𝑑𝑛𝑥

𝑑𝑡𝑛

Differentiating Substituting

ሶ𝑥1 = 𝑥2

ሶ𝑥2 = 𝑥3

⋮
ሶ𝑥𝑛−1 = 𝑥𝑛

ሶ𝑥𝑛 = −𝑎𝑛−1𝑥𝑛 − ⋯ − 𝑎0𝑥1 + 𝑏0𝑢 

ሶ𝒙 = 𝑨𝒙 + 𝑩𝑢

𝑦 = 𝑪𝒙

,   𝑪 = 1 0 ⋯ 0

Vector-Matrix Form

(Output can be 
the first state)

𝑑𝑛𝑥

𝑑𝑡𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑥

𝑑𝑡𝑛−1
+ ⋯ + 𝑎0𝑥 = 𝑏0𝑢

𝒙 =

𝑥1

𝑥2

⋅
⋅
⋅

𝑥𝑛

 , 𝑨 =

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
0 0 0 ⋯ 1

−𝑎0 −𝑎1 −𝑎2 ⋯ −𝑎𝑛−1

 , 𝑩 =

0
0
⋅
⋅
⋅
0
𝑏0
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Example 

The external force 𝑢 𝑡  is the input to the system, and the 
displacement 𝑥 𝑡  of the mass, measured from the equilibrium 
position in the absence of the external force, is the output. Find 
the state equations.

𝑥 𝑡

Linear Systems Nonlinear Systems
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Example 

Find the state equations. What is 
the output equation if the output 
is 𝑧1 𝑡 ?

𝑧1 𝑡 𝑧2 𝑡
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Converting from SS to a TF

Deriving the transfer function from the state-space equations:

ሶ𝒙 = 𝑨𝒙 + 𝑩𝒖

𝒚 = 𝑪𝒙 + 𝑫𝒖

)𝑠𝑿(𝑠) = 𝑨𝑿(𝑠) + 𝑩𝑼(𝑠

)𝒀(𝑠) = 𝑪𝑿(𝑠) + 𝑫𝑼(𝑠

𝑿(𝑠) = 𝑠𝑰 − 𝑨 −1𝑩𝑼 𝑠

Laplace transform 
assuming zero 

initial conditions

(𝑰 is the identity matrix)

𝒀(𝑠) = 𝑪 𝑠𝑰 − 𝑨 −1𝑩 + 𝑫 𝑼 𝑠

Transfer Function Matrix

Transfer Function for a SISO system which 𝑼 𝑠 = 𝑈 𝑠  and 𝒀 𝑠 = 𝑌(𝑠):

𝐺 𝑠 =
𝑌 𝑠

𝑈 𝑠
= 𝑪 𝑠𝑰 − 𝑨 −1𝑩 + 𝐷
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Example

Obtain the transfer function 𝑌 𝑠 /𝑈 𝑠  from the state-space equations of the system 
shown in the previous example.

Solution:

𝐺 𝑠 =
𝑌 𝑠

𝑈 𝑠
= 𝑪 𝑠𝑰 − 𝑨 −𝟏𝑩 + 𝐷

𝐺 𝑠 =
1

𝑚𝑠2 + 𝑏𝑠 + 𝑘

ሶ𝑥1

ሶ𝑥2
=

0 1

−
𝑘

𝑚
−

𝑏

𝑚

𝑥1

𝑥2
+

0
1

𝑚

𝑢

𝑦 = 1 0
𝑥1

𝑥2
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Converting a TF to SS

Then, convert this 𝑛th-order differential equation to 𝑛 simultaneous first-order differential 
equations.

To convert a transfer function into state-space equations in phase-variable form, first 
convert the transfer function to a differential equation by cross-multiplying and taking the 
inverse Laplace transform, assuming zero initial conditions.

𝑑𝑛𝑦

𝑑𝑡𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑦

𝑑𝑡𝑛−1
+ ⋯ + 𝑎0𝑦 = 𝑏0𝑢

𝑌 𝑠

𝑈 𝑠
=

𝑏0

𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + ⋯ + 𝑎0
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Example

Find the state-space representation in phase-variable form.

ഺ𝑐 + 9 ሷ𝑐 + 26 ሶ𝑐 + 24𝑐 = 24𝑟

𝑥1 = 𝑐
𝑥2 = ሶ𝑐
𝑥3 = ሷ𝑐

𝑠3 + 9𝑠2 + 26𝑠 + 24 𝐶(𝑠) = 24𝑅(𝑠)

ሶ𝑥1

ሶ𝑥2

ሶ𝑥3

=
0 1 0
0 0 1
−24 − 26 − 9

𝑥1

𝑥2

𝑥3

+
0
0

24
𝑟 𝑦 = 1 0 0

𝑥1

𝑥2

𝑥3

ሶ𝑥1 = 𝑥2

ሶ𝑥2 = 𝑥3

ሶ𝑥3 = −24𝑥1 − 26𝑥2 − 9𝑥3 + 24𝑟
𝑦 = 𝑐 = 𝑥1

Solution:

Amin Fakhari, Spring 2024 MEC549 • Ch4: Linear and Nonlinear Systems P22

System Classifications State-Space Representation Linear Systems Nonlinear Systems Equilibrium Points Linearization



Converting a TF to SS

If a transfer function has a polynomial in 𝑠 in the numerator, separate the transfer function 
into two cascaded transfer functions; the first is the denominator and the second is just 
the numerator.

1

𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + ⋯ + 𝑎0
𝑏𝑚𝑠𝑚 + 𝑏𝑚−1𝑠𝑚−1 + ⋯ + 𝑏0

𝑋1 𝑠𝑈 𝑠 𝑌 𝑠

• The first transfer function with just the denominator is converted to the phase-variable 
representation in state space.

• The second transfer function with just the numerator yields the output equation.

𝑏𝑚𝑠𝑚 + 𝑏𝑚−1𝑠𝑚−1 + ⋯ + 𝑏0

𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + ⋯ + 𝑎0

𝑈 𝑠 𝑌 𝑠
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Example

Find the state-space representation of 
the transfer function.

Solution:

From previous example:
ሶ𝑥1

ሶ𝑥2

ሶ𝑥3

=
0 1 0
0 0 1
−24 − 26 − 9

𝑥1

𝑥2

𝑥3

+
0
0
1

𝑟

𝑐 = ሷ𝑥1 + 7 ሶ𝑥1 + 2𝑥1

𝐶(𝑠) = 𝑠2 + 7𝑠 + 2 𝑋1(𝑠)

𝑥1 = 𝑥1

ሶ𝑥1 = 𝑥2

ሷ𝑥1 = 𝑥3 𝑦 = 2 7 1

𝑥1

𝑥2

𝑥3

𝑦 = 𝑐(𝑡) = 𝑥3 + 𝑥2 + 2𝑥1
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Nonlinear Systems
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Nonlinear Systems

A system is nonlinear if the principle of superposition does not apply.

For example, in the dynamic equations of robots usually the nonlinear terms sin , cos , and 
squares of velocities appears.

𝑚1 + 𝑚2 𝓁1
ሷ𝜃1 + 𝑚2𝓁2

ሷ𝜃2cos 𝜃1 − 𝜃2 + 𝑚2𝓁2
ሶ𝜃2
2sin 𝜃1 − 𝜃2 + 𝑔 𝑚1 + 𝑚2 sin 𝜃1 = 0

𝑚2𝓁2
ሷ𝜃2 + 𝑚2𝓁1

ሷ𝜃1cos 𝜃1 − 𝜃2 − 𝑚2𝓁1
ሶ𝜃1
2sin 𝜃1 − 𝜃2 + 𝑚2𝑔sin 𝜃2 = 0

𝓁1

𝓁1

𝑚1

𝑚2

𝜃1

𝜃2

Double-Pendulum:
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Examples of Physical Nonlinearities

An electronic amplifier is linear 
over a specific range but exhibits 
the nonlinearity called saturation 
at high input voltages.

A motor that does not respond 
at very low input voltages due 
to frictional forces exhibits a 
nonlinearity called dead zone.

Gears that do not fit tightly 
exhibit a nonlinearity called 
backlash which the input moves 
over a small range without the 
output responding.

Amplifier Saturation Motor Dead Zone Backlash in Gears

Backlash

• Nonlinearities can be classified in terms of their mathematical properties, as continuous and 
discontinuous. Because discontinuous nonlinearities cannot be locally approximated by linear 
functions, they are also called hard nonlinearities (e.g., backlash, hysteresis, or stiction).

Backlash

𝑉in

𝑉out 𝜃𝑚

𝑒𝑎

𝜃2

𝜃1

𝜃2

𝜃1
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Nonlinear System Behavior: Step Response 

A simplified model of the motion of an underwater vehicle (ROV):

System settles much faster in response to the 
positive unit step than it does in response to 
the subsequent negative unit step.

Settling speed is not 10 times, as 
it would be in a linear system!

Introduction Control Systems Configurations System Classifications Linear Systems Nonlinear SystemsLinear Systems Nonlinear Systems

𝑢

𝑡
5

1

𝑣𝑓 = 10 𝑣𝑓 𝑣𝑓 = 10
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Nonlinear System Behavior: Chaos

In the steady state, sinusoidal inputs to a stable LTI system generate a sinusoidal outputs 
of the same frequency (but different in amplitude and phase angle from the input). By 
contrast, the output of a nonlinear system may display sinusoidal, periodic, or chaotic 
behaviors.
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Nonlinear System Behavior: Chaos

• For stable linear systems, small differences in initial conditions can only cause small 
differences in output. Strongly nonlinear systems, however, can display a phenomenon 
called chaos, i.e., the system output is extremely sensitive to initial conditions. 

• Starting the pendulum from a slightly different initial 
condition would result in a vastly different trajectory.

►
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State-Space Representation of Nonlinear Systems

In nonlinear systems, e.g., robotic manipulators, the underlying physical behavior is 
described by nonlinear differential equations. Although the state-space representation is 
capable of handling these systems, the transfer function methods fail.

A general 𝑛th-order nonlinear, continuous-time, TIV, SISO system is described by a nonlinear, 
scalar, constant-coefficient ODE:

Introduction Control Systems Configurations System Classifications Linear Systems Nonlinear Systems

𝑑𝑛𝑥 𝑡

𝑑𝑡𝑛
= 𝑓 𝑥 𝑡 , 𝑥 1 𝑡 , ⋯ , 𝑥 𝑛−1 𝑡 , 𝑢 𝑡 , 𝑢 1 𝑡 , ⋯ , 𝑢 𝑚 𝑡 𝑛 ≥ 𝑚

𝒖 𝑡 𝒚 𝑡
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State-Space Representation of Nonlinear Systems

General Form:
𝐟 and 𝐠 are nonlinear 

vector functions.

State Equation

Output Equation

Introduction Control Systems Configurations System Classifications Linear Systems Nonlinear Systems

𝑑𝑛𝑥 𝑡

𝑑𝑡𝑛
= 𝑓 𝑥 𝑡 , 𝑥 1 𝑡 , ⋯ , 𝑥 𝑛−1 𝑡 , 𝑢 𝑡 , 𝑢 1 𝑡 , ⋯ , 𝑢 𝑚 𝑡 𝑛 ≥ 𝑚

𝑥1 𝑡 = 𝑥 𝑡

𝑥2 𝑡 = ሶ𝑥 𝑡
⋮

𝑥𝑛 𝑡 = 𝑥 𝑛−1 𝑡

ሶ𝑥1 𝑡 = 𝑥2 𝑡

ሶ𝑥2 𝑡 = 𝑥3 𝑡
⋮

ሶ𝑥𝑛 𝑡 = 𝑓 𝑥 𝑡 , 𝑥 1 𝑡 , ⋯ , 𝑥 𝑛−1 𝑡 , 𝑢 𝑡 , 𝑢 1 𝑡 , ⋯ , 𝑢 𝑚 𝑡

If we choose 𝑦 𝑡 = 𝑥 𝑡 , then 

Linear Systems Nonlinear Systems
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Examples

Linear Systems Nonlinear SystemsLinear Systems Nonlinear Systems

𝑚𝑙2 ሷ𝜃 + 𝑐 ሶ𝜃 + 𝑚𝑔𝑙sin 𝜃 = 0Find the state equations of a damped pendulum.

Find the state equations of a rigid manipulator.
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Autonomous & Non-Autonomous Systems

• Dynamic of a nonlinear system ሶ𝒙 𝑡 = 𝐟(𝒙 𝑡 , 𝒖 𝑡 , 𝑡) when 𝒖 𝑡 = 𝟎 can be represented 
as

A nonlinear system of the form ሶ𝒙(𝑡) = 𝐟(𝒙(𝑡), 𝑡) is said to be Autonomous (or Time-
Invariant) if the function  does not depend explicitly on time, i.e.,

otherwise, the system is called Non-autonomous (or Time-Varying/Varient). 

Linear Systems Nonlinear Systems

ሶ𝒙(𝑡) = 𝐟(𝒙(𝑡), 𝑡)

ሶ𝒙(𝑡) = 𝐟(𝒙(𝑡))

ሶ𝒙(𝑡) = 𝐟(𝒙 𝑡 , 𝒖 𝑡 , 𝑡) ሶ𝒙(𝑡) = 𝐟(𝒙 𝑡 , 𝐤(𝒙, 𝑡), 𝑡) ሶ𝒙(𝑡) = 𝐟(𝒙(𝑡), 𝑡)

• Moreover, the closed-loop dynamics of a feedback control system when 𝒖 𝑡 = 𝐤(𝒙, 𝑡) 
can be also represented as
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Autonomous & Non-Autonomous Systems

• A special class of nonlinear systems are linear systems. LTI systems are autonomous and 
LTV systems are non-autonomous.

• The non-autonomous nature of a control system may be due to a time-variation either in 
the plant or in the control law, e.g., trajectory trackers or adaptive controllers (adaptive 
controllers for linear time-invariant plants usually make the closed-loop control systems 
nonlinear and non-autonomous).

ሶ𝒙(𝑡) = 𝐟(𝒙(𝑡), 𝑡)

Example: the closed-loop system of the simple plant

by choosing 𝑢

as is nonlinear and non-autonomous.

ሶ𝑥 = −𝑥 + 𝑢

𝑢 𝑡 = −𝑥2 sin 𝑡

ሶ𝑥 = −𝑥 − 𝑥2 sin 𝑡
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Equilibrium Points
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Equilibrium Points

A state 𝒙𝑒 is an Equilibrium Point (or Equilibrium State) of the system if once 𝒙 = 𝒙𝑒, it 
remains equal to 𝒙𝑒 for all future time.

i.e., a point for which if the system starts there (initial state 𝒙(𝑡0) = 𝒙𝑒) it will remain there 
for all future time.

• Stability of a system ≡ stability of systems at equilibrium points. Thus, many stability 
problems are naturally formulated with respect to equilibrium points.
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Example 

The non-autonomous system ሶ𝑥 = 𝑡𝑥2 − 1 has no equilibrium points. Although it might 
seem that it has 2 equilibrium points 𝒙𝑒1 =

 −1 and 𝒙𝑒2 =
 1 at time 𝑡0 = 1. However, these 

are not equilibrium points for all 𝑡 ≥  1.

Consider the systems ሶ𝑥 = 𝑥2 − 1

ሶ𝑥 = 𝑡𝑥2 − 1
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Isolated Equilibrium Points

An equilibrium point 𝒙𝑒 (at 𝑡0) of ሶ𝒙 = 𝐟(𝒙, 𝑡) is said to be Isolated if there exists a real 
positive number  such that there may not be any equilibrium point other than 𝒙𝑒 in Ω, 
where

In the case that there does not exist any  that satisfies the above then the equilibrium 
point 𝒙𝑒 is not isolated.

• A linear system (LTI or LTV) has a single isolated equilibrium point at the origin  if  is 
nonsingular. However, a nonlinear system often has more than one isolated equilibrium 
point.

All  are equilibrium points!ሶ𝒙 = 𝐀𝒙 = 𝟎
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Shifting an Equilibrium Point to Origin

If the equilibrium point of interest is not at the origin, by defining the difference between 
the original state 𝒙 and the specific equilibrium point 𝒙𝑒 as a new set of state variables, 
one can always shift the equilibrium point to the origin 𝟎 (for analytical simplicity).

𝒚 = 𝒙 − 𝒙𝑒

ሶ𝒙 = 𝐟 𝒙 ሶ𝒚 = 𝐟 𝒚 + 𝒙𝑒

𝒙 = 𝒚 + 𝒙𝑒
𝒚 = 𝟎  𝒙 = 𝒙𝑒

Therefore, instead of studying the behavior of ሶ𝒙 = 𝐟 𝒙  in the neighborhood of 𝒙𝑒, one 
can equivalently study the behavior of ሶ𝒚 = 𝐟 𝒚 + 𝒙𝑒  in the neighborhood of the origin 𝟎.
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Linearization of Nonlinear 
Systems
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Linearization of Nonlinear Systems

In control engineering, a normal operation of the system may be around an equilibrium 
point or a limited operating range. Therefor, it is possible to approximate the nonlinear 
system by an equivalent linear system within the limited operating range.
• Linear approximations simplify the analysis and design of a system.
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Linear Approximation of Nonlinear Systems

The linearization procedure is based on (1) the expansion of nonlinear function 𝑓 𝑥  into a 

Taylor Series about the operating point 𝐴 𝑥0, 𝑦0 = 𝑓 𝑥0  and (2) the retention of only 

the linear term.
Note: Since the variables deviate only slightly from the operating condition 𝑥 − 𝑥0 , 
higher-order terms of the Taylor series expansion can be neglected.

𝑓 𝑥 = 𝑓 𝑥0 +
𝑓′ 𝑥0

1!
𝑥 − 𝑥0 +

𝑓′′ 𝑥0

2!
𝑥 − 𝑥0

2 + ⋯

𝑦 = 𝑓 𝑥

𝑓 𝑥 ≈ 𝑓 𝑥0 + 𝑓′ 𝑥0 𝑥 − 𝑥0

(A straight-line relationship)

Expressing this straight line in frame 𝛿𝑥 − 𝛿𝑓 𝑥 :
𝛿𝑥 = 𝑥 − 𝑥0

𝛿𝑓 𝑥 = 𝑓 𝑥 − 𝑓 𝑥0

𝛿𝑓 𝑥 = 𝑓′ 𝑥0 𝛿𝑥
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Example 

Linearize 𝑓(𝑥) = 5 cos 𝑥 about 𝑥 = 𝜋/2.
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Example 

Linearize ሷ𝑥 + 2 ሶ𝑥 + cos 𝑥 = 0 for small deviations about 𝑥 = 𝜋/4.

sin 𝛿𝑥 ≈ 𝛿𝑥, cos 𝛿𝑥 ≈ 1, 𝛿𝑥2 ≈ 0* Note: If 𝛿𝑥 is a small variable:
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