Ch5: Phase Plane Analysis

Phase Plane Concept

Stony Brook
University

[Phase Plane Concept](#page-1-0) [Phase Plane Analysis: Linear Systems](#page-7-0) [Phase Plane Analysis: Nonlinear Systems](#page-13-0) Constructing Phase Portraits

Phase Plane & Phase Portrait

- A **two-dimensional** state space plane is called the **Phase Plane**.
- Given a set of **initial conditions** $x(0)$, the solution $x(t)$ of a **second-order autonomous** system, when *t* varied from 0 to ∞ , can be represented geometrically as a curve (**trajectory**) in the phase plane (arrows denote the direction of motion).

$$
\dot{\boldsymbol{x}}(t) = \mathbf{f}(\boldsymbol{x}(t)) \quad \Longrightarrow \quad \begin{array}{c} \dot{x}_1 = f_1\left(x_1, x_2\right) \\ \dot{x}_2 = f_2\left(x_1, x_2\right) \end{array}
$$

Slope of trajectory:
$$
\frac{dx_2}{dx_1} = \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)}
$$

A **family** of phase plane trajectories corresponding to **various initial conditions** is called a **phase portrait** of a system.

[Phase Plane Concept](#page-1-0) [Phase Plane Analysis: Linear Systems](#page-7-0) [Phase Plane Analysis: Nonlinear Systems](#page-13-0) [Constructing Phase Portraits](#page-21-0)

Example: Phase portrait of a linear system

A mass-spring system:

[Phase Plane Concept](#page-1-0) [Phase Plane Analysis: Linear Systems](#page-7-0) [Phase Plane Analysis: Nonlinear Systems](#page-13-0) Constructing Phase Portraits

0000000

Singular Point

An **equilibrium point** of a second-order system is called a **Singular Point**.

[Phase Plane Concept](#page-1-0) [Phase Plane Analysis: Linear Systems](#page-7-0) [Phase Plane Analysis: Nonlinear Systems](#page-13-0) [Constructing Phase Portraits](#page-21-0)0000000

0000000

Singular Point

Note: The motion patterns of the system trajectories in the vicinity of the two singular points may have different natures!

Note: With the functions f_1 and f_2 assumed to be single valued, a phase trajectory **cannot intersect itself**!

Note: Singular points are very important features in the phase plane, e.g., for **linear systems**, the **stability** of the systems is uniquely characterized by the **nature of their singular points**.

Note: For **nonlinear systems**, besides singular points, there may be more complex features, such as **limit cycles**.

Phase Plane for First-order Systems

Although the phase plane method is developed primarily for second-order systems, it can also be applied to the analysis of **first-order** systems of the form

 $\dot{x} + f(x) = 0$

The difference now is that the phase portrait is composed of a **single trajectory**.

Example: Plot the phase portrait for the following first-order system.

$$
\dot{x} = -4x + x^3
$$

Phase Plane Analysis: Linear Systems

Stony Broo

[Phase Plane Concept](#page-1-0) [Phase Plane Analysis: Linear Systems](#page-7-0) [Phase Plane Analysis: Nonlinear Systems](#page-13-0) [Constructing Phase Portraits](#page-21-0)

Phase Plane Analysis

Phase plane analysis is a **graphical method** to visually examine the global behavior of **second-order** autonomous systems, i.e., **stability** and **motion patterns**.

Although the phase plane analysis is applicable only to second-order systems, it can provide **intuitive insights** about **nonlinear effects**.

Phase Plane Analysis of Linear Systems

General form of a linear second-order system:

$$
\ddot{x} + a\dot{x} + bx = 0 \qquad \text{(or)} \qquad \frac{x_1 = a_{11}x_1 + a_{12}x_2}{\dot{x}_2 = a_{21}x_1 + a_{22}x_2} \qquad \Rightarrow \qquad \dot{x} = \mathbf{A}x
$$

 $\frac{1}{20}$

Solution:

$$
x(t) = k_1 e^{\lambda_1 t} + k_2 e^{\lambda_2 t} \qquad \lambda_1 \neq \lambda_2
$$

\n
$$
x(t) = k_1 e^{\lambda_1 t} + k_2 t e^{\lambda_1 t} \qquad \lambda_1 = \lambda_2
$$

\n
$$
\lambda_{1,2} = (-a \pm \sqrt{a^2 - 4b})/2
$$

\n
$$
x(t) = e^{At} x(0)
$$

(solutions of the characteristic equations $[\lambda^2 + a\lambda + b = 0]$ or eigenvalues of matrix **A** $[Ax = \lambda x]$

There is only one isolated singular point at origin $x = 0$, assuming $b \neq 0$ or A is nonsingular ($det(A) \neq 0$). However, the trajectories in the vicinity of this singularity point can display quite different characteristics, depending on the values of a and b .

[Phase Plane Analysis: Nonlinear Systems](#page-13-0) [Constructing Phase Portraits](#page-21-0) 0000000

0000000

Phase Plane Analysis of Linear Systems

Stable Node **Stable/Unstable Node:** Both $x(t)$ and $\dot{x}(t)$ converge to/diverge from zero **exponentially**. $x(t) = k_1 e^{\lambda_1 t} + k_2 e^{\lambda_2 t}$ $\lambda_{1,2} \in \mathbb{R}_{<0}$ $\lambda_{1,2} \in \mathbb{R}_{< 0}$ Stable Node $\lambda_{1,2}\in\mathbb{R}_{>0}$ Unstable Node Unstable Node **Saddle Point**: Because of the unstable pole λ_1 , almost $\lambda_{1,2} \in \mathbb{R}_{>0}$ all of the system trajectories diverge to infinity. Saddle Point λ_2 λ_{1} $x(t) = k_1 e^{\lambda_1 t} + k_2 e^{\lambda_2 t}$ Diverging line $\lambda_1 \in \mathbb{R}_{>0}, \lambda_2 \in \mathbb{R}_{<0}$ $\lambda_1 \in \mathbb{R}_{>0}$ Converging line $\lambda_2 \in \mathbb{R}_{\leq 0}$

[Phase Plane Concept](#page-1-0) [Phase Plane Analysis: Linear Systems](#page-7-0) [Phase Plane Analysis: Nonlinear Systems](#page-13-0) [Constructing Phase Portraits](#page-21-0) 0000000

0000000

Phase Plane Analysis of Linear Systems

Stable/Unstable Focus: The trajectories Stable Focus encircle the origin one or more times before converging to it, unlike the situation for a stable node.

$$
x(t) = k_1 e^{\lambda_1 t} + k_2 e^{\lambda_2 t} = Ke^{\sigma t} \cos(\omega t - \phi)
$$

$$
(\lambda_{1,2} = \sigma \pm j\omega)
$$

$$
\sigma \in \mathbb{R}_{<0} \text{ Stable Focus}
$$

$$
\sigma \in \mathbb{R}_{>0} \text{ Unstable Focus}
$$

Center Point: All trajectories are ellipses, and the singularity point is the center of these ellipses. The system trajectories neither converge to the origin nor diverge to infinity (**marginal stability**).

$$
x(t) = k_1 e^{\lambda_1 t} + k_2 e^{\lambda_2 t} = K \cos(\omega t - \phi)
$$

$$
(\lambda_{1,2} = \pm j\omega)
$$

[Phase Plane Concept](#page-1-0) [Phase Plane Analysis: Linear Systems](#page-7-0) [Phase Plane Analysis: Nonlinear Systems](#page-13-0) [Constructing Phase Portraits](#page-21-0)

0000000

Phase Plane Analysis of Linear Systems (review)

Phase Plane Analysis: Nonlinear Systems

Stony Bro

Phase Plane Analysis of Nonlinear Systems: Local Behavior

- Nonlinear systems frequently have **more than one equilibrium point**, in contrast to linear systems.
- **Local behavior** of a nonlinear system can be approximated by the behavior of a linear system **in the neighborhood of** each equilibrium point.

This behavior can be determined via **linearization** of the nonlinear system with respect to each equilibrium point. 6 \mathcal{X}

divergence area

to infinity

Linearization

$$
\dot{x} = f(x) \longrightarrow \begin{array}{c} \dot{x}_1 = f_1(x_1, x_2) \\ \dot{x}_2 = f_2(x_1, x_2) \end{array} \xrightarrow{\text{Taylor expansion about } x_e = [x_{e1}, x_{e2}]^\text{T}} \begin{bmatrix} f'(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots \end{bmatrix}
$$

(Higher Order Terms)
\n
$$
\dot{x}_1 = f_1(\grave{x}_{e1}, x_{e2}) + a_{11} (x_1 - x_{e1}) + a_{12} (x_2 - x_{e2}) + H \mathcal{Q} \cdot T
$$
\n
$$
\dot{x}_2 = f_2(x_{e1}x_{e2}) + a_{21} (x_1 - x_{e1}) + a_{22} (x_2 - x_{e2}) + H \mathcal{Q} \cdot T
$$
\n
$$
\mathbf{f}(\mathbf{x}_e) = \mathbf{0}
$$
\nChange of $\bar{x}_1 = (x_1 - x_{e2})$ In the vicinity of \mathbf{x}_e
\nvariables: $\bar{x}_2 = (x_2 - x_{e2})$

Linearized
state equation:
$$
\dot{\vec{x}} = A\vec{x} = \begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} \vec{x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} \begin{bmatrix} \vec{x} = \frac{\partial f}{\partial x} \end{bmatrix}_{x=x_e} \vec{x}
$$

Jacobian of f

[Phase Plane Analysis: Nonlinear Systems](#page-13-0) [Constructing Phase Portraits](#page-21-0)
0000000
000000

Example: Stability of a Pendulum

$$
\ddot{\theta} + \frac{c}{ml^2}\dot{\theta} + \frac{g}{l}\sin\theta = 0 \qquad x_1 = \theta, x_2 = \dot{\theta}
$$

$$
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \boldsymbol{f}(\boldsymbol{x}) = \begin{bmatrix} x_2 \\ -\frac{c}{ml^2}x_2 - \frac{g}{l}\sin x_1 \end{bmatrix}
$$

Limit Cycle

Let's plot phase portrait of the Van der Pol equation:

$$
\ddot{x} + \mu (x^2 - 1) \dot{x} + x = 0, \quad \mu = 1
$$

- An unstable node at the origin.
- A closed curve!

All trajectories inside & outside the curve tend to this curve. A motion started on this curve will stay on it forever, circling periodically around the origin.

This closed curve correspond to oscillations of **fixed amplitude** and **fixed period without external excitation** and **independent of initial conditions**, which is called **Limit Cycle** (LC) or **Self-Excited Oscillations**.

Limit cycles are **unique** features of nonlinear systems.

Stony Broo

Limit Cycles

Depending on the motion patterns of the trajectories **in the vicinity of the limit cycle**, there are three kinds of limit cycles:

1) Stable Limit Cycles: All trajectories in the vicinity of the LC converge to it as $t \to 0$.

2) Unstable Limit Cycles: All trajectories in the vicinity of the LC diverge from it as $t \to 0$.

3) Semi-stable Limit Cycles: Some of the trajectories in the vicinity of the LC converge to it, while the others diverge from it as $t \to 0$.

Example: Stability of a Limit Cycle

$$
\begin{cases}\n\dot{x}_1 = x_2 - x_1(x_1^2 + x_2^2 - 1) & \text{polar coordinates} \\
\dot{x}_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1) & \dot{r}^2 = x_1^2 + x_2^2\n\end{cases}
$$

By introducing
\n
$$
(-1)
$$
\n
$$
polar coordinates
$$
\n
$$
r^{2} = x_{1}^{2} + x_{2}^{2}
$$
\n
$$
r^{2} = x_{1}^{2} + x_{2}^{2}
$$
\n
$$
= -1
$$
\n
$$
tan \theta = x_{2}/x_{1}
$$
\n
$$
y = -1
$$

When the state starts on the unit circle $r = 1$, the $\dot{r} = 0$. This implies that the state will circle around the origin. When $r < 1$, then $\dot{r} > 0$. This implies that the state tends to the circle from inside. When $r > 1$, then $\dot{r} < 0$. This implies that the state tends toward the unit circle from outside. Therefore, the **unit circle is a stable limit cycle**.

Constructing Phase Portraits

Stony Brool

[Phase Plane Concept](#page-1-0) [Phase Plane Analysis: Linear Systems](#page-7-0) [Phase Plane Analysis: Nonlinear Systems](#page-13-0) [Constructing Phase Portraits](#page-21-0) 0000000

 \bullet 000000

Constructing Phase Portraits

Although phase portraits are routinely computer-generated, it is still practically useful to learn how to roughly sketch phase portraits or quickly verify the plausibility of computer outputs.

[Phase Plane Concept](#page-1-0) [Phase Plane Analysis: Linear Systems](#page-7-0) [Phase Plane Analysis: Nonlinear Systems](#page-13-0) [Constructing Phase Portraits](#page-21-0) 0000000

000000

Method 1: Analytical Method

The method is based on finding a functional relation between the phase variables x_1 and x_2 of the 2nd-order system $\dot{x} = f(x)$ in the form

> $g(x_1, x_2, c) = 0$ effect of initial conditions

Plotting this relation in the phase plane for **different initial conditions** yields a phase portrait.

Note: This method is useful for some **special** nonlinear systems, particularly **piece-wise linear systems**, whose phase portraits can be constructed by piecing together the phase portraits of the related linear systems.

Method 1: Analytical Method (cont.)

Technique 1:

$$
\dot{x}_1 = f_1(x_1, x_2) \rightarrow x_1 = g_1(t) \qquad \text{from these equations} \qquad g(x_1, x_2, c) = 0
$$
\n
$$
\dot{x}_2 = f_2(x_1, x_2) \rightarrow x_2 = g_2(t) \qquad \text{effect of initial conditions}
$$

Example: A mass-spring system

$$
x(t)
$$
\n
$$
k = 1
$$
\n
$$
x_0: Initial length
$$
\n
$$
\dot{x}_0: Initial velocity
$$
\n
$$
x_1 = 1
$$

$$
x_1 = x \t\t \hat{x}_1 = x_2
$$

\n
$$
x_2 = \dot{x} \t\t \hat{x}_2 = -x_1
$$

\n
$$
x_1 = x_0 \cos t + \dot{x}_0 \sin t
$$

\n
$$
x_2 = -x_0 \sin t + \dot{x}_0 \cos t
$$

$$
x_1^2 + x_2^2 = x_0^2 + \dot{x}_0^2
$$

Equation of the trajectories

Method 1: Analytical Method (cont.)

Technique 2:

$$
\dot{x}_1 = f_1(x_1, x_2) \rightarrow \frac{dx_1}{dx_2} = \frac{f_1(x_1, x_2)}{f_2(x_1, x_2)} \rightarrow g(x_1, x_2, c) = 0
$$
\n
$$
\text{effect of initial conditions}
$$

Example: A mass-spring system

 $\alpha = 1$

Method 2: Isoclines Method

An **isocline** is defined to be the locus of the points with a given tangent slope α .

$$
\frac{dx_2}{dx_1} = \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)} = \alpha \longrightarrow f_2(x_1, x_2) = \alpha f_1(x_1, x_2)
$$
 (isocline equation)
All points on this curve have the same tangent slope α .

Example 1: A mass-spring system

$$
m = 1
$$

We assume that the tangent slopes are locally constant. Therefore, a trajectory starting from any point in the field of directions can be found by connecting a sequence of line segments.

Short line segments with slope α to generate a field of directions (same scales should be used for the x_1 , x_2 axes)

Method 2: Isoclines Method (cont.)

Example 2: Van der Pol Equation

$$
\ddot{x} + 0.2(x^{2} - 1)\dot{x} + x = 0 \longrightarrow \frac{dx_{2}}{dx_{1}} = -\frac{0.2(x_{1}^{2} - 1)x_{2} + x_{1}}{x_{2}} = \alpha
$$

0.2(x_{1}^{2} - 1)x_{2} + x_{1} + \alpha x_{2} = 0 (isocline equation)
All points on this curve have the same tangent slope α .
By taking α of different values, different isoclines
can be obtained.

* For connecting the segments, we can first determine the type of the equilibrium points and check if there is a limit cycle.

The trajectories starting from both outside and inside converge to the limit cycle.

can

(2,5)

limit cycle

isoclines

= –ऽ

 $\alpha = -1$

Symmetry in Phase Plane Portraits

A phase portrait may have a priori known symmetry properties, which can simplify its generation and study (e.g., studying one half or one quarter of it).

$$
\dot{x}_1 = f_1(x_1, x_2) \n\dot{x}_2 = f_2(x_1, x_2) \n\frac{dx_2}{dx_1} = \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)} = g(x_1, x_2)
$$

Symmetry of the phase portraits implies symmetry of the slope:

 $g(x_1, x_2) = -g(x_1, -x_2) \Rightarrow$ symmetry about the x_1 axis $g(x_1, x_2) = -g(-x_1, x_2) \Rightarrow$ symmetry about the x_2 axis $q(x_1, x_2) = q(-x_1, -x_2) \Rightarrow$ symmetry about the origin

