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Phase Plane Concept
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Phase Plane & Phase Portrait

. . . L2y
* A two-dimensional state space plane is called the Phase z(0) £ 0 — 00

Plane.

* Given a set of initial conditions x(0), the solution x(t) of
a second-order autonomous system, when t varied from
0 to oo, can be represented geometrically as a curve

State
Vector

I1
. . Phase Space
(t.rajet_:tory) in th.e phase plane (arrows denote the (State Space)
direction of motion). State
L " Trajectory
iB(t) = f(ar;(t)) — x_l o f1 (331, 5132) o (Solution x(t))
T2 = fo ($1,$2) ‘
)
. dx X1, T
Slope of trajectory: 2 _ J2(21,22)
T fl (xla 332)
T

A family of phase plane trajectories corresponding to
various initial conditions is called a phase portrait of
a system.
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Example: Phase portrait of a linear system

A mass-spring system: Each circle corresponds
to a different initial AT2
condition.

o m me’;’ tz=0 /Cg\ -
1/

k=1
m=1

Xo: Initial position
Xo: Initial velocity
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Singular Point

An equilibrium point of a second-order system is called a Singular Point.

A
. fl (Ll?l 332) =0 X2
z(t) =f(x(t)) =0 — )
(t) = £(a() e 2 | .
\
6_
convergence3 |
-3 3 6 X1
= //- A | | .

F+062+3c+22=0

-6
|
Phase portrait of a nonlinear 2nd order system: —— //

The system has two singular points: (0, 0), (-3, 0)

.X'l =X to lnﬁ%
. -9+

Xy = X

divergence
area

Phase Portrait
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Singular Point

Note: The motion patterns of the system trajectories A
in the vicinity of the two singular points may have o]
different natures! —
Note: With the functions f; and f, assumed to be 5
single valued, a phase trajectory cannot intersect

convergence3 |

itself! )

p—

e

-6
|
Note: Singular points are very important features in the //

phase plane, e.g., for linear systems, the stability of the
systems is uniquely characterized by the nature of their
singular points.

10 inﬁnity/——q\
_9-

Note: For nonlinear systems, besides singular points, there
may be more complex features, such as limit cycles.
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Phase Plane for First-order Systems

Although the phase plane method is developed primarily for second-order systemes, it can
also be applied to the analysis of first-order systems of the form

x+f(x)=0

The difference now is that the phase portrait is composed of a single trajectory.

Example: Plot the phase portrait for the following first-order system.

x =—4x + x3
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Phase Plane Analysis: Linear
Systems
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Phase Plane Analysis

Phase plane analysis is a graphical method to visually examine the global behavior of
second-order autonomous systems, i.e., stability and motion patterns.

SRR N =
W TS N AN\

A7 -
DA Z s

Although the phase plane analysis is applicable only to second-order systems, it can provide
intuitive insights about nonlinear effects.
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Phase Plane Analysis of Linear Systems

General form of a linear second-order system:

T1 = a1121 + a12%2

o r=Ax
To = A21T1 + A22T2

T+ ax+bxr=0 (or)
Solution:
x(t) = kpeMtt + k,e?2t A # A,
x(t) = ket + kte1t A, = A,

M2 = (—a£+va?—4b)/2

(solutions of the characteristic equations
[A2 + al + b = 0] or eigenvalues of matrix A

x(t) = eAtx(0)

[Ax = Ax])
X, =X
A
There is only one isolated singular point at origin x = 0, assuming b # 0 or
A is nonsingular (det(A4) # 0). However, the trajectories in the vicinity of . . X, = x

this singularity point can display quite different characteristics, depending
on the values of a and b.
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Phase Plane Analysis of Linear Systems

jo i
Stable/Unstable Node: Both x(t) and x(t) Stable Node T
converge to/diverge from zero exponentially. .o x
x(t) = kyeMt + k,el2t
1 2 M2 € Rog
A1, € Ry Stable Node
A12 € Ry Unstable Node Unstable Node .
Saddle Point: Because of the unstable pole 4, almost A2 € Rog
all of the system trajectories diverge to infinity.
Saddle Point  jw i
x(t) = ket + k,et2t A T Ao i
A1 € Rog, A, € Ry Diverging line
A1 € Ry Converging line

)\2 E R<U
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Phase Plane Analysis of Linear Systems

Stable/Unstable Focus: The trajectories
encircle the origin one or more times before
converging to it, unlike the situation for a
stable node.

x(t) = kjeMt + kye?2t = Ke% cos(wt — ¢)

(Al,z =0 i]a))
o € R, Stable Focus

o € R,y Unstable Focus

Center Point: All trajectories are ellipses, and
the singularity point is the center of these
ellipses. The system trajectories neither
converge to the origin nor diverge to infinity
(marginal stability).

x(t) = ket + kye?2t = K cos(wt — ¢)
(12 = Hjw)

Stable Focus jo X
X
X
)\1, Ay = 5\1 e C
Re(Al) E R<0
Unstable Focus o .
] «
«
)\1, Ay = 5\1 e C
Re(Al) E R>0
Center Point J';F ii
)\1, Ay = 5\1 e C ellipses
Re()\l) =0
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Phase Plane Analysis of Linear Systems (review)

jo x Stable Node Stable Focus Jjo i
] y
x
M2 € R M, Ao =X €C
Re(Al) E R<0
. _ Unstable Node Unstable Focus . _
Jo X Jjo X
T o
.
)\1,2 S IR>0 )\1, Ao = 5\1 e C
Re(Al) E R>0
jo X Saddle Point Center Point J';F ii
A€ Ry A, A=\ €C ellipses
Ay € Rog Re(A1) =0
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Phase Plane Analysis:
Nonlinear Systems
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Phase Plane Analysis of Nonlinear Systems:
Local Behavior

* Nonlinear systems frequently have more than one equilibrium point, in contrast to
linear systems.
* Local behavior of a nonlinear system can be approximated by the behavior of a linear
system in the neighborhood of each equilibrium point. A
0]
B
6-

(0, 0): Stable Focus 37
(-3, 0): Saddle Point

-6 3
! s
"
-3
/\
divergence

This behavior can be determined via linearization of the oy~
nonlinear system with respect to each equilibrium point.
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Linearization

: T
Taylor expansion about Ze = [Zc1, Te2]

i=f(z) — t1 = f1 (1, 22) R

Linearized

state equation:

Amin Fakhari, Spring 2024

f
f

f'(a) f"(a)

$2:f2 (371,.@2) lf(x)zf(a)-l_ (x — )+—( a)2+

(Higher Order Terms)

1 (D1, Tez) + a11 (1 — Te1) + a1z (T2 — Te2) + HO.T
2 (TeNTe2) + a21 (1 — Te1) + a2z (T2 — Tez) + H.O\T
f(x.) 2 0 Change of 71 = (1 — xe2)  Inthe vicinity of ,
variables: To = (T2 — T2)
F0f1 Of17 5
S AL |11 Qi2f o | OJxp  Oxg __of
z=Az= [a21 a22]az— Of2 0fs YT o w:wem
_85131 8&72_ T=x,

Jacobian of
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Example: Stability of a Pendulum

é+ié+gsin9:0 :1:1:9,372:@
ml? [
. o
[5571]_13(%)_[ c g .
o ———F= T2 — — SIN T
ml? [
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Limit Cycle

Let’s plot phase portrait of the Van der Pol equation: T2

i4+p(e?—1)i+x=0, p=1

* An unstable node at the origin.
* A closed curve!

v

All trajectories inside & outside the curve tend to
this curve. A motion started on this curve will stay
on it forever, circling periodically around the origin. _92 0 2 4

This closed curve correspond to oscillations of fixed
amplitude and fixed period without external excitation

and independent of initial conditions, which is called S
Limit Cycle (LC) or Self-Excited Oscillations. Al

—

[==]
T

Limit cycles are unique features of nonlinear systems. 3
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Limit Cycle

A Limit Cycle is defined as an isolated closed curve.

/N

Indicates the limiting nature of Indicates the periodic
the cycle (nearby trajectories nature of the motion.
converging or diverging from it)

-3 depends on the initial conditions.

Amin Fakhari, Spring 2024 MEC549 ¢ Ch5: Phase Plane Analysis
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3 - : A marginally stable
9 ot : : linear systems.
1 /

0 !

\// 2 Note: These are not limit cycles, because they are
not isolated, and the amplitude of the oscillations
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Limit Cycles

Depending on the motion patterns of the trajectories in the vicinity of the limit cycle,
there are three kinds of limit cycles:

1) Stable Limit Cycles: All trajectories in the vicinity of the LC converge toitast — 0.

2) Unstable Limit Cycles: All trajectories in the vicinity of the LC diverge fromitast — 0.

3) Semi-stable Limit Cycles: Some of the trajectories in the vicinity of the LC converge to it,
while the others diverge fromitast — 0.

1) x tcoavergli@ (2) x, dl\‘zergzn.g (3) X |
A rajectories A Irajectories A diverging

f ?%{ - f%% 3 convergiigf_%\ g
Nl O J

limit cycle limit cycle limit cycle

Ve
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Example: Stability of a Limit Cycle

By introducing

. 2
X, =X, —x;(x% +x% —1) polar coordinates r=-r(r 1)

. 2 2 ” :
Xy = —=x1 — Xxp(x{ + x5 — 1) r? =x%+ x2 g =—1
tan 0 = x,/x;
When the state starts on the unit circle r = 1, the 7 = 0. This implies that the state will
circle around the origin. When r < 1, then 7 > 0. This implies that the state tends to the

circle from inside. Whenr > 1, then 7 < 0. This implies that the state tends toward the
unit circle from outside. Therefore, the unit circle is a stable limit cycle.
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Constructing Phase Portraits
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Constructing Phase Portraits

Although phase portraits are routinely computer-generated, it is still practically useful to
learn how to roughly sketch phase portraits or quickly verify the plausibility of computer

outputs.
MATLAB Code X-l — _xl — 2x2x12 + xz
(% Phase Trajectory ) Xy = —X1 — Xy

opts = odeset('RelTol',le-6, 'AbsTol',1le-6);
[t,x] = oded5(@func, [0 10],[0.9; 0.9]1,o0pts);

5//’
function dxdt = func(t, x) //5
dxdt = [-x(1) - 2*x(2)*x(1)"2 + x(2); -x(1) 5;?

\§nd g LSS
:/ ”””””” AV avays
% Phase Portrait S s s e e A jj%::
[x1, x2] = meshgrid(-1:0.1:1, -1:0.1:1); foce ) o
xldot = -x1 - 2 * x2 .* x1.72 + x2; A AN | 7 Y :1//(,&5,::»1:
A A A A A N v o
x2dot = -x1 - x2; R //:
quiver (x1,x2,x1dot, x2dot) A B T N N . .
A A W Y O N ,
////ff'\\\\\ \\\\\\\\\
////ff?\\\\\\\\.,__k_
////l‘f\\\\\\\\\\s_k
Two simple methods are Analytical Method and Isoclines Method. 7,7/ / /11 Yy vy ss s oo
////‘fT\\\\\;\\\\\\\\
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Method 1: Analytical Method

The method is based on finding a functional relation between the phase variables x; and
x, of the 2nd-order system x = f(x) in the form

g(xq,x3, ? =0

effect of initial conditions .

Plotting this relation in the phase plane for different initial _1_“375*\\/

conditions yields a phase portrait. %m

-3

X1
Note: This method is useful for some special nonlinear systems, particularly piece-wise
linear systems, whose phase portraits can be constructed by piecing together the phase

portraits of the related linear systems.
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Method 1: Analytical Method (cont)

Technique 1:

Eliminating time t
X1 = f1 (X1;X2) X1 = gl(t) from these equations g(xl,xz, C) =0

Xy = fo(xy, x3) _’ Xy = go(t)

effect of initial conditions

Example: A mass-spring system
Each circle corresponds

t . . e g
x(1) X, =x Xy = Xy to a different initial 7,
k . 0 Yo = % N0 = —x condition.
= 2 — 2 1
oo m| T
—— X1 = XoCoSt + XySin t b 21
k=1 X, = —XpSint + xgcos t UL
m =1
Xo: Initial length xi + x5 = x§ + %8
X+ Initial velocity Equation of the trajectories
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Method 1: Analytical Method (cont)

Technique 2:
x1 = f1(x1,x3) . dxq _ f1(x1,x2) N g(x1,%,,¢) =0
J.CZ = fZ(xlr xZ) dxz fz(xl, xZ)

effect of initial conditions

Example: A mass-spring system
Each circle corresponds

x t . . . oy .
(1) X, =x X, = X, to a dlffer'e'ntlnltlal AT2
k 3 . o condition.
il om | E+tz=0 X=X X2 =74
dx; X ﬁ“ L1
EL=1 X10X4 2dX3 0
dXZ —X1 \J
m =1
Xo: Initial length xi + x5 = x§ + %8
X, Initial velocity Equation of the trajectories
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Method 2: Isoclines Method

An isocline is defined to be the locus of the points with a given tangent slope «.

dx; f2(x1,%2) _ o _
dx;  fi(xg,xp) o f2(x1,%2) = af1(xq,x;) (isocline equation)

All points on this curve have the same tangent slope «.

o =1 x‘ o =-1

Example 1: A mass-spring system

g isoclines
X —X
x(1) 2 = 1 = a
’ ) dx1 X9
ax, = —Xq
k=1
We assume that the tangent slopes are locally

m =1 constant. Therefore, a trajectory starting from Short line segments with slope

. . any point in the field of directions can be found to generate a field of directions
X1 = X — 3.61 = X2 by connecting a sequence of line segments. (same scales should be used for
X2 = X X2 = —X1 the x4, x, axes)
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Method 2: Isoclines Method (cont)

Example 2: Van der Pol Equation

dx 0.2(x%? —1Dx, + x
¥+02(x2-Dix+x=0 — —2—_ (i =~ D, L=qa
dx1 xZ

O.Z(xf — 1)x2 +x;1+ax, =0 (isocline equation)

All points on this curve have the same tangent slope a. Y2}

By taking a of different values, different isoclines
can be obtained.

L

Stony Brook
University

* For connecting the segments,

we can first determine the type The trajectories starting
of the equilibrium points and from both outside and
check if there is a limit cycle. inside converge to the

limit cycle.

isoclines

Amin Fakhari, Spring 2024 MEC549 ¢ Ch5: Phase Plane Analysis
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Symmetry in Phase Plane Portraits

A phase portrait may have a priori known symmetry properties, which can simplify its
generation and study (e.g., studying one half or one quarter of it).

lek

x1 = f1(%1,%2) dxy  f2(x1,%2)

. = = X1, X / """""""" \

Xy = fZ (xli xZ) dxl fl (xl, xz) g( 1 2)
Symmetry of the phase portraits implies symmetry of the X
slope:
g(x1,x5) = —g(x{, —x,) = symmetry about the x; axis
g(xq,x5) = —g(—x4, x,) = symmetry about the x, axis Mass-spring system: 422
g(xq4,x,) = g(—x4, —x,) = symmetry about the origin X, = Xy -

Xy = —Xq 0
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