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Phase Plane & Phase Portrait 

• A two-dimensional state space plane is called the Phase 
Plane.

• Given a set of initial conditions 𝒙 0 , the solution 𝒙 𝑡  of 
a second-order autonomous system, when t varied from 
0 to , can be represented geometrically as a curve 
(trajectory) in the phase plane (arrows denote the 
direction of motion).

Phase Space
(State Space)

State 
Trajectory
(Solution 𝒙(𝑡)) 

A family of phase plane trajectories corresponding to 
various initial conditions is called a phase portrait of 
a system.

Slope of trajectory:
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State 
Vector 
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Example: Phase portrait of a linear system 

𝑥0: Initial position

Each circle corresponds 
to a different initial 

condition.

ሶ𝑥0: Initial velocity

A mass-spring system:
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Singular Point

The system has two singular points: (0, 0), (-3, 0)

An equilibrium point of a second-order system is called a Singular Point.

Phase portrait of a nonlinear 2nd order system:
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𝑥1 = 𝑥
𝑥2 = ሶ𝑥

Phase Portrait

𝑥1

𝑥2
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Singular Point

Note: Singular points are very important features in the 
phase plane, e.g., for linear systems, the stability of the 
systems is uniquely characterized by the nature of their 
singular points.

Note: For nonlinear systems, besides singular points, there 
may be more complex features, such as limit cycles.

Note: The motion patterns of the system trajectories 
in the vicinity of the two singular points may have 
different natures!

Note: With the functions 𝑓1 and 𝑓2 assumed to be 
single valued, a phase trajectory cannot intersect 
itself!
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Phase Plane for First-order Systems

Although the phase plane method is developed primarily for second-order systems, it can 
also be applied to the analysis of first-order systems of the form

ሶ𝑥 + 𝑓 𝑥 = 0

The difference now is that the phase portrait is composed of a single trajectory.

Example: Plot the phase portrait for the following first-order system.

ሶ𝑥 = −4𝑥 + 𝑥3
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Phase Plane Analysis: Linear 
Systems
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Phase Plane Analysis

Phase plane analysis is a graphical method to visually examine the global behavior of 
second-order autonomous systems, i.e., stability and motion patterns.

Although the phase plane analysis is applicable only to second-order systems, it can provide 
intuitive insights about nonlinear effects.
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Phase Plane Analysis of Linear Systems

General form of a linear second-order system:

Solution:

(solutions of the characteristic equations 
[𝜆2 + 𝑎𝜆 + 𝑏 = 0] or eigenvalues of matrix 𝐀 

[𝐀𝒙 = 𝜆𝒙] )

There is only one isolated singular point at origin 𝒙 = 0, assuming 𝑏 ≠ 0 or 
𝐀 is nonsingular (det(𝑨) ≠ 0). However, the trajectories in the vicinity of 
this singularity point can display quite different characteristics, depending 
on the values of 𝑎 and 𝑏.

(or) 

Phase Plane Concept Phase Plane Analysis Constructing Phase Portraits

𝑥(𝑡) = 𝑘1𝑒𝜆1𝑡 + 𝑘2𝑒𝜆2𝑡 𝜆1 ≠ 𝜆2

𝑥(𝑡) = 𝑘1𝑒𝜆1𝑡 + 𝑘2𝑡𝑒𝜆1𝑡 𝜆1 = 𝜆2 𝒙(𝑡) = 𝑒𝐀𝑡𝒙(0)

𝑥2 = ሶ𝑥

𝑥1 = 𝑥
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Phase Plane Analysis of Linear Systems

Unstable Node

Stable Node

Phase Plane Concept Phase Plane Analysis Constructing Phase Portraits

Saddle Point: Because of the unstable pole 𝜆1, almost 
all of the system trajectories diverge to infinity.

𝑥 𝑡 = 𝑘1𝑒𝜆1𝑡 + 𝑘2𝑒𝜆2𝑡

𝜆1 ∈ ℝ>0, 𝜆2 ∈ ℝ<0

Stable/Unstable Node: Both 𝑥 𝑡  and ሶ𝑥 𝑡  
converge to/diverge from zero exponentially.

𝑥 𝑡 = 𝑘1𝑒𝜆1𝑡 + 𝑘2𝑒𝜆2𝑡

𝜆1,2 ∈ ℝ<0

𝜆1,2 ∈ ℝ>0

Stable Node

Unstable Node

Saddle Point

Diverging line

Converging line

𝜆1𝜆2
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Phase Plane Analysis of Linear Systems

ellipses

Unstable Focus

Center Point

Stable FocusStable/Unstable Focus: The trajectories 
encircle the origin one or more times before 
converging to it, unlike the situation for a 
stable node.

Center Point: All trajectories are ellipses, and 
the singularity point is the center of these 
ellipses. The system trajectories neither 
converge to the origin nor diverge to infinity 
(marginal stability).

𝑥 𝑡 = 𝑘1𝑒𝜆1𝑡 + 𝑘2𝑒𝜆2𝑡 = 𝐾𝑒𝜎𝑡 cos 𝜔𝑡 − 𝜙

𝜆1,2 = 𝜎 ± 𝑗𝜔
𝜎 ∈ ℝ<0

𝜎 ∈ ℝ>0

Stable Focus

Unstable Focus

𝑥 𝑡 = 𝑘1𝑒𝜆1𝑡 + 𝑘2𝑒𝜆2𝑡 = 𝐾 cos 𝜔𝑡 − 𝜙

𝜆1,2 = ±𝑗𝜔
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Phase Plane Analysis of Linear Systems (review)

ellipses

Unstable FocusUnstable Node

Stable Node

Center PointSaddle Point

Stable Focus
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Phase Plane Analysis: 
Nonlinear Systems

Amin Fakhari, Spring 2024 MEC549 • Ch5: Phase Plane Analysis P14

Phase Plane Concept Phase Plane Analysis: Linear Systems Phase Plane Analysis: Nonlinear Systems Constructing Phase Portraits



Phase Plane Analysis of Nonlinear Systems: 
Local Behavior

• Nonlinear systems frequently have more than one equilibrium point, in contrast to 
linear systems.

• Local behavior of a nonlinear system can be approximated by the behavior of a linear 
system in the neighborhood of each equilibrium point.

(0, 0): Stable Focus
(-3, 0): Saddle Point

This behavior can be determined via linearization of the 
nonlinear system with respect to each equilibrium point.
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Linearization

Taylor expansion about

(Higher Order Terms)

Linearized 
state equation:

In the vicinity of 
00

Change of 
variables:

Jacobian of 

Phase Plane Concept Phase Plane Analysis Constructing Phase Portraits

𝑓 𝑥 = 𝑓 𝑎 +
𝑓′ 𝑎

1!
𝑥 − 𝑎 +

𝑓″ 𝑎

2!
𝑥 − 𝑎 2 + ⋯
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Example: Stability of a Pendulum 

Phase Plane Concept Phase Plane Analysis Constructing Phase Portraits
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Limit Cycle

Let’s plot phase portrait of the Van der Pol equation:

• An unstable node at the origin.
• A closed curve!

All trajectories inside & outside the curve tend to 
this curve. A motion started on this curve will stay 
on it forever, circling periodically around the origin.

Limit cycles are unique features of nonlinear systems.

This closed curve correspond to oscillations of fixed 
amplitude and fixed period without external excitation 
and independent of initial conditions, which is called 
Limit Cycle (LC) or Self-Excited Oscillations.

Phase Plane Concept Phase Plane Analysis Constructing Phase Portraits
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Limit Cycle

A Limit Cycle is defined as an isolated closed curve.

Indicates the periodic 
nature of the motion.

Indicates the limiting nature of 
the cycle (nearby trajectories 
converging or diverging from it)

Note: These are not limit cycles, because they are 
not isolated, and the amplitude of the oscillations 
depends on the initial conditions.

A marginally stable 
linear systems.
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Limit Cycles

Depending on the motion patterns of the trajectories in the vicinity of the limit cycle, 
there are three kinds of limit cycles:

1) Stable Limit Cycles: All trajectories in the vicinity of the LC converge to it as 𝑡 → 0.

2) Unstable Limit Cycles: All trajectories in the vicinity of the LC diverge from it as 𝑡 → 0.

3) Semi-stable Limit Cycles: Some of the trajectories in the vicinity of the LC converge to it, 
while the others diverge from it as 𝑡 → 0.

(1) (2) (3)
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Example: Stability of a Limit Cycle 

𝑟2 = 𝑥1
2 + 𝑥2

2

tan 𝜃 = 𝑥2/𝑥1

By introducing 
polar coordinates 

൝
ሶ𝑥1 = 𝑥2 − 𝑥1 𝑥1

2 + 𝑥2
2 − 1

ሶ𝑥2 = −𝑥1 − 𝑥2 𝑥1
2 + 𝑥2

2 − 1 ሶ𝜃 = −1

ሶ𝑟 = −𝑟 𝑟2 − 1

When the state starts on the unit circle 𝑟 = 1, the ሶ𝑟 = 0. This implies that the state will 
circle around the origin. When 𝑟 < 1, then ሶ𝑟 > 0. This implies that the state tends to the 
circle from inside. When 𝑟 > 1, then ሶ𝑟 < 0. This implies that the state tends toward the 
unit circle from outside. Therefore, the unit circle is a stable limit cycle.
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Constructing Phase Portraits
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Constructing Phase Portraits

Although phase portraits are routinely computer-generated, it is still practically useful to 
learn how to roughly sketch phase portraits or quickly verify the plausibility of computer 
outputs.

% Phase Portrait

[x1, x2] = meshgrid(-1:0.1:1, -1:0.1:1);

x1dot = -x1 - 2 * x2 .* x1.^2 + x2;

x2dot = -x1 - x2;

quiver(x1,x2,x1dot,x2dot)

% Phase Trajectory

opts = odeset('RelTol',1e-6,'AbsTol',1e-6);

[t,x] = ode45(@func,[0 10],[0.9; 0.9],opts);

 

function dxdt = func(t,x)

dxdt = [-x(1) - 2*x(2)*x(1)^2 + x(2); -x(1) - x(2)];

end

ሶ𝑥1 = −𝑥1 − 2𝑥2𝑥1
2 + 𝑥2

ሶ𝑥2 = −𝑥1 − 𝑥2

Two simple methods are Analytical Method and Isoclines Method.

MATLAB Code
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Method 1: Analytical Method

Note: This method is useful for some special nonlinear systems, particularly piece-wise 
linear systems, whose phase portraits can be constructed by piecing together the phase 
portraits of the related linear systems.

The method is based on finding a functional relation between the phase variables 𝑥1 and 
𝑥2 of the 2nd-order system ሶ𝒙 = 𝒇 𝒙  in the form

𝑔 𝑥1, 𝑥2, 𝑐 = 0

effect of initial conditions

Plotting this relation in the phase plane for different initial 
conditions yields a phase portrait.

𝑥1

𝑥2
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Method 1: Analytical Method (cont.)

Technique 1:

ሶ𝑥1 = 𝑓1 𝑥1, 𝑥2

ሶ𝑥2 = 𝑓2 𝑥1, 𝑥2

𝑥1 = 𝑔1 𝑡

𝑥2 = 𝑔2 𝑡
𝑔 𝑥1, 𝑥2, 𝑐 = 0

𝑥0: Initial length

Equation of the trajectories

Each circle corresponds 
to a different initial 

condition.

𝑥1 = 𝑥0cos 𝑡 + ሶ𝑥0sin 𝑡
𝑥2 = −𝑥0sin 𝑡 + ሶ𝑥0cos 𝑡

𝑥1
2 + 𝑥2

2 = 𝑥0
2 + ሶ𝑥0

2

ሶ𝑥0: Initial velocity

Example: A mass-spring system

𝑥1 = 𝑥
𝑥2 = ሶ𝑥

ሶ𝑥1 = 𝑥2

ሶ𝑥2 = −𝑥1

Eliminating time 𝑡 
from these equations

effect of initial conditions
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Method 1: Analytical Method (cont.)

Technique 2:

ሶ𝑥1 = 𝑓1 𝑥1, 𝑥2

ሶ𝑥2 = 𝑓2 𝑥1, 𝑥2

𝑑𝑥1

𝑑𝑥2
=

𝑓1 𝑥1, 𝑥2

𝑓2 𝑥1, 𝑥2

𝑔 𝑥1, 𝑥2, 𝑐 = 0

𝑥0: Initial length

Equation of the trajectories

𝑑𝑥1

𝑑𝑥2
=

𝑥2

−𝑥1

𝑥1
2 + 𝑥2

2 = 𝑥0
2 + ሶ𝑥0

2

ሶ𝑥0: Initial velocity

Example: A mass-spring system

𝑥1 = 𝑥
𝑥2 = ሶ𝑥

ሶ𝑥1 = 𝑥2

ሶ𝑥2 = −𝑥1

−𝑥1𝑑𝑥1 = 𝑥2𝑑𝑥2

effect of initial conditions

Each circle corresponds 
to a different initial 

condition.
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Method 2: Isoclines Method

An isocline is defined to be the locus of the points with a given tangent slope 𝛼.

𝑑𝑥2

𝑑𝑥1
=

𝑓2 𝑥1, 𝑥2

𝑓1 𝑥1, 𝑥2
= 𝛼 𝑓2 𝑥1, 𝑥2 = 𝛼𝑓1 𝑥1, 𝑥2

All points on this curve have the same tangent slope 𝛼.

Example 1: A mass-spring system

𝑑𝑥2

𝑑𝑥1
=

−𝑥1

𝑥2
= 𝛼

𝑥1 = 𝑥
𝑥2 = ሶ𝑥

ሶ𝑥1 = 𝑥2

ሶ𝑥2 = −𝑥1

(isocline equation)

𝛼𝑥2 = −𝑥1

Short line segments with slope 𝛼 
to generate a field of directions
(same scales should be used for 

the 𝑥1, 𝑥2 axes)

isoclines

We assume that the tangent slopes are locally 
constant. Therefore, a trajectory starting from 
any point in the field of directions can be found 
by connecting a sequence of line segments.
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Method 2: Isoclines Method (cont.)

𝑑𝑥2

𝑑𝑥1
= −

0.2 𝑥1
2 − 1 𝑥2 + 𝑥1

𝑥2
= 𝛼

All points on this curve have the same tangent slope 𝛼.

0.2 𝑥1
2 − 1 𝑥2 + 𝑥1 + 𝛼𝑥2 = 0 (isocline equation)

By taking 𝛼 of different values, different isoclines 
can be obtained.

The trajectories starting 
from both outside and 
inside converge to the 
limit cycle.

* For connecting the segments, 
we can first determine the type 
of the equilibrium points and 
check if there is a limit cycle.

Example 2: Van der Pol Equation

ሷ𝑥 + 0.2 𝑥2 − 1 ሶ𝑥 + 𝑥 = 0

(2,5)
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Symmetry in Phase Plane Portraits

ሶ𝑥1 = 𝑓1 𝑥1, 𝑥2

ሶ𝑥2 = 𝑓2 𝑥1, 𝑥2

A phase portrait may have a priori known symmetry properties, which can simplify its 
generation and study (e.g., studying one half or one quarter of it).

𝑥1

𝑥2

Symmetry of the phase portraits implies symmetry of the 
slope:

𝑑𝑥2

𝑑𝑥1
=

𝑓2 𝑥1, 𝑥2

𝑓1 𝑥1, 𝑥2
= 𝑔 𝑥1, 𝑥2

𝑔 𝑥1, 𝑥2 = −𝑔 𝑥1, −𝑥2   symmetry about the 𝑥1 axis

𝑔 𝑥1, 𝑥2 = −𝑔 −𝑥1, 𝑥2   symmetry about the 𝑥2 axis

𝑔 𝑥1, 𝑥2 = 𝑔 −𝑥1, −𝑥2   symmetry about the origin

Mass-spring system:

ሶ𝑥1 = 𝑥2

ሶ𝑥2 = −𝑥1
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