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Introduction

Given a control system, the first and most important question about its various properties 
is whether it is Stable.

The most useful and general approach for studying the stability of 
nonlinear control systems is the theory introduced in 1892 by the 
Russian mathematician Alexandr Mikhailovich Lyapunov.

Concepts of Stability Lyapunov's Linearization Method Lyapunov's Direct Method

1857-1918

Concepts of Stability Lyapunov's Linearization Method Lyapunov's Direct Method
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Lyapunov Stability and Instability

This is also called Stability in the Sense of Lyapunov.

The equilibrium point  is said to be Stable if for any (arbitrary) , there exists             
, such that if , then  for all ≥ . Otherwise, the 

equilibrium point is Unstable.

An equilibrium point is stable if starting the 
system somewhere (sufficiently) near the point 
(i.e., anywhere in the ball 𝐵𝑟) implies that the 
system trajectory will stay (arbitrarily) around 
the point (i.e., in the ball 𝐵𝑅) ever after.

Ball 𝐵𝑅Ball 𝐵𝑟

An equilibrium point is unstable if there exists at least one ball 𝐵𝑅, such that for every 
𝑟 > 0, no matter how small, it is always possible for the system trajectory to start 
somewhere within the ball 𝐵𝑟, and eventually leave the ball 𝐵𝑅.
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Lyapunov Stability and Instability (cont.)

Example: Linear systems or Local linearization of nonlinear systems.

Instability of an equilibrium point is typically undesirable, because it often leads the system 
into limit cycles or results in damage to the involved mechanical or electrical components.

stable stable unstable unstable unstable stable

Example: In a pendulum, the vertical 
up and down positions, are unstable 
and stable, respectively.
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Instability in Linear and Nonlinear Systems

• In linear systems, instability is equivalent to blowing up (moving all trajectories close to 
equilibrium point to infinity).

For example, consider Van der Pol Oscillator:

• If we choose the circle of radius  to fall completely 
within the limit cycle, then system trajectories 
starting near the origin will eventually get out of 
this circle. This implies instability of the origin.

• Thus, even though the state of the system does 
remain around the equilibrium point in a certain 
sense, it cannot stay arbitrarily close to it.

• In nonlinear systems, blowing up is only one way of instability.
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Asymptotic and Marginal Stability

In many applications, Lyapunov stability is not enough. For example, 
(1) and (2) are stable, but their behavior is not the same.

1) Stable (asymptotically)
2) Stable (marginally)
3) Unstable

► The equilibrium point  is said to be Asymptotically Stable if it is Lyapunov Stable and 
there exists  such that if  , then  as .

- The region with the largest  is called Domain of Attraction of  .

- An equilibrium point which is Lyapunov Stable but not asymptotically 
stable is called Marginally Stable.

Concepts of Stability Lyapunov's Linearization Method Lyapunov's Direct Method

The states started close to 
𝒙𝑒  converge to 𝒙𝑒  as 𝑡 → ∞.

𝑡

𝐵𝑅

𝐵𝑟

𝐵𝑅

𝐵𝑟
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Asymptotic and Marginal Stability (cont.)

Example 1: In the system studied by Vinograd, all the trajectories 
starting from non-zero initial points within the unit disk first reach 
the curve 𝒞 before converging to the origin. 

 State convergence does not necessarily imply stability.

The origin is unstable in the sense of Lyapunov, 
despite the state convergence.

𝑥1

𝑥2

𝑅 = 1

𝒞

Example 2: Consider the system expressed in polar coordinates. ሶ𝑟 = 0.05𝑟(1 − 𝑟)
ሶ𝜃 = sin2 Τ𝜃 2  𝜃 ∈ [0,2𝜋).

- Equilibrium points: [0, 0], [1, 0].

- All the solutions of the system tend asymptotically to [1, 0].

𝑥1 = 𝑟 cos 𝜃

𝑥2 = 𝑟 sin 𝜃

- For each initial condition inside the dashed disk the 
generated trajectory goes asymptotically to [1, 0]. However, 
this equilibrium is unstable in the sense of Lyapunov, 
because there are always solutions that leave the disk 
before coming back towards the equilibrium.

Amin Fakhari, Spring 2024 MEC549 • Ch6: Stability for Autonomous Systems P8

Concepts of Stability Lyapunov's Linearization Method Equilibrium Point Theorem Invariant Set Theorem Lyapunov Functions



Exponential Stability

How fast the system trajectory approaches ?

► The equilibrium point  is said to be Exponentially Stable if there exist α λ  such 
that if  , then ≤ α λ .

λ: exponential convergence rate

Note: Exponential stability itself implies asymptotic 
stability. Thus, in this definition, there is no need to 
explicitly mention “if the system is asymptotically stable”. 

𝑒−
𝑡
5

𝑒−
𝑡
5 sin 𝑡
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Exponential Stability (cont.)

The function converges to 0 slower than 
any exponential function with 𝜆 > 0.

Example:

But asymptotic stability does not guarantee exponential stability.
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Local and Global Stability

► If asymptotic (or exponential) stability holds for any initial states, i.e., 𝑟 = +∞, the 
equilibrium point is said to be Globally Asymptotically (or Exponentially) Stable.

The above definitions are formulated to characterize the local behavior of systems, i.e., 
how the state evolves after starting near . What will be the behavior of systems when 
the initial state is some distance away from ?

Starting the system from anywhere, 
it ends up the equilibrium point .

There is only 1 equilibrium points.





𝑟 = +∞



Stability of the equilibrium point  ≡ Stability of the system.
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Local and Global Stability (cont.)

• LTI systems are either globally exponentially stable, marginally stable, or unstable.

Globally Exponentially Stable

(Locally) Exponentially Stable @ 0, Unstable @ 1

Examples:

𝑡

𝑥 𝑡

𝑡

𝑥 𝑡
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Stability of a Motion

In some problems, we are not concerned with stability around an equilibrium point, but 
rather with the stability of a motion, i.e., whether a system will remain close to its original 
motion trajectory if slightly perturbed away from it.

These problems can be transformed into an equivalent stability problem around an 
equilibrium point, although the equivalent system may be now non-autonomous.

Consider ሶ𝒙 = 𝐟 𝒙

𝒙∗ 𝑡 , ሶ𝒙∗ = 𝐟 𝒙∗

𝒙0

𝒙0 + 𝛿𝒙0

Perturbing the 
initial condition 

𝒙 0 = 𝒙0

𝒙 0 = 𝒙0 + 𝛿𝒙0 𝒙 𝑡 , ሶ𝒙 = 𝐟 𝒙

solution

solution

𝒆 𝑡 = 𝒙 𝑡 − 𝒙∗ 𝑡 ሶ𝒆 𝑡 = 𝐟 𝒙 − 𝐟 𝒙∗

ሶ𝒆 𝑡 = 𝐟 𝒆 + 𝒙∗ − 𝐟 𝒙∗ = 𝐠 𝒆, 𝑡

𝒆 0 = 𝛿𝒙0

motion error

(nominal motion trajectory)

(due to the presence of 𝒙∗ 𝑡 )
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Stability of a Motion (cont.)

ሶ𝒆 𝑡 = 𝐠 𝒆, 𝑡

Since 𝐠(𝟎, 𝑡) = 𝟎, the new dynamic system ሶ𝒆 𝑡 = 𝐠 𝒆, 𝑡  with 𝒆 as state has an equilibrium 
point 𝟎. Therefore, instead of studying the deviation of 𝒙 𝑡  from 𝒙∗ 𝑡  for the original 
system, we can simply study the stability of ሶ𝒆 𝑡 = 𝐠 𝒆, 𝑡  with respect to the equilibrium 
point 𝟎.

(a non-autonomous system)

Results:
• Each particular nominal motion of an autonomous system corresponds to an equivalent 

non-autonomous system.
• For non-autonomous nonlinear systems, the stability problem around a nominal motion 

can also be transformed as a stability problem around the origin for an equivalent non-
autonomous system.

• If the original system is autonomous and linear as ሶ𝒙 = 𝐀𝒙, then the equivalent system is 
still autonomous, since it can be written as

ሶ𝒆 = 𝐀𝒆 (Prove it!)


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Stability of a Motion: Example

Consider the autonomous mass-spring system

𝑚 ሷ𝑥 + 𝑘1𝑥 + 𝑘2𝑥3 = 0

𝑚 ሷ𝑒 + 𝑘1𝑒 + 𝑘2 𝑒3 + 3𝑒2𝑥∗(𝑡) + 3𝑒𝑥∗2(𝑡) = 0

Study the stability of the motion 𝑥∗ 𝑡  which starts from initial position 𝑥0.

Slightly Perturbing 
the initial condition 𝑥 0 = 𝑥0 + 𝛿𝑥0 𝑥 𝑡

solution

𝑒 𝑡 = 𝑥 𝑡 − 𝑥∗ 𝑡
𝑚 ሷ𝑥 + 𝑘1𝑥 + 𝑘2𝑥3 = 0

𝑚 ሷ𝑥∗ + 𝑘1𝑥∗ + 𝑘2𝑥∗3 = 0
−

(a non-autonomous system)
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Stability Theories

Two techniques are typically used in the study of the stability of nonlinear systems:
❑ Input-Output Stability: Stability of the system from an input-output perspective.
❑ Lyapunov Stability: Stability of the system using state variables description.

Lyapunov Stability Theory includes two methods:
1) Indirect Method or Linearization Method: It is restricted to local stability around an 

equilibrium point.
2) Direct Method or Second Method: This is a powerful tool for nonlinear system analysis 

and design.
• Equilibrium Point Theorem
• Invariant Set Theorem (LaSalle Theorem)
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Lyapunov's Linearization 
Method
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Lyapunov's Linearization Method

Lyapunov's linearization method (or indirect method) is concerned with the local stability 
of a nonlinear system.

• It states that a nonlinear system should behave similarly to its linearized approximation 
for small range motions in the close vicinity of an equilibrium point. Thus, the local 
stability of a nonlinear system around an equilibrium point is the same as the stability 
properties of its linear approximation.

• The method serves as the theoretical justification for using linear control for physical 
systems. It shows that stable design by linear control guarantees the local stability of the 
physical system, which are always inherently nonlinear.
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Linearization

ሶ𝒙 = 𝐟 𝒙𝑒𝑞 +
𝜕𝐟

𝜕𝒙
𝒙=𝒙𝑒𝑞

𝒙 − 𝒙𝑒𝑞 + 𝐟h.o.t. 𝒙

• Dynamic of a nonlinear autonomous system ሶ𝒙 = 𝐟(𝒙, 𝒖) when 𝒖 = 𝟎 can be represented 
as

ሶ𝒙 = 𝐟(𝒙)

ሶ𝒙 = 𝐟(𝒙, 𝒖) ሶ𝒙 = 𝐟(𝒙, 𝐤(𝒙)) ሶ𝒙 = 𝐟(𝒙)

• Moreover, the closed-loop dynamics of a feedback control system when 𝒖 = 𝐤(𝒙) can 
be also represented as

Assumptions:
- 𝐟(𝒙) is continuously 
differentiable.
- 𝒙𝑒𝑞  is an equilibrium 

point, i.e., 𝐟 𝒙𝑒𝑞 = 𝟎.

Taylor Expansion

(higher-order terms)𝟎

𝐀: 𝑛 × 𝑛 Jacobian matrix of 𝐟 with respect to 𝒙 𝐴𝑖𝑗 =
𝜕𝑓𝑖

𝜕𝑥𝑗

ሶഥ𝒙 = 𝐀ഥ𝒙
Linearization (or linear approximation) of the nonlinear 
system ሶ𝒙 = 𝐟(𝒙) at the equilibrium point 𝒙𝑒𝑞.

ഥ𝒙 = 𝒙 − 𝒙𝑒𝑞
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Lyapunov's Linearization Method: Stability

The relationship between the local stability of a nonlinear system ሶ𝒙 = 𝐟(𝒙) around an 
equilibrium point 𝒙𝑒𝑞 and that of the its linear approximation ሶഥ𝒙 = 𝐀ഥ𝒙:

1) If the linearized system is strictly stable (i.e., if all eigenvalues of 𝐀 are 
strictly in the left-half complex plane), then the equilibrium point is 
(locally) asymptotically stable for the nonlinear system.

2) If the linearized system is unstable (i.e., if at least one eigenvalue of 𝐀 is 
strictly in the right-half complex plane and/or eigenvalues of multiplicity 
greater than 1 on the imaginary 𝑗𝜔 axis), then the equilibrium point is 
(locally) unstable for the nonlinear system.

3) If the linearized system is marginally stable (i.e., all eigenvalues of 𝐀 are 
in the left-half complex plane and eigenvalues of multiplicity 1 on the 
imaginary 𝑗𝜔 axis), then one cannot conclude anything from the linear 
approximation (and 𝐟h.o.t. 𝒙  have a decisive effect on whether the 
equilibrium point is stable, asymptotically stable, or unstable for the 
nonlinear system).

✶

✶

✶
𝜎

𝑗𝜔

✶

✶

✶
𝜎

𝑗𝜔

✶

✶

✶

✶
𝜎

𝑗𝜔
✶

✶
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Linearization: Examples

Example: Linearization the nonlinear system at the equilibrium point 𝒙𝑒𝑞 = 𝟎.

Example: Linearization the nonlinear system ሷ𝑥 + 4 ሶ𝑥5 + 𝑥2 + 1 𝑢 = 0 about 𝑥 = 0 when 
𝑢 = sin 𝑥 + 𝑥3 + ሶ𝑥cos2 𝑥.
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Example 

ሶ𝑥 = 𝑎𝑥 + 𝑏𝑥5Consider the first order system

The origin 0 is one of the equilibrium points of this system. The linearization of this system 
around the origin is

ሶ𝑥 = 𝑎𝑥

Lyapunov's linearization method

𝑎 < 0: asymptotically stable
𝑎 > 0: unstable
𝑎 = 0: cannot tell from linearization

How large is the linear range? 
What is the extent of stability ?

But

The Lyapunov's Direct Method 
can answer these questions.
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Equilibrium Point Theorem
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Motivation

Nonlinear 
Damper

Nonlinear 
Spring

Consider a nonlinear mass-damper-spring system. Will the system be stable if the mass is 
released from a large 𝑥 0 = 𝑥0? 

It cannot be used, because the motion starts outside the linear range. If it is used, the 
system's linear approximation is only marginally stable.

1) Using the definitions of stability?

It is very difficult, because the general solution of this nonlinear equation is unavailable. 

2) Using the Lyapunov’s linearization method?

Concepts of Stability Lyapunov's Linearization Method Lyapunov's Direct Method
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Motivation: Lyapunov’s Direct Method

The basic philosophy of Lyapunov’s Direct Method is the mathematical extension of a
fundamental physical observation:
If the total energy of a mechanical/electrical system is continuously dissipated, the system 

must eventually settle down to an equilibrium point.

The total mechanical energy of this nonlinear mass-damper-spring 
system is

Energy of the system is dissipated by the 
damper until the mass settles down at 
the natural length of the spring.

Concepts of Stability Lyapunov's Linearization Method Equilibrium Point Theorem Invariant Set Theorem Lyapunov Functions
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Motivation: Lyapunov’s Direct Method (cont.)

Thus, we can conclude that value of 𝑉 indirectly reflects the magnitude of the state vector 
𝒙, consequently, the stability of a system can be examined by the variation of a single 
scalar function 𝑉.

• Zero energy (or 𝑉) corresponds to the equilibrium point (𝒙 = 𝒙𝑒𝑞).

• Asymptotic stability corresponds to the convergence of energy (or 𝑉) to zero.
• Instability corresponds to the growth of energy (or 𝑉).

 In using the Lyapunov's direct method to analyze the stability of a nonlinear system, the 
idea is to generate a scalar "energy-like" function (a Lyapunov function) 𝑉 for the system 
and examine the time variation of the function to see whether it decreases (without using 
the difficult stability definitions or requiring explicit knowledge of solutions).
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Positive Definite Functions

A scalar, continuous function 𝑉 𝒙  (𝑉: 𝐷 → ℝ, 𝐷 ⊂ ℝ𝑛, 𝟎 ∈ 𝐷) is said to be Locally Positive 
Definite if
1) 𝑉(𝟎) = 0,
2) 𝑉 𝒙 > 0 ∀𝒙 ∈ 𝐷 with 𝒙 ≠ 𝟎.

𝑉 𝒙  is said to be Globally Positive Definite if 𝐷 =  ℝ𝑛.

• A function 𝑉 𝒙  is positive semi-definite if 𝑉(𝟎) = 0 and 𝑉 𝒙 ≥ 0, ∀𝒙 ∈ 𝐷 with 𝒙 ≠ 𝟎.
• A function 𝑉 𝒙  is negative (semi-)definite if −𝑉 𝒙  is positive (semi-)definite.

∴ 𝑉 𝒙  has a unique minimum at 𝟎.

𝟎

Positive Definite Positive Semi-Definite Indefinite

𝑥1
2 + 𝑥2

2
𝑥1

2 − 𝑥2
2

𝑥2
2
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Examples

(locally positive definite)
(globally positive definite)

Note: All the quadratic functions  ( ℝ ℝ) with positive definite matrix 
∈ ℝ are globally positive definite.

𝐷:
−𝜋 < 𝑥1 < 𝜋
𝑥2 ∈ ℝ

Note: This term is not 
positive definite by itself, 
because it can equal zero 
for non-zero values of 𝑥.
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Lyapunov Functions

Consider an autonomous system, ሶ𝒙 = 𝐟 𝒙 , with an equilibrium point at origin, 𝒙 = 𝟎. A 
scalar, continuously differentiable function 𝑉 𝒙  (𝑉: 𝐷 → ℝ, 𝐷 ⊂ ℝ𝑛, 𝟎 ∈ 𝐷) is said to be 
Lyapunov Function for the system if

1) 𝑉 𝒙  is positive definite (locally in 𝐷), i.e.,
1.1)  𝑉 𝟎 = 0,
1.2)  𝑉 𝒙 > 0 ∀𝒙 ∈ 𝐷 with 𝒙 ≠ 𝟎.

2) ሶ𝑉 𝒙  is negative semi-definite (locally in 𝐷), i.e.,
2.1)  ሶ𝑉 𝟎 = 0
2.2)  ሶ𝑉 𝒙 ≤ 0 ∀𝒙 ∈ 𝐷 with 𝒙 ≠ 𝟎.

𝟎

Note: 𝑉 𝒙  is an implicit function of time 𝑡.
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Equilibrium Point Theorem:
(The relation between Lyapunov Functions & Stability)

Consider an autonomous system, ሶ𝒙 = 𝐟 𝒙 , with an equilibrium point at origin, 𝒙 = 𝟎.

𝟎

Global Stability:
If there exists a scalar, continuously differentiable function 𝑉 𝒙  (𝑉: ℝ𝑛 → ℝ) such that
1) 𝑉 𝒙 > 0 (globally positive definite),
2) ሶ𝑉 𝒙 < 0 (globally negative definite),
3) 𝑉 𝒙 → ∞ as 𝒙 → ∞ (i.e., 𝑉 𝒙  is radially unbounded),
the equilibrium point 𝟎 is Globally Asymptotically Stable.

𝐷 = ℝ𝑛

Local Stability (in the vicinity of equilibrium point 𝟎):
If there exists a scalar, continuously differentiable function 𝑉 𝒙  (𝑉: 𝐷 → ℝ, 𝐷 ⊂ ℝ𝑛, 𝟎 ∈ 𝐷) 
such that
1) 𝑉 𝒙 > 0 (locally in 𝐷),
2) ሶ𝑉 𝒙 ≤ 0 (locally in 𝐷),

the equilibrium point 𝟎 is Locally Stable. If ሶ𝑉 𝒙  is negative definite ( ሶ𝑉 𝒙 < 0, 
locally in 𝐷), the equilibrium point 𝟎 is Locally Asymptotically Stable.

𝑉 = 𝑉1

𝑉 = 𝑉2

𝑉 = 𝑉3
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Examples

Example:

Locally Negative Definite

The system is Locally Asymptotically Stable.

Example:

Consider a Lyapunov Function as

Negative Definite

The origin is Globally Asymptotically Stable.

𝑥1

𝑥2
2

𝐷

Consider a Lyapunov Function as

𝑉 is radially unbounded.
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Example
A Class of First-Order Nonlinear Systems 

Consider the nonlinear first-order system ሶ𝑥 + 𝑐 𝑥 = 0, where 𝑐 is any continuous function 
of the same sign as 𝑥, i.e., 𝑥𝑐 𝑥 > 0 for 𝑥 ≠ 0.

Consider as the Lyapunov function candidate:   𝑉 = 𝑥2

Since 𝑐 is continuous, 𝑐 0 = 0

𝑉 > 0 
ሶ𝑉 = 2𝑥 ሶ𝑥 = −2𝑥𝑐 𝑥 < 0 

𝑉 is radially unbounded
The origin is Globally Asymptotically Stable.

ሶ𝑥 + 𝑥 − sin2 𝑥 = 0 Since sin2 𝑥 ≤ sin 𝑥 < 𝑥 , 𝑥 − sin2 𝑥 has the same sign as 𝑥.

The origin is Globally Asymptotically Stable.

ሶ𝑥 + 𝑥3 = 0 The origin is Globally Asymptotically Stable.

Notice that the system's linear approximation ( ሶ𝑥 ≈ 0) is inconclusive, even about local stability.

•

•

For instance,
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Remarks

❖ Lyapunov function is not unique for a system. Many Lyapunov functions may exist for 
the same system.

❖ For a given system, specific choices of Lyapunov functions may yield more precise results 
on the stability of the system than others (see the next example).

For instance, if 𝑉 is a Lyapunov function for a given system, so is

(The positive definiteness of 𝑉 implies that of 𝑉1, the negative (semi-)definiteness of ሶ𝑉 
implies that of ሶ𝑉1, and the radial unboundedness of 𝑉 implies that of 𝑉1.)

❖ The theorems in Lyapunov analysis are all sufficiency theorems. If for a particular choice 
of Lyapunov function candidate 𝑉, the conditions on ሶ𝑉 are not met, one cannot draw 
any conclusions on the stability or instability of the system, the only conclusion one 
should draw is that a different Lyapunov function candidate should be tried.
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Example
A Pendulum with Viscous Damping 

Let’s consider pendulum total energy as Lyapunov Function:

Consider a simple pendulum with viscous damping:

The origin is a Locally Stable equilibrium point. However, with this Lyapunov function, one 
cannot draw conclusions on the asymptotic stability of the system.

Now, let’s consider a Lyapunov Function (without obvious physical meaning) as

The origin is Locally Asymptotically Stable.

Concepts of Stability Lyapunov's Linearization Method Lyapunov's Direct Method

Positive definite locally in 

𝐷 = 𝜃, ሶ𝜃 : 𝜃 ∈ −𝜋, 𝜋

ሷ𝜃 + ሶ𝜃 + sin𝜃 = 0

𝑉 𝒙 = 1 − cos𝜃 +
ሶ𝜃2

2

ሶ𝑉 𝒙 = ሶ𝜃sin𝜃 + ሶ𝜃 ሷ𝜃 = − ሶ𝜃2 ≤ 0

𝑉 𝒙 = 2 1 − cos𝜃 +
ሶ𝜃2

2
+

1

2
ሶ𝜃 + 𝜃

2

(∀𝒙 ∈ 𝐷 with 𝒙 ≠ 𝟎)

ሶ𝑉 𝒙 = − ሶ𝜃2 + 𝜃sin𝜃 < 0



𝐷 = 𝜃, ሶ𝜃 : 𝜃 ∈ −𝜋, 𝜋
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Invariant Set Theorem
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Determining the Asymptotic Stability of 
Systems

Asymptotic stability of a control system is usually a very important property to be 
determined. Using Equilibrium Point Theorem for determining the asymptotic stability is 
often difficult, because it often happens that ሶ𝑉  is only negative semi-definite.

In these situations, Invariant Set Theorem (LaSalle Theorem) can be used to conclude the 
asymptotic stability of the system. It can also determine the domain of attraction and 
describe convergence to a limit cycle.
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Invariant Set
(A generalization of the concept of equilibrium point)

A set 𝑀 is an invariant set for a dynamic system ሶ𝒙 = 𝐟 𝒙  if every system trajectory which 
starts from a point in 𝑀 remains in 𝑀 for all future time.

Examples of invariant set for an autonomous system:
• Any equilibrium point,
• Limit cycles,
• Domain of attraction of an equilibrium point,
• Any of the trajectories in state-space,
• Whole state-space (a trivial example).

𝒙 0 ∈ 𝑀 ⇒  𝒙 𝑡 ∈ 𝑀, ∀𝑡 ∈ ℝ

Amin Fakhari, Spring 2024 MEC549 • Ch6: Stability for Autonomous Systems P37

Concepts of Stability Lyapunov's Linearization Method Equilibrium Point Theorem Invariant Set Theorem Lyapunov Functions



Local Invariant Set Theorem (LaSalle Theorem)

Consider an autonomous system ሶ𝒙 = 𝐟 𝒙 . Let 𝑉 𝒙  (𝑉: 𝐷 → ℝ, 𝐷 ⊂ ℝ𝑛) be a scalar 
function with continuous first partial derivatives. Assume that
• ∃𝑙 > 0 that the region 𝛺𝑙 defined by 𝑉 𝒙 < 𝑙 is bounded.
• ሶ𝑉 𝒙 ≤ 0, ∀𝒙 ∈ 𝛺𝑙.
Let 𝑅 be the set of all points within 𝛺𝑙 where ሶ𝑉 𝒙 = 0, and 𝑀 be the largest invariant set 
in 𝑅. Then, every solution 𝒙(𝑡) originating in 𝛺𝑙 tends to 𝑀 as 𝑡 → ∞.

𝑥1

𝑥2

𝑉
𝑉 = 𝑙

𝒙0

𝛺𝑙

𝑅
𝑀

The union of all invariant 
sets (e.g., equilibrium 
points or limit cycles).

Note: 𝑅 and 𝑀 are not 
necessarily connected.

• A special case of the invariant set 
theorem: When 𝑀 consists only of 
the origin, it results in the local 
asymptotic stability of the origin.

𝑀 ⊂ 𝑅 ⊂ 𝛺𝑙

• Note the relaxation of the positive 
definiteness requirement on the 
function 𝑉, as compared with the 
Equilibrium Point Theorem.

𝑅 = 𝒙 ∈ 𝐷 ⊂ ℝ𝑛: ሶ𝑉 𝒙 = 0
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Example: Asymptotic Stability

Concepts of Stability Lyapunov's Linearization Method Lyapunov's Direct Method

Consider the system

with a Lyapunov function chosen as

- Using Lyapunov’s linearization method: Marginally Stable (inconclusive).
- Using equilibrium point theorem: Stable.
- Using invariant set theorem:

𝑅 = 𝑥, ሶ𝑥 :  ሶ𝑥 = 0

Assume that the largest invariant 
set 𝑀 ⊂ 𝑅 contains a point with 
a nonzero position 𝑥∗.



(the whole horizontal axis in the phase plane)

The Trajectory will 
move out of 𝑅.



𝑥

ሶ𝑥

𝑥∗

𝑅

𝑀 contains only the origin. (Globally) Asymptotically Stable





Concepts of Stability Lyapunov's Linearization Method Equilibrium Point Theorem Invariant Set Theorem
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Example: Domain of Attraction

𝛺2 is the domain of attraction.

with a Lyapunov function chosen as

Consider the system

The set 𝑅 is simply the origin 𝟎, which is an invariant set (since it is an equilibrium point), 
thus, 𝑀 = 𝑅.

every solution 𝒙(𝑡) starting within 
the circle 𝛺2 converges to the origin.



 𝑥1

𝑥2

2

𝛺2

For 𝑙 = 2, the region 𝛺2 defined by 𝑉 𝒙 < 2 is bounded, and ሶ𝑉 𝒙 ≤ 0, ∀𝒙 ∈ 𝛺2.
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Global Invariant Set Theorem (LaSalle Theorem)

Consider an autonomous system ሶ𝒙 = 𝐟 𝒙 . Let 𝑉 𝒙  (𝑉: ℝ𝑛 → ℝ) be a scalar function with 
continuous first partial derivatives. Assume that
• ሶ𝑉 𝒙 ≤ 0, ∀𝒙 ∈ ℝ𝑛,
• 𝑉 𝒙 → ∞ as 𝒙 → ∞ (i.e., 𝑉 𝒙  is radially unbounded).
Let 𝑅 be the set of all points within ℝ𝑛 

where ሶ𝑉 𝒙 = 0, and 𝑀 be the largest invariant set 
in 𝑅. Then, every solution 𝒙(𝑡) globally converge to 𝑀 as 𝑡 → ∞.

𝑥1

𝑥2

𝑉

𝒙0𝑅
𝑀

The union of all invariant 
sets (e.g., equilibrium 
points or limit cycles).

Note: 𝑅 and 𝑀 are not 
necessarily connected.

𝑀 ⊂ 𝑅

𝑅 = 𝒙 ∈ ℝ𝑛: ሶ𝑉 𝒙 = 0

• A special case of the invariant set 
theorem: When 𝑀 consists only of 
the origin, it results in the global 
asymptotic stability of the origin.

• Note the relaxation of the positive 
definiteness requirement on the 
function 𝑉, as compared with the 
Equilibrium Point Theorem.
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Example:
A Class of Second-Order Nonlinear Systems

ሷ𝑥 + 𝑏( ሶ𝑥) + 𝑐(𝑥) = 0

functions verifying the sign conditions as:

Consider the second-order system

ሶ𝑥𝑏 ሶ𝑥 > 0 for ሶ𝑥 ≠ 0
𝑥𝑐 𝑥 > 0 for 𝑥 ≠ 0

The continuity assumptions and the sign conditions imply that 𝑏 0 = 0 and 𝑐 0 = 0.

𝑉 =
1

2
ሶ𝑥2 + න

0

𝑥

𝑐 𝑦 𝑑𝑦

Consider a function 𝑉 as the sum of the kinetic 
and potential energy of the system:

ሶ𝑉 = ሶ𝑥 ሷ𝑥 + 𝑐(𝑥) ሶ𝑥 = − ሶ𝑥𝑏( ሶ𝑥) − ሶ𝑥𝑐(𝑥) + 𝑐(𝑥) ሶ𝑥 = − ሶ𝑥𝑏( ሶ𝑥) ≤ 0
(A representation of 

the power dissipation 
in the system)

where 𝑏 and 𝑐 are continuous

★ If 0׬

𝑥
𝑐 𝑦 𝑑𝑦 is unbounded as 𝒙 → ∞, then 𝑉 𝒙 → ∞ as 𝒙 → ∞. 
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Example:
A Class of Second-Order Nonlinear Systems (cont.)

Assume that the largest invariant 
set 𝑀 ⊂ 𝑅 contains a point with 
a nonzero position 𝑥∗.



(the whole horizontal axis in the phase plane)

The Trajectory will 
move out of 𝑅.

 𝑀 contains only the origin. The origin is Globally Asymptotically Stable.

𝑥

ሶ𝑥

𝑥∗

𝑅

ሶ𝑉 = 0 𝑅: ሶ𝑥 = 0 𝑅 = 𝑥, ሶ𝑥 :  ሶ𝑥 = 0

ሷ𝑥 = −𝑐 𝑥∗ ≠ 0 

► For instance, the system ሷ𝑥 + ሶ𝑥3 + 𝑥5 = 𝑥4sin2 𝑥 is globally asymptotically convergent 

to the origin, while its linear approximation ሷ𝑥 = 0 would be inconclusive, even about its 

local stability.
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Example:
Multimodal Lyapunov Function

Consider the system ሷ𝑥 + 𝑥2 − 1 ሶ𝑥3 + 𝑥 = sin
𝜋𝑥

2

𝑉 =
1

2
ሶ𝑥2 + න

0

𝑥

𝑦 − sin
𝜋𝑦

2
𝑑𝑦Consider a function 𝑉 as the sum of the kinetic and 

potential energy of the system:

ሶ𝑉 = 𝑥2 − 1 ሶ𝑥4 ≤ 0, ∀𝒙 ∈ ℝ𝑛

𝑉 → ∞ as 𝒙 → ∞

𝑅 = 𝑥, ሶ𝑥 : ሶ𝑉 𝒙 = 0  ሶ𝑉 = 0  ሶ𝑥 = 0 or 𝑥 = ±1

ሶ𝑥 = 0

𝑥 = ±1





ሷ𝑥 = sin
𝜋𝑥

2
− 𝑥 ≠ 0 Except for 𝑥 = 0 or 𝑥 = ±1

ሶ𝑥 = 0
 𝑀 = 0,0 , 1,0 , −1,0

𝑥

ሶ𝑥

1−1

𝑅

𝑀

The invariant set theorem indicates that 
the system converges globally to 𝑀.

ሷ𝑥 = 0
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Example:
Multimodal Lyapunov Function (cont.)

Linearization about 0,0 :        ሷ𝑥 =
𝜋

2
− 1 𝑥  Unstable

Linearization about ±1,0 :    ሷ𝑧 = −𝑧  Inconclusive (marginally stable)

𝑧 = 𝑥 ∓ 1

𝑉 =
1

2
ሶ𝑥2 +

2

𝜋
cos

𝜋𝑥

2
+

𝑥2

2
−

2

𝜋

Function 𝑉 has two minima at ±1,0  and a 
saddle point at 0,0 . Thus, ±1,0  are Stable.

Note: Since several Lyapunov functions may exist for a given system, several associated invariant sets 
𝑀𝑖  may be derived. The system converges to the (necessarily non-empty) intersection of the invariant 
sets, which may give a more precise result than that obtained from any of the Lyapunov functions 
taken separately.
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A Corollary of Invariant Set Theorem
(LaSalle Theorem)

Consider an autonomous system, ሶ𝒙 = 𝐟 𝒙 , with an equilibrium point at origin, 𝒙 = 𝟎.

Local Stability (in the vicinity of equilibrium point 𝟎):
If there exists a scalar, continuously differentiable function 𝑉 𝒙  (𝑉: 𝛺 → ℝ, 𝛺 ⊂ ℝ𝑛, 𝟎 ∈ Ω) 
such that
1) 𝑉 𝒙 > 0 (locally in 𝛺),
2) ሶ𝑉 𝒙 ≤ 0 (locally in 𝛺),

3) 𝒙 = 𝟎 is the only invariant set in 𝑅 = 𝒙: ሶ𝑉 𝒙 = 0 ,

Then, the equilibrium point 𝟎 is Locally Asymptotically Stable.

Global Stability:
4) 𝛺 = ℝ𝑛,
5) 𝑉 𝒙 → ∞ as 𝒙 → ∞, (i.e., 𝑉 𝒙  is radially unbounded), 
Then, the equilibrium point 𝟎 is Globally Asymptotically Stable. 𝛺

𝟎

𝑀𝑅
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Remarks

• This corollary is used for asymptotic stability of an equilibrium point.

• This corollary replaces the negative definiteness condition on ሶ𝑉 in Equilibrium Point 
Theorem by a negative semi-definiteness condition on ሶ𝑉, combined with a condition 
(𝒙 = 𝟎 is the only invariant set in 𝑅), for Local/Global Asymptotic Stability.

• The largest connected region of the form 𝛺𝑙 (defined by 𝑉 𝒙 < 𝑙) within 𝛺 is a domain 
of attraction of the equilibrium point, but not necessarily the whole domain of 
attraction, because the function 𝑉 is not unique.

𝟎

𝛺

𝑀

𝛺𝑙

Domain of Attraction
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Example:
A Pendulum with Viscous Damping

Let’s consider pendulum total energy as Lyapunov Function:

Consider a simple pendulum with viscous damping:

Positive definite locally in 

Ω = 𝜃, ሶ𝜃 : 𝜃 ∈ −𝜋, 𝜋

The set 𝑅 results in:

Concepts of Stability Lyapunov's Linearization Method Lyapunov's Direct Method

ሷ𝜃 + ሶ𝜃 + sin𝜃 = 0

𝑉 𝒙 = 1 − cos𝜃 +
ሶ𝜃2

2

ሶ𝑉 𝒙 = ሶ𝜃sin𝜃 + ሶ𝜃 ሷ𝜃 = − ሶ𝜃2 ≤ 0

𝑅 = 𝜃, ሶ𝜃 : ሶ𝜃 = 0

(0,0) is the only invariant set in 𝑅.

The origin is Locally Asymptotically Stable.

𝜃

ሶ𝜃

𝑅

−𝜋 𝜋
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Lyapunov Functions
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Lyapunov Analysis of LTI Systems

• Lyapunov functions for combinations of subsystems may be derived by adding the 
Lyapunov functions of the subsystems (i.e., Lyapunov functions are additive, like energy).

• Since nonlinear control systems may include linear components (whether in plant or in 
controller), we should be able to describe linear systems in the Lyapunov formalism to 
have a common language for both linear and nonlinear subsystems.

Although stability analysis for linear time-invariant systems is well known, it is still 
necessary to develop Lyapunov functions for such systems.
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Lyapunov Functions for LTI Systems

Consider a LTI system of the form ሶ𝒙 = 𝐀𝒙, let 𝑉 = 𝒙𝑇𝐏𝒙 be a quadratic Lyapunov function 
candidate, where 𝐏 is a symmetric positive definite matrix. Differentiating 𝑉 along 𝒙 yields 
another quadratic form:

ሶ𝑉 = ሶ𝒙𝑇𝐏𝒙 + 𝒙𝑇𝐏 ሶ𝒙 = 𝒙𝑇 𝐀𝑇𝐏 + 𝐏𝐀 𝒙 = 𝒙𝑇 −𝐐 𝒙

■ A necessary and sufficient condition for a LTI system ሶ𝒙 = 𝐀𝒙 to be globally asymptotically 
stable is that, for any symmetric PD matrix 𝐐, the unique matrix 𝐏 solution of the Lyapunov 
equation 𝐀𝑇𝐏 + 𝐏𝐀 = −𝐐 be symmetric PD.

We define the Lyapunov equation as 𝐀𝑇𝐏 + 𝐏𝐀 = −𝐐 .

• Choose a positive definite matrix 𝐐. A simple, useful choice: 𝐐 = 𝐈 (identity matrix),
• Solve for 𝐏 from the Lyapunov equation 𝐀𝑇𝐏 + 𝐏𝐀 = −𝐐,
• Check whether 𝐏 is PD.

Procedure:
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Example 

Consider a second-order linear system ሶ𝒙 = 𝐀𝒙 where 𝐀 =
0 4

−8 −12
.

Find a Lyapunov function candidate 𝑉 = 𝒙𝑇𝐏𝒙 for the system.
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