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Autonomous vs. Non-Autonomous Systems

The fundamental difference between autonomous and non-autonomous systems lies in 
the fact that the state trajectory of an autonomous system is independent of the initial 
time 𝑡0, while that of a non-autonomous system generally is not.

ሶ𝒙(𝑡) = 𝐟(𝒙(𝑡), 𝑡)

This difference requires us to consider the initial time 𝑡0 explicitly in defining stability 
concepts for non-autonomous systems and makes the analysis more difficult than that of 
autonomous systems.

Non-autonomous systems appear in robot control when the desired task is to follow a 
time-varying trajectory, i.e. in motion control, or when there is uncertainty in the physical 
parameters and therefore, an adaptive control approach may be used.
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Equilibrium Point

A state 𝒙𝑒 is an Equilibrium Point (or Equilibrium State) if the system starts there (initial 
state 𝒙(𝑡0) = 𝒙𝑒) it will remain there for all future time.

ሶ𝒙 = 𝐟 𝒙𝑒 , 𝑡 = 𝟎 ∀𝑡 ≥ 𝑡0

ሶ𝑥 = −
𝑎(𝑡)𝑥

1 + 𝑥2
For example, the system

However, the system ሶ𝑥 = −
𝑎 𝑡 𝑥

1 + 𝑥2 + 𝑏 𝑥 , 𝑏 𝑥 ≠ 0 does not have an equilibrium point.

has an equilibrium point at 𝑥 = 0.
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Extensions of Stability Concepts

The concepts of stability for non-autonomous systems are quite similar to those of 
autonomous systems. However, the definitions include the initial time  explicitly.

The equilibrium point  is said to be Stable at  if for any , there exists , 
such that if , then  for all ≥ . Otherwise, the equilibrium 
point is Unstable.

𝑥 𝑡0

The equilibrium point  is said to be Uniformly 
Stable, if  can be chosen independently of the 
initial time .

(we can keep the state in a ball of arbitrarily 
small radius 𝑅 by starting the state trajectory 
in a ball of sufficiently small radius 𝑟)
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Extensions of Stability Concepts (cont.)

The equilibrium point  is said to be Asymptotically Stable at  if (1) it is Lyapunov Stable, 
and (2) there exists  such that if  , then  as
 .

The equilibrium point 𝒙𝑒 is said to be Uniformly Asymptotically Stable, if it is Uniformly 
Stable (i.e., 𝑟 can be chosen independently of the initial time 𝑡0) where

Example:

The origin is asymptotically stable but not uniformly asymptotically stable, because a larger 
 requires a longer time to get close to the origin.

★ Non-autonomous systems with uniform properties have some desirable ability to withstand 
disturbances.
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Extensions of Stability Concepts (cont.)

The equilibrium point  is said to be Exponentially Stable if there exist α λ  such that 
if  , then α λ ∀𝑡 ≥ 𝑡0.

If asymptotic (or exponential) stability holds for any initial states ∈ ℝ𝑛, the 
equilibrium point is said to be Globally Asymptotically (or Exponentially) Stable.

★ It can be shown that exponential stability always implies uniform asymptotic stability.
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Example: A First-Order Linear Time-varying System

Consider the first-order system ሶ𝑥(𝑡) = −𝑎(𝑡)𝑥(𝑡)

𝑥(𝑡) = 𝑥 𝑡𝑜 e
− 𝑡0׬

𝑡
𝑎(𝑟)𝑑𝑟

Its solution is

The system is stable if 𝑎 𝑡 ≥ 0, ∀𝑡 ≥ 𝑡0. It is asymptotically stable if 0׬

∞
𝑎 𝑟 𝑑𝑟 = +∞.

For Example:

ሶ𝑥 = −
𝑥

1+𝑡 2 : The origin is stable (but not asymptotically stable), because 0׬

∞ 1

1+𝑟 2 𝑑𝑟 = 1.

ሶ𝑥 = −
𝑥

1+𝑡
 : The origin is asymptotically stable, because 0׬

∞ 1

1+𝑟
𝑑𝑟 = +∞.

ሶ𝑥 = −𝑡𝑥 : The origin is exponentially stable, because 𝑥 = 𝑐1𝑒−𝑡2/2.
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Lyapunov Analysis
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Time-Varying Positive Definite Functions

A scalar, time-varying function  ( ℝ ℝ ⊂ ℝ ∈ ) is said to be 
Locally Positive Definite if
1) ∀ ≥

2) ≥ ∀ ≥ ∀ ∈
where  ( ℝ) is a time-invariant positive definite function.

 is said to be Globally Positive Definite if ℝ .

 A scalar time-variant function  is positive definite if it dominates a time-invariant 
positive definite function.

• A function  is positive semi-definite if  is positive semi-definite.
• A function  is negative (semi-)definite if  is positive (semi-)definite.
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Decrescent Function

A scalar function  ( ℝ ℝ ⊂ ℝ ∈ ) is said to be Locally Decrescent if
1) ∀ ≥

2) ≤ ∀ ≥ ∀ ∈
where  ( ℝ) is a time-invariant positive definite function.

 is said to be (Globally) Decrescent if ℝ .

 A scalar time-variant function  is decrescent if it is dominated by a 
time-invariant positive definite function.

Example:
The function is positive 
definite and decrescent.
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Lyapunov's Direct Method for
Non-Autonomous Systems

Consider a non-autonomous system, ሶ𝒙 = 𝐟 𝒙, 𝑡 , with an equilibrium point at origin, . 
If there exists a scalar function  ( ℝ ℝ ⊂ ℝ ∈ ) with continuous 
partial derivatives such that
1)   is positive definite (locally in ),
2)   ሶ𝑉  is negative semi-definite (locally in ),
the equilibrium point  is Stable (and  is called a Lyapunov function).
3)   is decrescent (locally in ),
the equilibrium point  is Uniformly Stable. If ሶ𝑉  is negative definite (locally in ), the 
equilibrium point  is Uniformly Asymptotically Stable.
4)  ℝ  , 
5)   is radially unbounded, i.e.,  as  .
the equilibrium point  is Globally Uniformly (Asymptotically) Stable

Note:
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Example 

Example: Determine the stability of the equilibrium point at 𝟎.

Let's choose this scalar function:

∴ The function is positive definite and decrescent.

∴ ሶ𝑉 is negative definite.

∴ The point 0 is globally uniformly asymptotically stable.
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 is radially unbounded, i.e.,  as  .
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Example 

Consider the mass-spring-damper system

with time varying damping coefficient (𝑐 𝑡 ≥ 0).

𝑚 ሷ𝑥 + 𝑐 𝑡 ሶ𝑥 + 𝑘𝑥 = 0

Physical intuition may suggest that the equilibrium point 𝟎 is asymptotically stable as long 
as the damping 𝑐 𝑡  remains larger than a strictly positive constant (implying constant 
dissipation of energy), as is the case for autonomous nonlinear mass-spring-damper 
systems. However, this is not necessarily true.

Consider the system ሷ𝑥 + 2 + 𝑒𝑡 ሶ𝑥 + 𝑥 = 0

with the initial condition 𝑥 0 = 2, ሶ𝑥 0 = −1, the solution is 𝑥(𝑡) = 1 + 𝑒−𝑡, which 
tends to 𝑥 = 1 instead! It means that the damping increases so fast that the system gets 
"stuck" at 𝑥 = 1.
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Stability of Linear Time-Varying Systems

LTI systems are asymptotically stable if their eigenvalues all have negative real parts. 
However, none of the standard approaches for analyzing LTI systems applies to LTV systems.

Consider linear time-varying (LTV) systems of the form                ሶ𝒙 = 𝐀 𝑡 𝒙.

ሶ𝑥1

ሶ𝑥2
= −1 𝑒2𝑡

0 −1

𝑥1

𝑥2
Example:  𝜆1,2 = −1,  ∀𝑡 ≥ 0

𝑥2 = 𝑥2 0 𝑒−𝑡

ሶ𝑥1 + 𝑥1 = 𝑥2(0)𝑒𝑡
However, the system is unstable
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Stability of Linear Time-Varying Systems

The LTV system ሶ𝒙 = 𝐀 𝑡 𝒙 is asymptotically stable if the eigenvalues of the symmetric 
matrix 𝐀 𝑡 + 𝐀𝑇 𝑡  (all of which are real) remain strictly in the left-half complex plane:

∃𝜆 > 0, ∀𝑖, ∀𝑡 ≥ 0, 𝜆𝑖 𝐀(𝑡) + 𝐀𝑇(𝑡) ≤ −𝜆

• Note that the result provides a sufficient condition for asymptotic stability.
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Lyapunov-Like Analysis
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Barbalat's Lemma

For autonomous systems, the invariant set theorems are powerful tools to study stability, 
because they allow asymptotic stability conclusions to be drawn even when ሶ𝑉 is only 
negative semi-definite. However, the invariant set theorems are not applicable to non-
autonomous systems. Instead, Barbalat's lemma can be used for non-autonomous 
systems.

Barbalat's Lemma:

If the differentiable function 𝑓 𝑡  has a finite limit as 𝑡 → ∞, and if ሶ𝑓 is uniformly continuous, 

then ሶ𝑓 𝑡 → 0 as 𝑡 → ∞.

A sufficient condition for a differentiable function to be 
uniformly continuous is that its derivative be bounded.

 If the differentiable function 𝑓 𝑡  has a finite limit as 𝑡 → ∞, and is such that ሷ𝑓 exists 

and is bounded, then ሶ𝑓 → 0 as as 𝑡 → ∞.
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Lyapunov-Like Stability Analysis Using Barbalat's 
Lemma

If a scalar function 𝑉(𝒙, 𝑡) satisfies the following conditions
• 𝑉(𝒙, 𝑡) is lower bounded,
• ሶ𝑉(𝒙, 𝑡) is negative semi-definite,
• ሶ𝑉(𝒙, 𝑡) is uniformly continuous in time (i.e., ሷ𝑉(𝒙, 𝑡) is bounded),
then ሶ𝑉(𝒙, 𝑡) → 0 as 𝑡 → ∞.

Therefore, 𝑉 approaches a finite limiting value 𝑉∞, such that 𝑉∞ ≤ 𝑉 𝒙 𝑡0 , 0 .

Amin Fakhari, Spring 2024 MEC549 • Ch7: Stability for Non-Autonomous Systems P19

Concepts of Stability Lyapunov Analysis Lyapunov-Like Analysis



Example 

The closed-loop error dynamics of an adaptive control system for a first-order plant with 
one unknown parameter is

where 𝑒 and 𝜃 are the two states of the closed-loop dynamics, representing tracking error 
and parameter error, and 𝑤 𝑡  is a bounded continuous function.

ሶ𝑒 = −𝑒 + 𝜃𝑤(𝑡)
ሶ𝜃 = −𝑒𝑤(𝑡)

Consider Lyapunov function 𝑉 = 𝑒2 + 𝜃2. The time derivative is 

ሶ𝑉 = 2𝑒(−𝑒 + 𝜃𝑤) + 2𝜃(−𝑒𝑤) = −2𝑒2 ≤ 0

Based on Lyapunov theory, the system is stable, and therefore, 𝑒 and 𝜃 are bounded.
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Example (cont.)

To use Barbalat's lemma, we must check the uniform continuity of ሶ𝑉.

ሷ𝑉 = −4𝑒(−𝑒 + 𝜃𝑤)

The derivative of ሶ𝑉 (i.e., ሷ𝑉) is bounded, since 𝑤 is bounded by hypothesis, and 𝑒 and 𝜃 
were shown to be bounded. Hence, ሶ𝑉 is uniformly continuous, and application of Barbalat's 
lemma indicates that 𝑒 → 0 as 𝑡 → ∞ ( ሶ𝑉(𝒙, 𝑡) → 0 as 𝑡 → ∞).

Note: Although 𝑒 converges to zero, the system is not asymptotically stable, because 𝜃 is 
only guaranteed to be bounded.

Simulation with
𝑤(𝑡) = 1/(1 + 𝑡),
𝑒 0 = 𝜃 0 = 0.1

𝑒 𝜃
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