Ch7: Stability for Non-Autonomous Systems

Concepts of Stability

Autonomous vs. Non-Autonomous Systems

The fundamental difference between autonomous and non-autonomous systems lies in the fact that the state trajectory of an autonomous system is independent of the initial time t_0 , while that of a non-autonomous system generally is **not**.

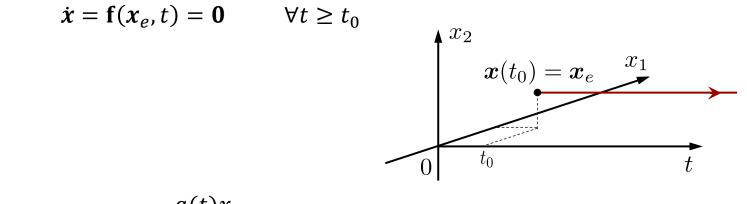
$\dot{\boldsymbol{x}}(t) = \boldsymbol{\mathbf{f}}(\boldsymbol{x}(t), t)$

This difference requires us to **consider the initial time** t_0 **explicitly** in defining stability concepts for non-autonomous systems and makes the analysis more difficult than that of autonomous systems.

Non-autonomous systems appear in robot control when the desired task is to follow a time-varying trajectory, i.e. in **motion control**, or when there is uncertainty in the physical parameters and therefore, an **adaptive control** approach may be used.

Equilibrium Point

A state x_e is an **Equilibrium Point** (or **Equilibrium State**) if the system starts there (initial state $x(t_0) = x_e$) it will remain there for all future time.



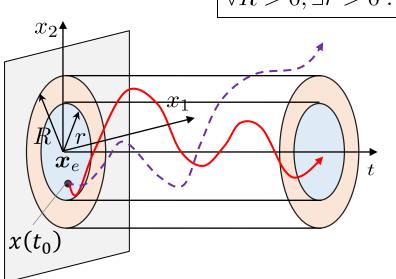
For example, the system $\dot{x} = -\frac{a(t)x}{1+x^2}$ has an equilibrium point at x = 0.

However, the system $\dot{x} = -\frac{a(t)x}{1+x^2} + b(x)$, $b(x) \neq 0$ does not have an equilibrium point.

Extensions of Stability Concepts

The concepts of stability for non-autonomous systems are quite similar to those of autonomous systems. However, the definitions include the **initial time** t_0 explicitly.

The equilibrium point \boldsymbol{x}_e is said to be **Stable** at \boldsymbol{t}_0 if for any R > 0, there exists $r = \boldsymbol{r}(R, \boldsymbol{t}_0) > 0$, such that if $\|\boldsymbol{x}(\boldsymbol{t}_0) - \boldsymbol{x}_e\| < r$, then $\|\boldsymbol{x}(t) - \boldsymbol{x}_e\| < R$ for all $t \ge \boldsymbol{t}_0$. Otherwise, the equilibrium point is **Unstable**.



$$\forall R > 0, \exists r > 0 : \|\boldsymbol{x}(t_0) - \boldsymbol{x}_e\| < r \Rightarrow \|\boldsymbol{x}(t) - \boldsymbol{x}_e\| < R, \ \forall t \ge t_0$$

(we can keep the state in a ball of arbitrarily small radius R by starting the state trajectory in a ball of sufficiently small radius r)

The equilibrium point x_e is said to be **Uniformly** Stable, if r can be chosen <u>independently</u> of the initial time t_0 .

Extensions of Stability Concepts (cont.)

The equilibrium point \boldsymbol{x}_e is said to be **Asymptotically Stable** at \boldsymbol{t}_0 if (1) it is **Lyapunov Stable**, and (2) there exists $r = r(\boldsymbol{t}_0) > 0$ such that if $\|\boldsymbol{x}(\boldsymbol{t}_0) - \boldsymbol{x}_e\| < r$, then $\|\boldsymbol{x}(t) - \boldsymbol{x}_e\| \to 0$ as $t \to \infty$.

$$\exists r > 0 : \| \boldsymbol{x}(t_0) - \boldsymbol{x}_e \| < r \Rightarrow \| \boldsymbol{x}(t) - \boldsymbol{x}_e \| \to 0, \text{ as } t \to \infty$$

The equilibrium point x_e is said to be **Uniformly Asymptotically Stable**, if it is **Uniformly Stable** (i.e., r can be chosen <u>independently</u> of the initial time t_0) where

$$\exists r > 0 : \|\boldsymbol{x}(t_0) - \boldsymbol{x}_e\| < r \Rightarrow \|\boldsymbol{x}(t) - \boldsymbol{x}_e\| \to 0, \text{ as } t \to \infty$$

Example:

$$\dot{x} = -\frac{x}{(1+t)} \longrightarrow x(t) = \frac{1+t_0}{1+t}x(t_0)$$

The origin is asymptotically stable but not uniformly asymptotically stable, because a larger t_0 requires a longer time to get close to the origin.

★ Non-autonomous systems with uniform properties have some desirable ability to withstand disturbances.

Extensions of Stability Concepts (cont.)

The equilibrium point \boldsymbol{x}_{e} is said to be **Exponentially Stable** if there exist $\alpha, \lambda, r > 0$ such that if $\|\boldsymbol{x}(t_{0}) - \boldsymbol{x}_{e}\| < r$, then $\|\boldsymbol{x}(t) - \boldsymbol{x}_{e}\| < \alpha \|\boldsymbol{x}(t_{0}) - \boldsymbol{x}_{e}\| e^{-\lambda(t-t_{0})} \quad \forall t \geq t_{0}$.

$$\left| \exists \alpha, \lambda, r > 0 : \left\| \boldsymbol{x}\left(t_{0}\right) - \boldsymbol{x}_{e} \right\| < r \Rightarrow \left\| \boldsymbol{x}(t) - \boldsymbol{x}_{e} \right\| \le \alpha \left\| \boldsymbol{x}\left(t_{0}\right) - \boldsymbol{x}_{e} \right\| e^{-\lambda(t-t_{0})}$$

If asymptotic (or exponential) stability holds for any initial states $x(t_0) \in \mathbb{R}^n$, the equilibrium point is said to be **Globally Asymptotically (or Exponentially) Stable**.

★ It can be shown that **exponential stability** always implies **uniform asymptotic stability**.

Example: A First-Order Linear Time-varying System

Consider the first-order system $\dot{x}(t) = -a(t)x(t)$

Its solution is $x(t) = x(t_o)e^{-\int_{t_0}^t a(r)dr}$

The system is stable if $a(t) \ge 0$, $\forall t \ge t_0$. It is asymptotically stable if $\int_0^\infty a(r)dr = +\infty$.

For Example:

 $\dot{x} = -\frac{x}{(1+t)^2}$: The origin is stable (but not asymptotically stable), because $\int_0^\infty \frac{1}{(1+r)^2} dr = 1$. $\dot{x} = -\frac{x}{1+t}$: The origin is asymptotically stable, because $\int_0^\infty \frac{1}{1+r} dr = +\infty$. $\dot{x} = -tx$: The origin is exponentially stable, because $x = c_1 e^{-t^2/2}$.

Lyapunov Analysis

Time-Varying Positive Definite Functions

A scalar, time-varying function $V(\boldsymbol{x},t)$ ($V:D \times \mathbb{R}_+ \to \mathbb{R}, D \subset \mathbb{R}^n, \mathbf{0} \in D$) is said to be **Locally Positive Definite** if

 $\begin{array}{ll} \textbf{1)} & V(\textbf{0},t)=0 & \forall t \geq t_0 \\ \textbf{2)} & V(\boldsymbol{x},t) \geq V_0(\boldsymbol{x}) & \forall t \geq t_0 \ , \ \forall \boldsymbol{x} \in D \\ \text{where } & V_0(\boldsymbol{x}) \ \textbf{(} V_0: D \rightarrow \mathbb{R} \textbf{)} \text{ is a time-invariant positive definite function.} \end{array}$

 $V(\mathbf{x},t)$ is said to be **Globally Positive Definite** if $D = \mathbb{R}^n$.

 \Rightarrow A scalar time-variant function V(x,t) is positive definite if <u>it dominates</u> a time-invariant positive definite function.

- A function V(x,t) is **positive semi-definite** if $V_0(x)$ is positive semi-definite.
- A function V(x,t) is **negative (semi-)definite** if -V(x,t) is positive (semi-)definite.



Decrescent Function

A scalar function $V(\boldsymbol{x},t)$ ($V:D \times \mathbb{R}_+ \to \mathbb{R}, D \subset \mathbb{R}^n, \mathbf{0} \in D$) is said to be Locally Decrescent if 1) $V(\mathbf{0},t) = 0$ $\forall t \ge t_0$ 2) $V(\boldsymbol{x},t) \le V_1(\boldsymbol{x})$ $\forall t \ge t_0$, $\forall \boldsymbol{x} \in D$ where $V_1(\boldsymbol{x})$ ($V_1:D \to \mathbb{R}$) is a time-invariant positive definite function.

 $V(\boldsymbol{x},t)$ is said to be **(Globally)** Decrescent if $D = \mathbb{R}^n$.

 \Rightarrow A scalar time-variant function $V(\mathbf{x},t)$ is decreasent if <u>it is dominated by</u> a time-invariant positive definite function.

Example:
$$V(\boldsymbol{x},t) = (1 + \sin^2 t) (x_1^2 + x_2^2)$$

 $V_0(\boldsymbol{x}) = x_1^2 + x_2^2$ $V_1(\boldsymbol{x}) = 2 (x_1^2 + x_2^2)$

The function is positive definite and decrescent.

Lyapunov's Direct Method for Non-Autonomous Systems

Consider a non-autonomous system, $\dot{x} = f(x, t)$, with an equilibrium point at origin, x = 0. If there exists a scalar function V(x, t) ($V: D \times \mathbb{R}_+ \to \mathbb{R}, D \subset \mathbb{R}^n, 0 \in D$) with continuous partial derivatives such that

- 1) $V(\boldsymbol{x},t)$ is **positive definite** (locally in *D*),
- 2) $\dot{V}(x,t)$ is negative semi-definite (locally in *D*),

the equilibrium point $\mathbf{0}$ is **Stable** (and V is called a Lyapunov function).

3) $V(\boldsymbol{x},t)$ is **decrescent** (locally in *D*),

the equilibrium point **0** is **Uniformly Stable**. If $\dot{V}(\boldsymbol{x},t)$ is **negative definite** (locally in *D*), the equilibrium point **0** is **Uniformly Asymptotically Stable**.

- 4) $D = \mathbb{R}^n$,
- 5) $V(\boldsymbol{x},t)$ is radially unbounded, i.e., $V(\boldsymbol{x},t) \to \infty$ as $\|\boldsymbol{x}\| \to \infty$.

the equilibrium point 0 is Globally Uniformly (Asymptotically) Stable

$$\mathbf{0}$$

Note:

$$\dot{V}(\boldsymbol{x},t) = \frac{dV}{dt} = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial \boldsymbol{x}} \dot{\boldsymbol{x}} = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial \boldsymbol{x}} \mathbf{f}(\boldsymbol{x},t)$$

Example

Example: Determine the stability of the equilibrium point at **0**.

$$\dot{x}_1 = -x_1 - e^{-2t} x_2 \\ \dot{x}_2 = x_1 - x_2$$

Let's choose this scalar function:

$$V(\boldsymbol{x},t) = x_1^2 + (1+e^{-2t}) x_2^2$$

$$\begin{split} x_1^2 + x_2^2 &\leq V(\boldsymbol{x}, t) \leq x_1^2 + 2x_2^2 & \therefore \text{ The function is positive definite and decrescent.} \\ \dot{V}(\boldsymbol{x}, t) &= -2\left[x_1^2 - x_1x_2 + x_2^2\left(1 + 2e^{-2t}\right)\right] \\ \dot{V} &\leq -2\left(x_1^2 - x_1x_2 + x_2^2\right) = -\left(x_1 - x_2\right)^2 - x_1^2 - x_2^2 & \therefore \dot{V} \text{ is negative definite.} \\ V(\boldsymbol{x}, t) \text{ is radially unbounded, i.e., } V(\boldsymbol{x}, t) \to \infty \text{ as } \|\boldsymbol{x}\| \to \infty \text{ .} \end{split}$$

: The point **0** is **globally uniformly asymptotically stable**.

Example

Consider the mass-spring-damper system

$$m\ddot{x} + c(t)\dot{x} + kx = 0$$

with time varying damping coefficient ($c(t) \ge 0$).

Physical intuition may suggest that the equilibrium point $\mathbf{0}$ is asymptotically stable as long as the damping c(t) remains larger than a strictly positive constant (implying constant dissipation of energy), as is the case for autonomous nonlinear mass-spring-damper systems. However, this is not necessarily true.

Consider the system $\ddot{x} + (2 + e^t)\dot{x} + x = 0$

with the initial condition x(0) = 2, $\dot{x}(0) = -1$, the solution is $x(t) = 1 + e^{-t}$, which tends to x = 1 instead! It means that the damping increases so fast that the system gets "stuck" at x = 1.

Stability of Linear Time-Varying Systems

Consider linear time-varying (LTV) systems of the form $\dot{x} = \mathbf{A}(t)\mathbf{x}$.

LTI systems are asymptotically stable if their eigenvalues all have negative real parts. However, none of the standard approaches for analyzing LTI systems applies to LTV systems.

Example:
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & e^{2t} \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \lambda_{1,2} = -1, \quad \forall t \ge 0$$

However, the system is unstable

 $x_2 = x_2(0)e^{-t}$ $\dot{x}_1 + x_1 = x_2(0)e^t$

Stability of Linear Time-Varying Systems

The LTV system $\dot{x} = \mathbf{A}(t)\mathbf{x}$ is **asymptotically stable** if the eigenvalues of the symmetric matrix $\mathbf{A}(t) + \mathbf{A}^{T}(t)$ (all of which are real) remain <u>strictly</u> in the left-half complex plane:

 $\exists \lambda > 0, \quad \forall i, \quad \forall t \ge 0, \quad \lambda_i (\mathbf{A}(t) + \mathbf{A}^T(t)) \le -\lambda$

• Note that the result provides a **sufficient** condition for asymptotic stability.

Lyapunov-Like Analysis

Barbalat's Lemma

For autonomous systems, the <u>invariant set theorems</u> are powerful tools to study stability, because they allow asymptotic stability conclusions to be drawn even when \dot{V} is only negative semi-definite. However, the invariant set theorems are not applicable to non-autonomous systems. Instead, <u>Barbalat's lemma</u> can be used for non-autonomous systems.

Barbalat's Lemma:

If the differentiable function f(t) has a finite limit as $t \to \infty$, and if \dot{f} is <u>uniformly continuous</u>, then $\dot{f}(t) \to 0$ as $t \to \infty$.

A sufficient condition for a differentiable function to be *uniformly continuous* is that <u>its derivative be bounded</u>.

 \Rightarrow If the differentiable function f(t) has a finite limit as $t \to \infty$, and is such that \ddot{f} exists and is bounded, then $\dot{f} \to 0$ as as $t \to \infty$.

Lyapunov-Like Stability Analysis Using Barbalat's Lemma

If a scalar function V(x, t) satisfies the following conditions

- $V(\mathbf{x}, t)$ is lower bounded,
- $\dot{V}(x,t)$ is negative semi-definite,
- $\dot{V}(x,t)$ is uniformly continuous in time (i.e., $\ddot{V}(x,t)$ is bounded),

then $\dot{V}(x,t) \rightarrow 0$ as $t \rightarrow \infty$.

Therefore, V approaches a finite limiting value V_{∞} , such that $V_{\infty} \leq V(\mathbf{x}(t_0), 0)$.

Example

The closed-loop error dynamics of an adaptive control system for a first-order plant with one unknown parameter is

$$\dot{e} = -e + heta w(t)$$

 $\dot{ heta} = -ew(t)$

where e and θ are the two states of the closed-loop dynamics, representing tracking error and parameter error, and w(t) is a bounded continuous function.

Consider Lyapunov function $V = e^2 + \theta^2$. The time derivative is

$$\dot{V} = 2e(-e + \theta w) + 2\theta(-ew) = -2e^2 \le 0$$

Based on Lyapunov theory, the system is stable, and therefore, e and θ are <u>bounded</u>.

Example (cont.)

To use Barbalat's lemma, we must check the uniform continuity of \dot{V} .

$$\ddot{V} = -4e(-e + \theta w)$$

The derivative of \dot{V} (i.e., \ddot{V}) is bounded, since w is bounded by hypothesis, and e and θ were shown to be bounded. Hence, \dot{V} is uniformly continuous, and application of Barbalat's lemma indicates that $e \to 0$ as $t \to \infty$ ($\dot{V}(x, t) \to 0$ as $t \to \infty$).

Note: Although *e* converges to zero, the system is not asymptotically stable, because θ is only guaranteed to be bounded.

