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Robot Controllers

A robot controller generates the required joint inputs (e.g., torques/forces 𝝉, voltage, or 
current) to perform a given desired task (𝜽𝑑 𝑡 ∈ ℝ𝑛 in joint space or 𝒙𝑑 𝑡 ∈ ℝ𝑚 or 
𝑻𝑑 𝑡 ∈ 𝑆𝐸 3  in task space) while satisfying given transient and steady-state requirements 
and reducing the effects of the disturbances on the robot.

• Joint Space Control
• Decentralized Control (Independent Joint Control)
• Centralized Control

• Task Space Control (or Operational Space Control)
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Controller Types for Multi-Joint Robots

Decentralized Control (Independent Joint Control): Each joint is controlled separately with 
no sharing of information between joints. It is based on a single-input/single-output (SISO) 
approach, since interaction and coupling effects between the joints have been considered 
as disturbances acting on each single joint drive system. This method is appropriate when 
the dynamics are decoupled (e.g., in Cartesian robots where mass matrix is diagonal), or 
approximately decoupled (e.g., in highly geared robots in the absence of gravity where mass 
matrix is nearly diagonal, as it is dominated by the apparent inertias of the motors).

Centralized Control: In reality, the dynamic equations of a robot manipulator form a 
complex, nonlinear, and multivariable system. When large operational speeds are required 
or direct-drive actuation (no gearbox) is employed, the nonlinear coupling terms strongly 
influence system performance. Therefore, considering the coupling effects between the 
joints as  disturbances may generate large tracking errors (eliminating the causes rather 
than to reduce the effects induced by them). In this method full, state information for each 
of the 𝑛 joints is available to calculate the controls for each joint. Moreover, This approach 
allows us to design robust and adaptive nonlinear control laws that guarantee stability and 
tracking of planned trajectories.

Amin Fakhari, Spring 2024 MEC549 • Ch8: Independent Joint Control P4

Robot Controllers Joint Dynamics PID Position Control FF Control Motion Control Joint Flexibility



Controller Types

when moving 
in free space

when making 
contact with 
environment

• Position Control (regulation or set-point control)

• Motion Control (tracking control)

• Force Control
• Hybrid Motion–Force Control
• Impedance Control

Depending on the task and the robot environment, there are different feedback control 
strategies including

 A fundamental constraint imposed by the mechanics:
We cannot independently control the motion and force in the same direction. If the robot 
imposes a motion, then the environment will determine the force, and if the robot 
imposes a force, then the environment will determine the motion.
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Examples of Desired Tasks

• Pick and place

• Spray painting or laser cutting

• Folding laundry

• Polishing with a polishing wheel

• Back massage

• Erasing a whiteboard

• Shaking hands with a human

• Inserting a peg in a hole
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Controller Types

Non-Model-Based Controller: It includes fuzzy controllers, learning controllers, and 
neural-net-based controllers.

Model-Dependent or Model-Based Controller: If a controller (or its design parameters) 
depends explicitly on the partial or complete knowledge of the manipulator dynamic 
model (i.e., 𝑴 𝒒 , 𝑪 𝒒, ሶ𝒒 , 𝒈 𝒒 ).
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A Typical Robot Control System

Feedback control (or closed-loop control) uses position, velocity, and/or force sensors to 
measure the actual behavior of the robot, compares it with the desired behavior, and 
modulates the control signals sent to the actuators.

A simplified model with ideal sensors 
and ideal behavior of the amplifier and 
actuator blocks.

(current)

(current or torque)
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A Typical Robot Driven by DC Electric Motors

Internal Controllers
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Actuator, Load, and Joint 
Dynamics
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Robot Actuators

Permanent magnet DC motors with gear reduction: The motor dynamics is linear and well 
understood and the effect of the gear reduction is largely to decouple the system by 
reducing the inertia coupling among the joints. However, the presence of the gears 
introduces friction, drive-train compliance (or flexibility or elasticity), and backlash.

Direct-drive actuation with high-torque motors and no gear reduction: The problems of 
backlash, friction, and compliance due to the gears are eliminated. However, the inertia 
coupling among the links is now significant, and the dynamics of the motors themselves
may be much more complex. Moreover, the actuators are quite large to create sufficient 
torque.

In this chapter, we study the dynamics of permanent magnet DC motors with gear 
reduction, as these are commonly used in robot manipulators. Other types of electric 
motors used in robot manipulators are brushless DC motors and AC motors.
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DC Motors

There are two ways to control DC Motors:
1. Adjusting the voltage 𝑒𝑎 (Armature Control) [used for Permanent-Magnet DC motors]
2. Adjusting the field flux 𝜙 (Field Control) [used for Variable-Reluctance DC motors]

(Armature)

►

A rotating circuit called the armature, through which the current 𝑖𝑎 flows, passes through a 
magnetic field 𝜙 at right angles and produces a force 𝐹 which its resulting torque turns the rotor.

A motor is an electromechanical system that provides a rotary motion for a voltage input, 
i.e., a mechanical output generated by an electrical input.

𝑒𝑎

𝑖𝑎

𝑭

𝑭

𝜙

𝑭 = 𝒊𝑎 × 𝝓
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Armature-Controlled DC Motor Dynamics

Electrical Equations:

𝑒𝑎 𝑡 = 𝑅𝑎𝑖𝑎 𝑡 + 𝐿𝑎

𝑑𝑖𝑎 𝑡

𝑑𝑡
+ 𝑣𝑏 𝑡

where 𝑒𝑎 is the applied armature voltage, 𝑖𝑎 is the armature current, and  𝑣𝑏 is the back 
electromotive force (back EMF).
Note: For DC motors 𝐿𝑎 is small compared to 𝑅𝑎. Thus, it is usually assumed 𝐿𝑎/𝑅𝑎 ≈ 0.

1- Kirchhoff's Voltage Law (KVL):

2- Voltage-Speed Relationship: Since the armature is rotating in a magnetic field, its back 

EMF voltage 𝑣𝑏 is proportional to angular velocity ሶ𝜃𝑚 or 𝜔𝑚.

𝑣𝑏 𝑡 = 𝐾𝑏
ሶ𝜃𝑚 𝑡 = 𝐾𝑏𝜔𝑚 𝑡

where 𝐾𝑏 is the back EMF constant (unit: Vs/rad), and ሶ𝜃𝑚 𝑡 = 𝜔𝑚 𝑡  is the angular velocity 
of the motor. 𝐾𝑣 = 1/𝐾𝑏 is called velocity (or speed) constant.

𝐿𝑎: Armature Inductance
𝑅𝑎: Armature Resistance

(1)

(2)

Armature circuit equation:

𝜙

𝜏𝑚

𝜃𝑚

𝐽𝑒 , 𝐵𝑒
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Armature-Controlled DC Motor Dynamics

Mechanical Equation:

The relation between the torque 𝜏𝑚 developed by 
the motor at the armature, equivalent inertia (𝐽𝑒) at 
the armature, and equivalent viscous damping (𝐵𝑒) 
at the armature is:

𝜏𝑚 𝑡 = 𝐽𝑒
ሷ𝜃𝑚 𝑡 + 𝐷𝑒

ሶ𝜃𝑚 𝑡

3- Newton's Law of Motion:

4- Torque-Current Relationship: The torque 𝜏𝑚 developed by the motor is proportional to 
the armature current 𝑖𝑎.

𝜏𝑚 𝑡 = 𝐾𝑡𝑖𝑎 𝑡

where 𝐾𝑡 is the motor torque constant, which depends on the motor and magnetic field 
characteristics (unit: Nm/A). For ideal motor, 𝐾𝑡 = 𝐾𝑏.

(3)

(4)

𝐿𝑎: Armature Inductance
𝑅𝑎: Armature Resistance

𝜙

𝜏𝑚

𝜃𝑚

𝐽𝑒 , 𝐵𝑒
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Electrical Constants 𝑲𝑡/𝑹𝒂 and 𝑲𝒃

𝑒𝑎 = 𝑅𝑎

𝜏𝑚

𝐾𝑡
+ 𝐾𝑏𝜔𝑚

Using (1), (2), (4), and assumption 𝐿𝑎/𝑅𝑎 ≈ 0:

or 𝜏𝑚 = −
𝐾𝑏𝐾𝑡

𝑅𝑎
𝜔𝑚 +

𝐾𝑡

𝑅𝑎
𝑒𝑎

Torque-Speed Curve

• 𝜏𝑚 when 𝜔𝑚 = 0 is called the Stall Torque (𝜏stall)
• 𝜔𝑚 when 𝜏𝑚 = 0 is called the no-load speed (𝜔no−load)

The electrical constants Τ𝐾𝑡 𝑅𝑎 and 𝐾𝑏 can be obtained through a dynamometer test of 
the motor, where a dynamometer measures the torque and speed of a motor under the 
condition of a constant applied voltage 𝑒𝑎.

𝐾𝑡

𝑅𝑎
=

𝜏stall

𝑒𝑎
𝐾𝑏 =

𝑒𝑎

𝜔no−load



𝑒𝑎2
< 𝑒𝑎1

𝜏𝑚

𝜏stall
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Mechanical Constants 𝑱𝒆 and 𝑩𝒆

The motors are often used in conjunction 
with gears to reduce the angular velocity 
and multiply the torque.

Consider a gear set including an input gear with 
radius 𝑟1 and 𝑁1 teeth and an output gear with 
radius 𝑟2 and 𝑁2 teeth.

𝑠1 = 𝑠2

𝑚1 = 𝑚2

𝐸1 = 𝐸2

(traveled distance, no backlash)

(modulus: 2𝑟/𝑁)

(lossless gears)

𝑟1𝜃1 = 𝑟2𝜃2

2𝑟1

𝑁1
=

2𝑟2

𝑁2

𝜏1𝜃1 = 𝜏2𝜃2

𝜃1

𝜃2
=

𝜏2

𝜏1
=

𝑁2

𝑁1
=

𝑟2

𝑟1
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Mechanical Constants 𝑱𝒆 and 𝑩𝒆

𝜏𝑚 − 𝜏′ = 𝐽𝑚
ሷ𝜃𝑚 + 𝐵𝑚

ሶ𝜃𝑚

𝜏𝐿 = 𝐽𝐿
ሷ𝜃𝐿 + 𝐵𝐿

ሶ𝜃𝐿

𝜏′ = 𝜏𝐿/𝑟

𝜃𝑚 = 𝑟𝜃𝐿

𝜏𝑚 = 𝐽𝑒
ሷ𝜃𝑚 + 𝐵𝑒

ሶ𝜃𝑚

𝐽𝑒 = 𝐽𝑚 +
𝐽𝐿

𝑟2
;  𝐵𝑒 = 𝐵𝑚 +

𝐵𝐿

𝑟2

The equivalent inertia (𝐽𝑒) and equivalent viscous damping (𝐷𝑒) (including both the armature 
inertia/damping and the load inertia/damping) reflected to the armature can be found as 
follows. Let 𝑟 = 𝑁2/𝑁1 be the gear ratio (Usually 𝑟 ≫ 1 , e.g., ~20-200).

𝜏𝑚
𝜃𝑚

𝜃𝐿

𝜏𝐿

(load)

𝐽𝑚, 𝐵𝑚

𝜏′ 𝑠

𝐵𝐿

𝐽𝐿: Load inertia
𝐵𝐿: Load viscous damping 

𝐽𝑚: Armature/gear inertia
𝐵𝑚: Armature/gear viscous

damping

𝐽𝑒

𝐵𝑒

▪ These constants can be also determined through laboratory testing using transient 
response or frequency response data.

𝜏𝑚 𝜃𝑚
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DC Motor Equations in Laplace Domain

Thus, four equations represent the mathematical model of a DC motor:

𝑒𝑎 = 𝑅𝑎𝑖𝑎 + 𝐿𝑎

𝑑𝑖𝑎

𝑑𝑡
+ 𝑣𝑏

Assuming zero initial conditions:
Θ𝑚 𝑠

𝐸𝑎 𝑠
=

𝐾𝑡

𝑠 𝐽𝑚𝑠 + 𝐵𝑚 𝐿𝑎𝑠 + 𝑅𝑎 + 𝐾𝑡𝐾𝑏

𝜏𝑚 = 𝐾𝑡𝑖𝑎

𝑣𝑏 = 𝐾𝑏
ሶ𝜃𝑚

𝜏𝑚 = 𝐽𝑒
ሷ𝜃𝑚 + 𝐵𝑒

ሶ𝜃𝑚

(1)

(3)

(2)

(4)

𝜏𝑚 − 𝜏𝐿/𝑟 = 𝐽𝑚
ሷ𝜃𝑚 + 𝐵𝑚

ሶ𝜃𝑚

(or)

Θ𝑚 𝑠

𝑇𝐿 𝑠
=

− 𝐿𝑎𝑠 + 𝑅𝑎 /𝑟

𝑠 𝐽𝑚𝑠 + 𝐵𝑚 𝐿𝑎𝑠 + 𝑅𝑎 + 𝐾𝑡𝐾𝑏

𝐸𝑎 𝑠 1

𝐿𝑎𝑠 + 𝑅𝑎

1

𝐽𝑚𝑠 + 𝐵𝑚

Θ𝑚 𝑠

𝑇𝐿 𝑠 /𝑟

𝐾𝑡

(when 𝑇𝐿 𝑠 = 0)

(when 𝐸𝑎 𝑠 = 0)
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DC Motor Equations in Laplace & Time Domains
(Reduced-Order System)

• Since for DC motors 𝐿𝑎 is small compared to 𝑅𝑎 (i.e., 𝐿𝑎/𝑅𝑎 ≈ 0), the reduced-order 
system can be written as

Θ𝑚 𝑠

𝐸𝑎 𝑠
=

𝐾𝑡/𝑅𝑎

𝑠 𝐽𝑚𝑠 + 𝐵𝑚 + 𝐾𝑡𝐾𝑏/𝑅𝑎

Θ𝑚 𝑠

𝑇𝐿 𝑠
=

−1/𝑟

𝑠 𝐽𝑚𝑠 + 𝐵𝑚 + 𝐾𝑡𝐾𝑏/𝑅𝑎

𝐽𝑚
ሷ𝜃𝑚 + 𝐵𝑚 +

𝐾𝑡𝐾𝑏

𝑅𝑎

ሶ𝜃𝑚 =
𝐾𝑡

𝑅𝑎
𝑒𝑎 −

1

𝑟
𝜏𝐿• In the time domain:

𝐸𝑎 𝑠 1

𝐽𝑚𝑠 + 𝐵𝑚

Θ𝑚 𝑠

𝑇𝐿 𝑠 /𝑟

𝐾𝑡/𝑅𝑎
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Independent Joint Model

We now assume that the load attached to the DC motor is a link of a multi-link manipulator 
to generate a more accurate description of the manipulator load dynamics.

If the output side of the gear train is directly coupled to the joint axis:

Consider the dynamic model of an 𝑛-DOF open-chain manipulator with no friction at the 
joints and no external force at the end-effector.

𝝉 = 𝑴 𝒒 ሷ𝒒 + 𝑪 𝒒, ሶ𝒒 ሶ𝒒 + 𝒈 𝒒

𝜏𝑘 = ෍

𝑗=1

𝑛

𝑚𝑘𝑗 𝒒 ሷ𝑞𝑗 + ෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝑐𝑖𝑗𝑘 𝒒 ሶ𝑞𝑖 ሶ𝑞𝑗 + 𝑔𝑘 𝒒 ,  𝑘 = 1, … , 𝑛 (componentwise)

𝑞𝑘 =
𝜃𝑚𝑘

𝑟𝑘
, 𝑘 = 1, … , 𝑛

𝜏𝑘 = 𝜏𝐿𝑘
,  𝑘 = 1, … , 𝑛

𝜃𝑚𝑘
: motor variable

𝑟𝑘: 𝑘th gear ratio
𝜏𝐿𝑘

: actuator load torques
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Independent Joint Model

Thus, the equations of motion of the manipulator including motors can be written 
componentwise as

𝜏𝑘 = ෍

𝑗=1

𝑛

𝑚𝑘𝑗 𝒒 ሷ𝑞𝑗 + ෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝑐𝑖𝑗𝑘 𝒒 ሶ𝑞𝑖 ሶ𝑞𝑗 + 𝑔𝑘 𝒒 , 

𝐽𝑚𝑘
ሷ𝜃𝑚𝑘

+ 𝐵𝑚𝑘
+

𝐾𝑡𝑘
𝐾𝑏𝑘

𝑅𝑎𝑘

ሶ𝜃𝑚𝑘
=

𝐾𝑡𝑘

𝑅𝑎𝑘

𝑒𝑎 −
1

𝑟𝑘
𝜏𝑘

The simplest approach to the control of this system is to consider the nonlinear term 𝜏𝑘 in 
(2) as an input disturbance to the motor and design an independent controller for each 
joint/motor. Note that the motor dynamics in (2) is linear.

𝑘 = 1, … , 𝑛

(1)

(2)

Note: The term 𝜏𝑘 in (2) is divided by the gear ratio 𝑟𝑘. This reduces magnitude of the 
coupling nonlinearities given by (1), which adds to the validity of the independent joint 
control approach.

Note: For very high-speed motion or for direct-drive manipulators (without gear reduction), 
treating the coupling nonlinearities as a disturbance will generally result in larger tracking 
errors. Thus, more advanced, nonlinear feedback control methods should be used.

𝑞𝑘 =
𝜃𝑚𝑘

𝑟𝑘
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Independent Joint Model

𝐽𝑚𝑘
+

𝑚𝑘𝑘 𝒒

𝑟𝑘
2

ሷ𝜃𝑚𝑘
+ 𝐵𝑚𝑘

+
𝐾𝑡𝑘

𝐾𝑏𝑘

𝑅𝑎𝑘

ሶ𝜃𝑚𝑘
=

𝐾𝑡𝑘

𝑅𝑎𝑘

𝑒𝑎 −
𝑑𝑘

𝑟𝑘
Substituting (1) into (2):

𝑘 = 1, … , 𝑛

𝑑𝑘 = ෍

𝑗=1,𝑗≠𝑘

𝑛

𝑚𝑘𝑗 𝒒 ሷ𝑞𝑗 + ෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝑐𝑖𝑗𝑘 𝒒 ሶ𝑞𝑖 ሶ𝑞𝑗 + 𝑔𝑘 𝒒
(∗)

(3)

Thus, (3) can be concisely written as: 𝐽eff𝑘
ሷ𝜃𝑚𝑘

+ 𝐵eff𝑘
ሶ𝜃𝑚𝑘

= 𝑢𝑘 −
𝑑𝑘

𝑟𝑘

𝐵eff𝑘
= 𝐵𝑚𝑘

+
𝐾𝑡𝑘

𝐾𝑏𝑘

𝑅𝑎𝑘

 , 𝑢𝑘 =
𝐾𝑡𝑘

𝑅𝑎𝑘

𝑒𝑎

𝐽 ሷ𝜃 𝑡 + 𝐵 ሶ𝜃 𝑡 = 𝑢 𝑡 −
𝑑 𝑡

𝑟

• Now, let's use the following general form for each joint where 
𝑢(𝑡) is a control input (torque) and 𝑑(𝑡) a disturbance:

• 𝑑𝑘/𝑟𝑘 represents all the nonlinearities and coupling from the other links.
• The inertia (∗) is configuration dependent and may vary over a large range. However, we 

may approximate it by a constant average or effective inertia 𝐽eff𝑘.

Notes: 

𝑈

Amin Fakhari, Spring 2024 MEC549 • Ch8: Independent Joint Control P22

Robot Controllers Joint Dynamics PID Position Control FF Control Motion Control Joint Flexibility



PID Controller 
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Feedback Control Systems

When you design a controller, you have two main goals, (1) get the system output 𝑌 𝑠  
follow the input reference 𝑅 𝑠  and/or (2) reject any disturbances 𝐷 𝑠  into the system.

In addition to disturbances, there is noise 𝑁 𝑠  in the system that makes it difficult to find 
the actual output of the system. If the noise is high enough frequency, then the feedback 
controller can filter it out or ignore it completely.
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PID Controller

The PID controller is the most common type of controller used in most manipulators.

𝑢(𝑡) = 𝐾𝑃𝑒 𝑡 + 𝐾𝐼 න
0

𝑡

𝑒 𝜎 𝑑𝜎 + 𝐾𝐷

𝑑𝑒 𝑡

𝑑𝑡

𝑈(𝑠) = 𝐺PID 𝑠 𝐸 𝑠  ,

=
𝐾𝐷𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼

𝑠
= 𝐾

𝑠 + 𝑧𝑐𝐼
𝑠 + 𝑧𝑐𝐷

𝑠

𝐺PID 𝑠 = 𝐾𝑃 +
𝐾𝐼

𝑠
+ 𝐾𝐷𝑠 = 𝐾𝑃 1 +

1

𝑇𝐼𝑠
+ 𝑇𝐷𝑠

Time Domain:

Laplace Domain:

• The PID controller adds one pole and two zeros 
to the forward transfer function.

𝐾𝑃

𝐾𝐼

𝑠

𝐾𝐷𝑠

𝐸 𝑠 𝑈 𝑠

Θ𝑑 𝑠 Θ 𝑠

• The design problem (known as tuning) is to choose 
the PID gains to achieve the desired performance.

• 𝑒 𝑡 = 𝜃𝑑 𝑡 − 𝜃 𝑡  is tracking error, 𝐾𝑃 is proportional 
gain, 𝐾𝐼 is integral gain, and 𝐾𝐷 is derivative gain.
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Noise Filtering in PID Control (Derivative Filter)

The derivative term 𝐾𝐷𝑠 in the PID controller involves differentiation of the signal 𝜃 𝑡  
measured by a position sensor (such as a potentiometer, an encoder, or a resolver). In 
practice, a differentiator will amplify high-frequency signals and thus, will perform poorly 
in the presence of noise. Two solutions:

▪ Using velocity sensor, such as a tachometer, to measure ሶ𝜃 𝑡  directly.
▪ More commonly, using a (first-order) low-pass filter (LPF) to pass signals below a cutoff 

frequency 𝑁 and attenuates signals above that.

𝐾𝑃

𝐾𝐼

𝑠

𝐸 𝑠 𝑈 𝑠

Θ𝑑 𝑠 Θ 𝑠

𝐾𝐷𝑠filter

𝐺LPF 𝑠 =
𝑁

𝑠 + 𝑁
=

1

𝜏𝑓𝑠 + 1
𝜏𝑓: filter time constant

𝑁𝐾𝐷𝑠

𝑠 + 𝑁
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Actuator Saturation and Integrator Windup

In some controllers, choosing large values for the control parameters causes a large (initial) 
control output which is beyond the actuator's limits (voltage, current, or torque) and 
actuator saturation occurs. In this situation, the control signal to the plant stops changing 
(which is a nonlinearity) and the feedback path is effectively opened.

𝑢controller

𝑢actual

𝑢max,𝑖

𝑢min,𝑖

1
1

𝑢actual = sat 𝑢controller

Controller
Plant/
Robot

Actuator Saturation 
Function

Desired 
Behavior 𝑢controller 𝑢actual

• Under actuator saturation conditions, if the error signal continues to be applied to the 
integrator input, the integrator output will grow (windup) until the sign of the error 
changes and the integration turns around. Thus, the integrator is an unstable element in 
open-loop and must be stabilized when saturation occurs.

• Actuator Saturation can cause a large overshoot and poor transient response.
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Integrator Antiwindup

The solution to this problem is an Integrator Antiwindup circuit, which “turns off” the 
integral action when the actuator saturates.

Clamping Method:

Back Calculation Method:

Once the actuator saturates, the feedback 
loop around the integrator becomes active 
and acts to keep the input to the integrator 
small.
The antiwindup gain, 𝐾𝑎, should be chosen 
to be large enough

= → 0, ≠ → 1

0 → clamp,
1 → don′t clamp

< 0 → 0, ≥ 0 → 1

Once the actuator saturates AND 
the error 𝑒 is the same sign as the 
controller output 𝑢𝑐, the integral 
action is turned off.
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Example

Consider a plant with the transfer function 𝐺(𝑠) = 1/𝑠 and a PI controller 𝐺𝑐 𝑠 = 𝐾𝑃 +
𝐾𝐼/𝑠 = 2 + 4/𝑠 in the unity feedback configuration. The input to the plant is limited to ±1.
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Two-Degree-of-Freedom Controller

Consider the systems shown, where the system is subjected to the disturbance input 𝐷 𝑠  
and noise input 𝑁 𝑠 . The degrees of freedom of a control system refers to how many of 
closed-loop transfer functions 𝑌 𝑠 /𝑅 𝑠 , 𝑌 𝑠 /𝐷 𝑠 , and 𝑌 𝑠 /𝑁 𝑠  are independent.

• Note: In deriving 𝑌 𝑠 /𝑅 𝑠 , we assumed 𝐷 𝑠 = 0 and 𝑁 𝑠 = 0. Similar comments 
apply to the derivations of 𝑌 𝑠 /𝐷 𝑠  and 𝑌 𝑠 /𝑁 𝑠 .

1 DOF control system 2 DOF control system
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2 DOF PI-D Controller

If the reference input is a step function, then, because of the presence of the derivative 
term in the control action, the control output 𝑢 𝑡  will involve an impulse function. To 
avoid this, we can operate the derivative action only in the feedback path so that 
differentiation occurs only on the feedback signal and not on the reference signal. This 
control scheme is called the PI-D control.

𝑈 𝑠 = 𝐾𝑃 +
𝐾𝐼

𝑠
𝐸 𝑠 − 𝐾𝐷𝑠𝐵 𝑠 = 𝐾𝑃 +

𝐾𝐼

𝑠
𝑅 𝑠 − 𝐾𝑃 +

𝐾𝐼

𝑠
+ 𝐾𝐷𝑠 𝐵 𝑠

𝐾𝐷𝑠 (+ LP Filter)

(+ Antiwindup)

𝑈 𝑠 = 𝐾𝑃 +
𝐾𝐼

𝑠
𝐸 𝑠 −

𝑁𝐾𝐷𝑠

𝑠 + 𝑁
𝐵(𝑠)With LP Filter:
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Position or Set-Point Control
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Two DOF PID Controller of a Joint

𝐺1 𝑠 =
Θ 𝑠

Θ𝑑 𝑠
=

𝐾𝑃𝑠 + 𝐾𝐼

𝐽𝑠3 + 𝐵 + 𝐾𝐷 𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼

𝐺2 𝑠 =
Θ 𝑠

𝐷 𝑠
=

−𝑠/𝑟

𝐽𝑠3 + 𝐵 + 𝐾𝐷 𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼

The overall system response by the Principle of 
Superposition:

Θ(𝑠) = 𝐺1(𝑠)Θ𝑑(𝑠) + 𝐺2(𝑠)𝐷(𝑠)

Let's consider the problem of set-point tracking or tracking a constant or step reference 
command 𝜃𝑑 of a joint.

(+ LP Filter)
(+ Antiwindup)
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PD Controller

Θ(𝑠) =
𝐾𝑃

𝐽𝑠2 + 𝐵 + 𝐾𝐷 𝑠 + 𝐾𝑃
Θ𝑑(𝑠) −

1/𝑟

𝐽𝑠2 + 𝐵 + 𝐾𝐷 𝑠 + 𝐾𝑃
𝐷(𝑠)Let's 𝐾𝐼 = 0:

The closed-loop system is second-order and will be stable for all positive values of 𝐾𝑃 and 
𝐾𝐷 and bounded disturbance 𝐷(𝑠).

𝑒𝑠𝑠 = lim
𝑠→0

 𝑠𝐸 𝑠 =
𝐷/𝑟

𝐾𝑃

Using the final value theorem:

𝐸 𝑠 = Θ𝑑 𝑠 − Θ 𝑠 =
𝐽𝑠2 + 𝐵𝑠

𝐽𝑠2 + 𝐵 + 𝐾𝐷 𝑠 + 𝐾𝑃

𝜃𝑑

𝑠
+

1/𝑟

𝐽𝑠2 + 𝐵 + 𝐾𝐷 𝑠 + 𝐾𝑃

𝐷

𝑠

The tracking error 𝐸 𝑠  for a step reference input Θ𝑑 𝑠 = 𝜃𝑑/𝑠 and a constant disturbance 
𝐷 𝑠 = 𝐷/𝑠:

𝑒𝑠𝑠 is smaller for larger gear ratio and larger 𝐾𝑃.
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PD Controller

Since the closed-loop system is 2nd-order, the step response is determined by the natural 
frequency 𝜔 and damping ratio 𝜁.

𝑠2 +
𝐵 + 𝐾𝐷

𝐽
𝑠 +

𝐾𝑃

𝐽
≡ 𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛

2 𝐾𝑃 = 𝜔𝑛
2𝐽, 𝐾𝐷 = 2𝜁𝜔𝑛𝐽 − 𝐵

Given a desired value for 𝜔𝑛 and 𝜁, the gains 𝐾𝑃 and 𝐾𝐷 can be found.

• It is customary in robotics applications to take the damping ratio 𝜁 = 1 so that the response is 
critically damped. In this context, 𝜔𝑛 determines the speed of response.

• Let 𝑘𝑟  be the effective joint stiffness. The joint resonant frequency is then 𝜔𝑟 = 𝑘𝑟/𝐽. It is common 

engineering practice to limit 𝜔𝑛 to no more than half of 𝜔𝑟 to avoid excitation of the joint resonance.

constant disturbanceno disturbance


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PID Controller

To remove the steady-state error 𝑒𝑠𝑠 due to the disturbance entirely, we can add an integral 
control: 

Θ 𝑠 =
𝐾𝑃𝑠 + 𝐾𝐼

𝐽𝑠3 + 𝐵 + 𝐾𝐷 𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼
Θ𝑑 𝑠 −

𝑠

𝐽𝑠3 + 𝐵 + 𝐾𝐷 𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼
𝐷 𝑠

Applying the Routh-Hurwitz criterion to 𝐽𝑠3 + 𝐵 + 𝐾𝐷 𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼 , it follows that 
the closed-loop system is stable if the gains are positive, and in addition,

𝐾𝐼 <
𝐵 + 𝐾𝐷 𝐾𝑃

𝐽

• A common design rule-of-thumb for PID control is to first set 𝐾𝐼 = 0 and design the 
proportional and derivative gains, 𝐾𝑃 and 𝐾𝐷, to achieve the desired transient behavior 
(maximum overshoot, settling time, etc.) and then to choose 𝐾𝐼 within the limits 
imposed by (∗) to remove the steady-state error.

(∗)
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Feedforward Control
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Feedforward Control

The feedforward control can be 
used when
(1) The system model 𝐺𝑝 𝑠  is 

known,
(2) the reference signal 𝑅 𝑠  is a 

time-varying signal, and/or
(3) the disturbance 𝐷(𝑠) is 

measurable.

Feedback control is powerful in practice; however, a feedback-only-controller is not 
necessarily the best architecture because it generates the necessary control output only 
after an error (due to change in the reference input or disturbance) is generated. Adding 
one or more Feedforward paths to a feedback controller can predict ahead of time what 
control output is required before the effect of the changes shows up in the system output, 
and consequently, improve the system performance (e.g., accuracy and speed). 

Plant
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Reference Input Feedforward Control

For 𝐸 𝑠 = 0 (when 𝐷 𝑠 = 0):

𝑅 𝑠 = 𝑌 𝑠 = 𝑈 𝑠 𝐺𝑝 𝑠

𝑈 𝑠 = 𝑅 𝑠
1

𝐺𝑝 𝑠

𝐺𝑐2 𝑠 =
1

𝐺𝑝 𝑠
= 𝐺𝑝

−1 𝑠
Plant

𝑌 𝑠

𝑅 𝑠
=

𝐺𝑐1 𝑠 + 𝐺𝑐2 𝑠 𝐺𝑝 𝑠

1 + 𝐺𝑝 𝑠 𝐺𝑐1 𝑠





• For stability of the closed-loop system, we require that in addition to stability of the feedback system, 
the feedforward transfer function 𝐺𝑐2 𝑠  must itself be stable (or Hurwitz). Since 𝐺𝑐2 𝑠 = 𝐺𝑝

−1 𝑠 , 

𝐺𝑝 𝑠  must be also minimum phase. Moreover, since 𝐺𝑝 𝑠  is strictly proper, 𝐺𝑐2 𝑠  is not proper. 

Transfer function 𝐺 𝑠  is Hurwitz if all its poles are strictly in the left-half complex plane.
Transfer function 𝐺 𝑠  is Minimum Phase if all its zeros are strictly in the left-half complex plane.
Transfer function 𝐺 𝑠  is Proper if the degree of the numerator does not exceed the degree of the denominator.

• In the presence of disturbance 𝐷 𝑠 :

𝐸 𝑠 = 𝑅 𝑠 − 𝑌 𝑠 = 𝑅 𝑠 − 𝑅 𝑠
𝑌 𝑠

𝑅 𝑠
+ 𝐷 𝑠

𝑌 𝑠

𝐷 𝑠

= 0

𝐸 𝑠

𝑌 𝑠

𝐷 𝑠
=

𝐺𝑝 𝑠

1 + 𝐺𝑝 𝑠 𝐺𝑐1 𝑠
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Feedforward Disturbance Rejection Control

If the disturbance 𝐷(𝑠) is measurable in the system-input-level, it can be fed forward as 
− 𝐷(𝑠).

Plant
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Motion or Tracking Control
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Motion or Tracking Feedforward Control

Let's consider the problem of tracking a reference time-varying trajectory 𝜃𝑑 𝑡  of a joint 
using the notion of feedforward control. 

• We can show that, in the absence of disturbances, the closed-loop system will track any 
desired trajectory 𝜃𝑑 𝑡  provided that the closed-loop system is stable.

Θ𝑑 𝑠 Θ 𝑠
𝐾𝑃 + 𝐾𝐼/𝑠 + 𝐾𝐷𝑠

Feedback Controller

• If the feedback controller is a PID controller, steady-state tracking error 𝑒𝑠𝑠 = lim
𝑠→0

 𝑠𝐸 𝑠  

to a step disturbance will approach zero asymptotically (i.e., 𝜃 𝑡  will track any reference 
trajectory 𝜃𝑑 𝑡 ).

−𝐷(𝑠)/𝑟
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Motion or Tracking Feedforward Control

• The control law in the time domain:

𝑢(𝑡) = 𝐽 ሷ𝜃𝑑 𝑡 + 𝐵 ሶ𝜃𝑑 𝑡 + 𝐾𝑃𝑒 𝑡 + 𝐾𝐼 න
0

𝑡

𝑒 𝜎 𝑑𝜎 + 𝐾𝐷 ሶ𝑒 𝑡

feedforward signal 𝑒 𝑡 = 𝜃𝑑 𝑡 − 𝜃 𝑡

• By considering the joint model 𝐽 ሷ𝜃 𝑡 + 𝐵 ሶ𝜃 𝑡 = 𝑢 𝑡 − 𝑑 𝑡 /𝑟, the close-loop dynamic is

𝐽 ሷ𝑒 𝑡 + 𝐵 + 𝐾𝐷 ሶ𝑒 𝑡 + 𝐾𝑃𝑒 𝑡 + 𝐾𝐼 න
0

𝑡

𝑒 𝜎 𝑑𝜎 = 𝑑 𝑡 /𝑟

tracking error

Note: 𝐽𝑠2 + 𝐵𝑠 is not a proper transfer function. However, since the derivatives of the 
reference trajectory 𝜃𝑑 𝑡  are known and precomputed, the implementation of the 
feedforward control does not require differentiation of an actual signal.
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Computed-Torque Feedforward Control
(Feedforward Disturbance Rejection)

In the presence of a time-varing disturbance −𝑑 𝑡 /𝑟, the previous method cannot asymptotically track 
the reference trajectory. Since, here, this term is not completely unknown, and we can feed forward an 

approximation of that (i.e., 𝑑𝑘
𝑑 𝑡 /𝑟) to anticipate and cancel the effects of this disturbance which is 

due to the nonlinear coupling inertia, Coriolis, centripetal, and gravitational forces arising from the 

motion of the manipulator. Note that 𝑑𝑘
𝑑 𝑡  is computed using the desired joint positions, velocities, 

and accelerations trajectories (i.e., 𝒒𝑑 𝑡 , ሶ𝒒𝑑 𝑡 , and ሷ𝒒𝑑 𝑡 ).

𝑑𝑘
𝑑 𝑡 = ෍

𝑗=1,𝑗≠𝑘

𝑛

𝑚𝑘𝑗 𝒒𝑑 𝑡 ሷ𝑞𝑗
𝑑 𝑡 + ෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝑐𝑖𝑗𝑘 𝒒𝑑 𝑡 ሶ𝑞𝑖
𝑑 𝑡 ሶ𝑞𝑗

𝑑 𝑡 + 𝑔𝑘 𝒒𝑑 𝑡

−𝐷(𝑠)/𝑟

𝐷𝑑(𝑠)/𝑟

PD or PID Contoller

+
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Joint Flexibility
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Joint Flexibility or Elasticity

An effect that limits the achievable performance of a manipulator is flexibility in the motor 
shaft and/or drive train, which is known as Joint Flexibility or Joint Elasticity.

• For many manipulators, particularly those using strain wave gears or harmonic gears, for 
torque transmission, the torsional flexibility in the gears is significant.

• In addition, joint flexibility can be caused by effects such as shaft windup, bearing 
deformation, and compressibility of the hydraulic fluid in hydraulic robots.

►

Harmonic gears have 
no/low backlash, high 
torque transmission, 
and compact size.

elliptical wave generator
(attached to actuator)

rigid circular spline
(attached to load)

flexible flexspline
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Idealized Model for Joint Flexibility
(Drive-Train Dynamics in Laplace Domain)

𝐽𝐿
ሷ𝜃𝐿 + 𝐵𝐿

ሶ𝜃𝐿 + 𝑘 𝜃𝐿 − 𝜃𝑚 = 0

𝐽𝑚
ሷ𝜃𝑚 + 𝐵𝑚

ሶ𝜃𝑚 + 𝑘 𝜃𝑚 − 𝜃𝐿 = 𝑢

Consider an idealized model, consisting of an actuator connected to a load through a 
torsional spring representing the joint flexibility with effective stiffness 𝑘 of the harmonic 
gear with gear ratio 1.

𝐽𝐿: Load inertia
𝐵𝐿: Load viscous damping 

𝐽𝑚: Armature/gear inertia
𝐵𝑚: Armature/gear viscous

damping

𝑢: input 
motor torque 

𝑝𝐿 𝑠 Θ𝐿 𝑠 = 𝑘Θ𝑚 𝑠

𝑝𝑚 𝑠 Θ𝑚 𝑠 = 𝑘Θ𝐿 𝑠 + 𝑈 𝑠

𝑝𝐿 𝑠 = 𝐽𝐿𝑠2 + 𝐵𝐿𝑠 + 𝑘

𝑝𝑚 𝑠 = 𝐽𝑚𝑠2 + 𝐵𝑚𝑠 + 𝑘



𝑈 𝑠 Θ𝐿 𝑠
Θ𝑚 𝑠

𝑘

𝑝𝐿 𝑠

1

𝑝𝑚 𝑠

Θ𝐿(𝑠)

𝑈(𝑠)
=

𝑘

𝑝𝐿(𝑠)𝑝𝑚(𝑠) − 𝑘2

• Depending on whether the position/velocity sensors are placed on the motor shaft or on the load 
shaft, we can have two types of feedback controller.



(∗)
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PD Control with Motor Angle 𝜃𝑚 Feedback

• The closed-loop system is stable for all values of the 
gain 𝐾𝐷, however, the presence of the open-loop zeros 
near the 𝑗𝜔-axis may result in undesirable oscillations.

• The poor relative stability means that disturbances and 
other unmodeled dynamics could render the system 
unstable.

• In practice, 𝑘 is large and 𝐵𝐿 and 𝐵𝑚 are small. This 
places the open-loop poles of the system near the 𝑗𝜔-
axis and results in a difficult system to control.

Let’s rewrite the PD control 𝐾𝑃 + 𝐾𝐷𝑠 as 𝐾𝐷(𝑠 + 𝑎). Then, for any given 𝑎 we can plot the 
root locus for the closed-loop systems in terms of 𝐾𝐷.

𝑅 Θ𝐿
Θ𝑚 𝑘

𝑝𝐿 𝑠

1

𝑝𝑚 𝑠

𝑗𝜔

𝜎

−𝑎
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PD Control with Load Angle 𝜃𝐿 Feedback

• The closed-loop system is unstable for large 𝐾𝐷. The 
critical value of 𝐾𝐷 (i.e., the value of 𝐾𝐷 for which the 
system becomes unstable), can be found from the 
Routh-Hurwitz criterion.

• In this case, we should limit the 𝐾𝐷 so that the closed-
loop poles remain within the left half-plane with a 
reasonable stability margin.

• In practice, 𝑘 is large and 𝐵𝐿 and 𝐵𝑚 are small. This 
places the open-loop poles of the system near the 𝑗𝜔-
axis and results in a difficult system to control.

𝑅 Θ𝐿
Θ𝑚 𝑘

𝑝𝐿 𝑠

1

𝑝𝑚 𝑠

Let’s rewrite the PD control 𝐾𝑃 + 𝐾𝐷𝑠 as 𝐾𝐷(𝑠 + 𝑎). Then, for any given 𝑎 we can plot the 
root locus for the closed-loop systems in terms of 𝐾𝐷.

𝑗𝜔

𝜎

−𝑎
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Drive-Train Dynamics in State-Space Domain

𝑥1 = 𝜃𝐿 𝑥3 = 𝜃𝑚

𝑥2 = ሶ𝜃𝐿 𝑥4 = ሶ𝜃𝑚

ሶ𝑥1 = 𝑥2

ሶ𝑥2 = −
𝑘

𝐽𝐿
𝑥1 −

𝐵𝐿

𝐽𝐿
𝑥2 +

𝑘

𝐽𝐿
𝑥3

ሶ𝑥3 = 𝑥4

ሶ𝑥4 =
𝑘

𝐽𝑚
𝑥1 −

𝐵𝓁

𝐽𝑚
𝑥4 −

𝑘

𝐽𝑚
𝑥3 +

1

𝐽𝑚
𝑢

ሶ𝒙 = 𝑨𝒙 + 𝑩𝑢 𝒙 =

𝑥1

𝑥2

𝑥3

𝑥4

, 𝑨 =

0 1 0 0

−
𝑘

𝐽𝐿
−

𝐵𝐿

𝐽𝐿

𝑘

𝐽𝐿
0

0 0 0 1
𝑘

𝐽𝑚
0 −

𝑘

𝐽𝑚

𝐵𝑚

𝐽𝑚

, 𝒃 =

0
0
0
1

𝐽𝑚

𝐽𝐿
ሷ𝜃𝐿 + 𝐵𝐿

ሶ𝜃𝐿 + 𝑘 𝜃𝐿 − 𝜃𝑚 = 0

𝐽𝑚
ሷ𝜃𝑚 + 𝐵𝑚

ሶ𝜃𝑚 + 𝑘 𝜃𝑚 − 𝜃𝐿 = 𝑢

If we choose 𝑦 = 𝜃𝐿 = 𝑥1, then 𝑦 = 𝑪𝒙 𝑪 = [1,0,0,0]

(∗∗)

(∗∗∗)
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