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Closed-loop Dynamic Equation

Consider the dynamic model of an n-DOF open-chain manipulator with no friction at the
joints and no external force at the end-effector.

drq q
— M(Q)ij + C(q, ) _.:[ ) N ]
= M@i+ @i+ o@ o glal = gy cia.wa - s
(state-space form)
In general, a position/motion Control Law (Controller) with desired joint position

q,(t) € R™, velocity q4(t) € R™, and acceleration g ;(t) € R™ can be expressed as
a nonlinear function 7. as

T = TC (q; q; qd; qd; qd; M(Q): C(q’ q)’ g(q))

q,
q,;— CONTROLLER T

—

q. d

Note: For practical purposes, it is desirable that the controller T, does not depend on the joint
acceleration g since computing or measuring acceleration is usually highly sensitive to noise.
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Closed-loop Dynamic Equation (cont)

Thus, the closed-loop dynamic equation is derived as

M(@g+C(qqq+9@q) =7.(9.9 94 4442, M(q),€C(q,4), 9(q))

d ra. —
or in the state-space form as o ?IZ _ Zl = (99,94, 44,44, M(q),C(q, ), 9(q))
e=qq—q€ER", ‘ d 'el — F(tee) In general, a nonautonomous
e=q,—qER", dt le T nonlinear ODE when q; = q,4(t).
and by replacing q with
q,(t) — e and g with ¢
qq(t) —é&in f: - —|  CONTROLLER
?d + I\ el
4 _ ROBOT e
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Actuator Saturation

In some controllers, choosing large values for the control parameters causes a large (initial)
control torque which is beyond the robot actuators capacity which are limited by maximum
and minimum allowable values T 4%, Tmin- Therefore, the control parameters should be

chosen properly.
To consider the actuator saturation limits in the simulation, we add a saturation function

as follows:
Tactual — Sat(Tcontroller)

A

Tactual

Desired T
Behavior T T i

|,— 1
— | Controller |-<ontroller —1 ,» |2l Robot - 1
1 Actuator Saturation Teontroller

Functon......... | A ] T :
min,i
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Pseudocode for Controllers

4 (6t),: timestep that T is given N\
(l) o | I T T T | il f:f t;
i=1 iI i+1 iI=N
t[1] =0 tli] = i-(6t), tli + 1] t[N] =ty = N-(6¢t),
ktc[l] Tc[i] Tc[i + 1] TC[N] /

Given Fypli] (i = 1,...,N) |
SetQ[1] = 9(0_), 0[1] = 6(0), ejpr = O (6t)y = (8t);/Nyes: timestep

Set @ = 0[1], 6 = 0[1] for motion simulation and N: Number
Fori=1toN —1 computing 6. of samples
[Hd[i],éd[i]] = trajectory(t[i] = i-(6t)s, ...) Nres: INtegration resolution.
z[i] = controller (8,8, 0411, 84[i], B4lil, eine, )
Tc[i]' = sat(z.[i]) (6t),, (5t)é € R*
Forj = 1to npeg
0 = ForwardDynamics (5, 0, ‘cc[i],.‘Ftip[i])
6=0+0-(61),
0=0+0-(5t),
end . .
e = e+ (5t).(84[i] — 8) % error integral First-order Euler Integration
Oli+1] =19 (we can also use any other ODE solver like ode45 which
0li+1]1=0 is based on an explicit Runge-Kutta (4,5) formula)
end
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Position Control Objective

Given a desired constant joint position (set-point reference) q; € R", we wish to find joint
torques/forces T € R™ such that the joint position q(t) € R™ tend to q,4 accurately:

L}im q(t) = qq = tlim e(t) =0 e(t) =qq —q(t) ER"
position error

The most common position controllers:

* PD Control (or P Control Plus Velocity Feedback)
* PD Control with Gravity Compensation

e PD Control with Desired Gravity Compensation
* PID Control
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PD Control

(or P Control Plus Velocity Feedback)

The PD (Proportional Derivative) control law is given by

) Since q4; = constant )
t=K,e+K,e : » t=K,e—K,q
qa =0

€e=4qa—1q
K,, K, € R™" are symmetric positive definite matrices. If K, = diag{K,;}, K, = diag{K,,},
the controller is called PD Independent Joint Control.

This controller is the simplest (linear) controller that may be used to control robot

manipulators.
-
5 ROBOT [ g

5 —

(-Id

d. =@{
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PD Control

The closed-loop dynamic equation is derived as
M(q)g+C(q.9)q+9(q) = Ky,e —K,q

ilel_ —q . ( ) (*) _
atldl = M (Kpe - Kog - @ - g(@)| TIOP 4= dae

The system is autonomous because g is constant.

Note: In general, this system may have several equilibrium points, and the origin (e, q) =
0 € R?" is not necessarily an equilibrium point.

fle,q)=0 = q=0, K,e—g(qs—e)=0

Note: If the manipulator model does not include the gravitational torques term g(q) (e.g.,
those which move only on the horizontal plane), then the only equilibrium is the origin
(e,q) = 0 € R?™,
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PD Control
(when g(q) = 0)

To study the stability of the equilibrium we can use Lyapunov’s direct method and LaSalle’s
Theorem to show asymptotic stability of the origin (e, q) = 0.

1 1
Consider a Lyapunov function candidate as  V(e,q) = EqTM(q)q + EeTer >0 (PD)

. N
Vied) =a"M@d+5a"M@q+e'Kpe "G

of the arm

Ve,q #0

M(q)q = K,e - K,q — Cq.qq, é=—q (%)

q” FM — C] g = 0 (Property of dynamic model)
2

v
Vie,q)=—q"K,g <0 (NSD)

Equilibrium Point Theorem

» The origin (e, q) = 0 is (globally) stable and the solutions e(t)
and g(t) are bounded.
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PD Control
(when g(q) = 0)

Now, we use LaSalle (invariant set) theorem to analyze the global asymptotic stability of
the origin.

R ={(e,q) € R*™:V(e,q) = 0}

(e, q) = 0 is the largest invariant set in R

— The origin (e, q) = 0 is globally asymptotically stable for any initial condition
q(0),q(0) € R™:
lime(t) =0 L}im qgit) =0

t—oo

= Thus, the control objective is achieved.

Note: Friction at the joints may also affect the position error.
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PD Control
(when g(q) + 0)

The study of unicity of the equilibrium and boundedness of solutions for a control system
under PD control when g(q) # 0 is somewhat more complex than when g(q) = 0.

For robots with only revolute joints, we can prove that
* Forany K, = Kg > 0, K, = Kl > 0, itis guaranteed that e(t) and ¢(t) are bounded
for all initial conditions. Moreover, tlim g(t) = 0 (it does not guarantee tlim q(t) =qy,

or even lim q(t) = constant).

t—oo
* By choosing K, sufficiently large, e.g., Amin(Kp) > n - (r.n.ax 99i(q)
ijq | 94;
loop equation has a unique equilibrium (but not necessarily at origin).

), then the closed-

* The error bound decreases, as K,,; become larger (in case K, = diag{Kv,i}), however,
large K, ; can saturate the robot actuators.

= Thus, the control objective cannot be achieved using PD control unless the desired
position g is such that g(g;) = 0 (i.e., the origin (e, §) = 0 is an equilibrium).

Note: Friction at the joints may also affect the position error.
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PD Control with Gravity Compensation

The PD control law with gravity compensation is given by

Since q; = constant

t=K,e+K,ée+g(q) py— > t=Kpe-Ky,q+g(q)
g =
K, K, € R™ ™ are symmetric positive definite matrices. e=q,—q
9(q) t=—————~
|
|
—| ROBO 4
b ROBOT L - .
K, K,
qd -
q, ——@:
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PD Control with Gravity Compensation

The closed-loop dynamic equation is derived as

M(qq+Cqq9)q+g9g(q =K,e—K,q+ g(q)

drey —q B .
E[a]—[M<q>-1(xpe—xvq—c<q,q>q) =fled  q=qi-e

The system is autonomous, and the origin (e, q) = 0 € R?" is the only equilibrium point.

Note: Using the same proof given for PD Control when g(q) = 0, we can show that the
origin (e, q) = 0 is globally asymptotically stable for any initial condition q(0), g(0) € R™:

tlim e(t) =0 tlim qit) =0

= Thus, the position control objective is achieved.

Note: Friction at the joints may also affect the position error.
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PD Control with Desired Gravity Compensation

Implementation of the PD control with gravity compensation requires on-line computation
of g(q). However, since the elements of g(q) involve trigonometric functions of g, its real
time computation take a longer time than the computation of the ‘PD-part’ of the control
law, especially in high sampling frequency applications. A solution is using PD Control with
Desired Gravity Compensation which requires only off-line computation of g(q,):

t=K,et+K,e+g(qy) e=4qy—q

K, K, € R "™ are symmetric positive definite matrices.

— g(q,)

qd

[
I
I
I
|
I
I
I
I
I
I
I
I
I
I
d

d4 @
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PD Control with Desired Gravity Compensation

The closed-loop dynamic equation is derived as
M(q)4+C(q,.9)q+9(q) = Kye —K,q+ g(qq)
d re —q ,
— .| = _ : Ny = f(e,
dt [‘Il M(q)™" (er - K,q—-Clq,9)q—9g(q) + g(qd)) fle.d)
q=4qq—¢€

The system is autonomous (since g is constant), and in general, may have multiple
equilibria which the origin (e, ) = 0 € R?" is always one of them:

feqg)=0 = =0, K,e—g(qq—e)+g(qy) =0
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PD Control with Desired Gravity Compensation

For robots with only revolute joints, we can prove that
* Forany K, = Kg > 0, K, = KT > 0, itis guaranteed that e(t) and ¢(t) are bounded
for all initial conditions. Moreover, tlim q(t) = 0 (it does not guarantee L]im q(t) =qy

or even tlim q(t) = constant).
—00

* By choosing K, sufficiently large, e.g., Apnin(Kp) > 1 - (max 994(9) ), then the closed-

ij,q | 99;
loop equation has a unique equilibrium at origin (e, q) = 0 and it is globally
asymptotically stable.

lime(t) =0 tlim qit) =0

t—oo

= Thus, the position control objective is achieved.

Note: Friction at the joints may also affect the position error.
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PID Control

The PID (Proportional Integral Derivative) control law is given by
t
r=er+Kvé+Kij e(t)dr €e=(qq —q
0
K, K,K;€ R™ ™ (position, velocity, and integral gains) are symmetric positive definite

matrices. If K,, = diag{Kp’i}, K, = diag{Kv,i}, K; = diag{Ki,l-}, the controller is called PID
Independent Joint Control.

L ROBOT L1

J hq

't
K, K, K|

% + |
44 -
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PID Control

o] le)

The closed-loop dynamic equation is derived as sf

t
M@ + C(q,D)q + g(q) = Kye + Kpé + K, j e(r)dr
0

{M(q)q +C(q,q)q+9(q) =Kye+K,é+ K&
p— .

=e q=(qq —¢€
e -1 i
d[¢ —q equilibrium K 9(q4)
N » . N point 0
ql |M(q) (er - K,q+K$—C(q,4)q g(q)) 0
Translating this VA e
equilibrium point i Ie} . —q
to the origin via a |l _ ) N
suitable change of dt q M(Q) 1 (er - qu + KiZ + g(qd) - C(CI; Q)q - g(q))_
iable:
varene 1 The system is autonomous, and its unique equilibrium is the origin
z=§—-K; g(qq) (z,e,q) = 0 € R3".
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PID Control: Tuning Method

For robots with only revolute joints, we can prove that the symmetric positive definite
matrices K, K;, K,, which satisfy the following relations can only guarantee achievement
of the position control objective by making the origin (z, e, g) = 0 locally asymptotically
stable (i.e., if e(t), g(t) are “sufficiently small”, th_)rglo e(t) = 0).

Amax{Ki} = Amin{Ki} >0
AnaxiBp} = AminlKp} > n - kg

Amax{Ki} . A%nax (M(CI))
Amin{Kp} — kg Amin(M(q))

Amax{Kv} > Amin{Kv} >

dg:(q)

k., = max
9 ijq

Note: A system with K,,, K;, K, parameters which satisfy these relations does not
necessarily achieve a proper settling time. It is possible to find a set of the symmetric PD
matrices Kp, K;, K, which achieve a small settling time, while violating these relations.
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