Ch9: Centralized Control - Position Control

Introduction

ony Broo<mark>l</mark>
Iniversity

Closed-loop Dynamic Equation

Consider the dynamic model of an n -DOF open-chain manipulator with no friction at the joints and no external force at the end-effector.

$$
\boldsymbol{\tau} = \boldsymbol{M}(\boldsymbol{q})\ddot{\boldsymbol{q}} + \boldsymbol{C}(\boldsymbol{q},\dot{\boldsymbol{q}})\dot{\boldsymbol{q}} + \boldsymbol{g}(\boldsymbol{q}) \qquad \text{or} \qquad \frac{d}{dt}\begin{bmatrix} \boldsymbol{q} \\ \dot{\boldsymbol{q}} \end{bmatrix} = \begin{bmatrix} \dot{\boldsymbol{q}} \\ \boldsymbol{M}(\boldsymbol{q})^{-1}[\boldsymbol{\tau} - \boldsymbol{C}(\boldsymbol{q},\dot{\boldsymbol{q}})\dot{\boldsymbol{q}} - \boldsymbol{g}(\boldsymbol{q})] \end{bmatrix}
$$
\n
$$
\text{(state-space form)}
$$

In general, a position/motion **Control Law** (**Controller**) with desired joint position $q_d(t) \in \mathbb{R}^n$, velocity $\dot{q}_d(t) \in \mathbb{R}^n$, and acceleration $\ddot{q}_d(t) \in \mathbb{R}^n$ can be expressed as a nonlinear function τ_c as

$$
\boldsymbol{\tau} = \boldsymbol{\tau}_c(q,\dot{q},q_d,\dot{q}_d,\ddot{q}_d,M(q),C(q,\dot{q}),g(q))
$$

Note: For practical purposes, it is desirable that the controller τ_c does not depend on the joint acceleration \ddot{q} since computing or measuring acceleration is usually highly sensitive to noise.

Closed-loop Dynamic Equation (cont.)

Thus, the **closed-loop dynamic equation** is derived as

$$
M(q)\ddot{q}+C(q,\dot{q})\dot{q}+g(q)=\tau_c(q,\dot{q},q_d,\dot{q}_d,\ddot{q}_d,M(q),C(q,\dot{q}),g(q))
$$

or in the state-space form as

$$
\frac{d}{dt}\begin{bmatrix} q_d - q \\ \dot{q}_d - \dot{q} \end{bmatrix} = f(q, \dot{q}, q_d, \dot{q}_d, \ddot{q}_d, M(q), C(q, \dot{q}), g(q))
$$

$$
\mathbf{e} = \mathbf{q}_d - \mathbf{q} \in \mathbb{R}^n,
$$

$$
\dot{\mathbf{e}} = \dot{\mathbf{q}}_d - \dot{\mathbf{q}} \in \mathbb{R}^n,
$$

and by replacing q with $q_d(t) - e$ and \dot{q} with $\dot{\boldsymbol{q}}_d(t) - \dot{\boldsymbol{e}}$ in \boldsymbol{f} :

In general, a nonautonomous nonlinear ODE when $q_d = q_d(t)$.

Actuator Saturation

In some controllers, choosing large values for the control parameters causes a large (initial) control torque which is beyond the robot actuators capacity which are limited by maximum and minimum allowable values τ_{max} , τ_{min} . Therefore, the control parameters should be chosen properly.

To consider the actuator saturation limits in the simulation, we add a saturation function as follows:

$$
\tau_{\text{actual}} = \text{sat}(\tau_{\text{controller}})
$$

Stony Brool

Pseudocode for Controllers

Position Control

tony Broo<mark>l</mark>
Jniversity

Position Control Objective

Given a desired constant joint position (set-point reference) $\bm{q}_d \in \mathbb{R}^n$, we wish to find joint torques/forces $\pmb{\tau}\in\mathbb{R}^n$ such that the joint position $\pmb{q}(t)\in\mathbb{R}^n$ tend to \pmb{q}_d accurately:

$$
\lim_{t \to \infty} q(t) = q_d \qquad \Rightarrow \qquad \lim_{t \to \infty} e(t) = 0 \qquad \qquad e(t) = q_d - q(t) \in \mathbb{R}^n
$$
\nposition error

The most common position controllers:

- PD Control (or P Control Plus Velocity Feedback)
- PD Control with Gravity Compensation
- PD Control with Desired Gravity Compensation
- PID Control

PD Control

۰M

PD Control (or P Control Plus Velocity Feedback)

The PD (Proportional Derivative) control law is given by

$$
\tau = K_p e + K_v \dot{e} \quad \xrightarrow{\text{Since } q_d = \text{constant}} \quad \tau = K_p e - K_v \dot{q} \quad e = q_d - q
$$

 $K_p, K_v \in \mathbb{R}^{n \times n}$ are symmetric positive definite matrices. If $K_p = \text{diag}\{K_{p,i}\}$, $K_v = \text{diag}\{K_{v,i}\}$, the controller is called PD Independent Joint Control.

This controller is the simplest (linear) controller that may be used to control robot manipulators.

Amin Fakhari, Spring 2024 **MEC549 • Ch9: Centralized Control - Position Control** P10

PD Control

The closed-loop dynamic equation is derived as

$$
M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = K_p e - K_v \dot{q}
$$

$$
\frac{d}{dt} \begin{bmatrix} e \\ \dot{q} \end{bmatrix} = \begin{bmatrix} -\dot{q} \\ M(q)^{-1} \left(K_p e - K_v \dot{q} - C(q, \dot{q}) \dot{q} - g(q) \right) \end{bmatrix} = f(e, \dot{q}) \qquad (*) \qquad q = q_d - e
$$

The system is **autonomous** because q_d is constant.

Note: In general, this system may have several equilibrium points, and the origin (e, \dot{q}) = $\mathbf{0} \in \mathbb{R}^{2n}$ is not necessarily an equilibrium point.

$$
f(e,\dot{q})=0 \Rightarrow \dot{q}=0, \qquad K_p e - g(q_d-e)=0
$$

Note: If the manipulator model does not include the gravitational torques term $g(q)$ (e.g., those which move only on the horizontal plane), then the only equilibrium is the origin e, \dot{q}) = $0 \in \mathbb{R}^{2n}$.

[Introduction](#page-1-0) [Position Control:](#page-6-0) [PD](#page-8-0) [PD with Gravity Compensation](#page-14-0) [PD with Desired Gravity Compensation](#page-17-0) [PID](#page-21-0)
2000 000 0000 Ω 00000 OO 000 **PD Control** $({\bf when} \, g(q) = 0)$

To study the stability of the equilibrium we can use Lyapunov's direct method and LaSalle's Theorem to show asymptotic stability of the origin $(e, \dot{q}) = 0$.

Consider a Lyapunov function candidate as 1 2 $\dot{\boldsymbol{q}}^T \boldsymbol{M}(\boldsymbol{q}) \dot{\boldsymbol{q}} +$ 1 2 $e^T K_p e > 0$ (PD)

$$
\dot{V}(e, \dot{q}) = \dot{q}^T M(q) \ddot{q} + \frac{1}{2} \dot{q}^T \dot{M}(q) \dot{q} + e^T K_p \dot{e}
$$
\n
$$
M(q) \ddot{q} = K_p e - K_v \dot{q} - C(q, \dot{q}) \dot{q}, \quad \dot{e} = -\dot{q} \quad (*)
$$
\n
$$
\dot{q}^T \left[\frac{1}{2} \dot{M} - C \right] \dot{q} = 0 \quad \text{(Property of dynamic model)}
$$
\n
$$
\dot{V}(e, \dot{q}) = -\dot{q}^T K_v \dot{q} \le 0 \quad \text{(NSD)}
$$

Equilibrium Point Theorem The origin $(e, \dot{q}) = 0$ is (globally) stable and the solutions $e(t)$ and $\dot{q}(t)$ are bounded.

Now, we use LaSalle (invariant set) theorem to analyze the global asymptotic stability of the origin.

$$
R = \{(\mathbf{e}, \dot{\mathbf{q}}) \in \mathbb{R}^{2n}: \dot{V}(\mathbf{e}, \dot{\mathbf{q}}) = 0\}
$$

 $(e, \dot{q}) = 0$ is the largest invariant set in R

 \Rightarrow The origin $(e, \dot{q}) = 0$ is globally asymptotically stable for any initial condition $q(0), \dot{q}(0) \in \mathbb{R}^n$:

$$
\lim_{t\to\infty} e(t) = \mathbf{0} \qquad \lim_{t\to\infty} \dot{q}(t) = \mathbf{0}
$$

 \Rightarrow Thus, the control objective is achieved.

Note: Friction at the joints may also affect the position error.

The study of unicity of the equilibrium and boundedness of solutions for a control system under PD control when $g(q) \neq 0$ is somewhat more complex than when $g(q) = 0$.

For robots with only revolute joints, we can prove that

- For $\underline{\text{any}}$ $K_p = K_p^T > 0$, $K_v = K_v^T > 0$, it is guaranteed that $e(t)$ and $\dot{q}(t)$ are bounded for all initial conditions. Moreover, lim $t\rightarrow\infty$ $\dot{\boldsymbol{q}}(t) = \boldsymbol{0}$ (it does not guarantee lim $\lim_{t\to\infty} \boldsymbol{q}(t) = \boldsymbol{q}_d$ or even lim $t\rightarrow\infty$ $q(t) =$ constant).
- By choosing K_p sufficiently large, e.g., $\lambda_{\min}(K_p) > n \cdot \left(\max_{i,j,q} \right)$ $\partial g_i(q)$ ∂q_j , then the closedloop equation has a unique equilibrium (but not necessarily at origin).
- The error bound decreases, as $K_{v,i}$ become larger (in case $\bm{K}_v = \text{diag}\{K_{v,i}\}$), however, large $K_{v,i}$ can saturate the robot actuators.

 \Rightarrow Thus, the control objective cannot be achieved using PD control unless the desired position q_d is such that $q(q_d) = 0$ (i.e., the origin $(e, \dot{q}) = 0$ is an equilibrium).

Note: Friction at the joints may also affect the position error.

PD Control with Gravity Compensation

PD Control with Gravity Compensation

The PD control law with gravity compensation is given by

 $\tau = K_p e + K_v \dot{e} + g(q) \xrightarrow{\text{since } q_d \text{ } constant} \tau = K_p e - K_v \dot{q} + g(q)$ Since q_d = constant $\dot{\boldsymbol{q}}_d = 0$

 $\boldsymbol{K}_p, \boldsymbol{K}_v \in \mathbb{R}^{n \times n}$ are symmetric positive definite matrices.

Stony Broo

PD Control with Gravity Compensation

The closed-loop dynamic equation is derived as

$$
M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = K_p e - K_v \dot{q} + g(q)
$$

$$
\frac{d}{dt} \begin{bmatrix} e \\ \dot{q} \end{bmatrix} = \begin{bmatrix} -\dot{q} \\ M(q)^{-1} (K_p e - K_v \dot{q} - C(q, \dot{q}) \dot{q}) \end{bmatrix} = f(e, \dot{q}) \qquad q = q_d - e
$$

The system is **autonomous**, and the origin $(e, \dot{q}) = 0 \in \mathbb{R}^{2n}$ is the only equilibrium point.

Note: Using the same proof given for PD Control when $g(q) = 0$, we can show that the origin $(e, \dot{q}) = \mathbf{0}$ is globally asymptotically stable for any initial condition $\bm{q}(0), \dot{\bm{q}}(0) \in \mathbb{R}^n$:

$$
\lim_{t\to\infty} e(t) = 0 \qquad \lim_{t\to\infty} \dot{q}(t) = 0
$$

 \Rightarrow Thus, the position control objective is achieved.

Note: Friction at the joints may also affect the position error.

Implementation of the PD control with gravity compensation requires **on-line** computation of $q(q)$. However, since the elements of $q(q)$ involve trigonometric functions of q, its real time computation take a longer time than the computation of the 'PD-part' of the control law, especially in high sampling frequency applications. A solution is using **PD Control with Desired Gravity Compensation** which requires only **off-line** computation of $g(q_d)$:

$$
\tau = K_p e + K_v \dot{e} + g(q_d) \qquad \qquad e = q_d - q
$$

 $\boldsymbol{K}_p, \boldsymbol{K}_v \in \mathbb{R}^{n \times n}$ are symmetric positive definite matrices.

Amin Fakhari, Spring 2024 **MEC549 • Ch9: Centralized Control - Position Control** P19

The closed-loop dynamic equation is derived as

$$
M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = K_p e - K_v \dot{q} + g(q_d)
$$

$$
\frac{d}{dt} \begin{bmatrix} e \\ \dot{q} \end{bmatrix} = \begin{bmatrix} -\dot{q} \\ M(q)^{-1} \left(K_p e - K_v \dot{q} - C(q, \dot{q}) \dot{q} - g(q) + g(q_d) \right) \end{bmatrix} = f(e, \dot{q})
$$

$$
q = q_d - e
$$

The system is **autonomous** (since q_d is constant), and in general, may have multiple equilibria which the origin $(e, \dot{q}) = 0 \in \mathbb{R}^{2n}$ is always one of them:

$$
f(e, \dot{q}) = 0 \Rightarrow \dot{q} = 0, \qquad K_p e - g(q_d - e) + g(q_d) = 0
$$

For robots with only revolute joints, we can prove that

- For <u>any</u> $K_p = K_p^T > 0$, $K_v = K_v^T > 0$, it is guaranteed that $e(t)$ and $\dot{q}(t)$ are bounded for all initial conditions. Moreover, lim $t\rightarrow\infty$ $\dot{\boldsymbol{q}}(t) = \boldsymbol{0}$ (it does not guarantee lim $\lim_{t\to\infty} \boldsymbol{q}(t) = \boldsymbol{q}_d$ or even lim $t\rightarrow\infty$ $q(t) =$ constant).
- By choosing K_p sufficiently large, e.g., $\lambda_{\min}(K_p) > n \cdot \left(\max_{i,j,q} \right)$ $\partial g_i(q)$ ∂q_j , then the closedloop equation has a unique equilibrium at origin $(e, \dot{q}) = 0$ and it is globally asymptotically stable.

lim $t\rightarrow\infty$ $e(t) = 0$ \lim $t\rightarrow\infty$ $\dot{\boldsymbol{q}}(t) = \boldsymbol{0}$

 \Rightarrow Thus, the position control objective is achieved.

Note: Friction at the joints may also affect the position error.

PID Control

Stony Brook
University

PID Control

The PID (Proportional Integral Derivative) control law is given by

$$
\boldsymbol{\tau} = \boldsymbol{K}_p \boldsymbol{e} + \boldsymbol{K}_v \dot{\boldsymbol{e}} + \boldsymbol{K}_i \int_0^t \boldsymbol{e}(\tau) d\tau \qquad \qquad \boldsymbol{e} = \boldsymbol{q}_d - \boldsymbol{q}
$$

 K_p , K_v , $K_i \in \mathbb{R}^{n \times n}$ (position, velocity, and integral gains) are symmetric positive definite matrices. If $\pmb{K}_p=\text{diag}\{K_{p,i}\}$, $\pmb{K}_v=\text{diag}\{K_{v,i}\}$, $\pmb{K}_i=\text{diag}\{K_{i,i}\}$, the controller is called PID Independent Joint Control.

Stony Broo

PID Control

The closed-loop dynamic equation is derived as

$$
M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = K_p e + K_v \dot{e} + K_i \int_0^t e(\tau) d\tau
$$

$$
\Rightarrow \begin{cases} M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = K_{p}e + K_{v}\dot{e} + K_{i}\xi \\ \dot{\xi} = e \end{cases} q = q_{d} - e
$$

ξ

$$
\frac{d}{dt} \begin{bmatrix} \xi \\ e \\ \dot{q} \end{bmatrix} = \begin{bmatrix} e \\ -\dot{q} \\ M(q)^{-1} \left(K_p e - K_v \dot{q} + K_i \xi - C(q, \dot{q}) \dot{q} - g(q) \right) \end{bmatrix} \xrightarrow{\text{equilibrium}} \begin{bmatrix} K_i^{-1} g(q_d) \\ 0 \\ 0 \end{bmatrix}
$$

Translating this equilibrium point to the origin via a suitable change of variable:

 $z = \xi - K_i^{-1} g(q_d)$

$$
\frac{d}{dt} \begin{bmatrix} z \\ e \\ \dot{q} \end{bmatrix} = \begin{bmatrix} e \\ -\dot{q} \\ M(q)^{-1} \left(K_p e - K_v \dot{q} + K_i z + g(q_d) - C(q, \dot{q}) \dot{q} - g(q) \right) \end{bmatrix}
$$

The system is **autonomous,** and its unique equilibrium is the origin $(z, e, \dot{q}) = 0 \in \mathbb{R}^{3n}$.

Stony Brook

PID Control: Tuning Method

For robots with only revolute joints, we can prove that the symmetric positive definite matrices \pmb{K}_p , \pmb{K}_i , \pmb{K}_v which satisfy the following relations can only guarantee achievement of the position control objective by making the origin $(z, e, \dot{q}) = 0$ locally asymptotically <u>stable</u> (i.e., if $\boldsymbol{e}(t)$, $\dot{\boldsymbol{q}}(t)$ are "sufficiently small", $\lim_{ }$ $t\rightarrow\infty$ $e(t) = 0$).

$$
\lambda_{\max}\{K_i\} \ge \lambda_{\min}\{K_p\} > 0
$$

$$
\lambda_{\max}\{K_p\} \ge \lambda_{\min}\{K_p\} > n \cdot k_g
$$

$$
\lambda_{\max}\{K_v\} \ge \lambda_{\min}\{K_v\} > \frac{\lambda_{\max}\{K_i\}}{\lambda_{\min}\{K_p\} - k_g} \cdot \frac{\lambda_{\max}^2(M(q))}{\lambda_{\min}(M(q))}
$$

$$
k_g = \max_{i,j,q}
$$

Note: A system with K_p , K_i , K_v parameters which satisfy these relations does not necessarily achieve a proper settling time. It is possible to find a set of the symmetric PD matrices \pmb{K}_p , \pmb{K}_i , \pmb{K}_v which achieve a small settling time, while violating these relations.

 $\partial g_i(\boldsymbol{q})$

 $\partial \boldsymbol{q}_j$