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Closed-loop Dynamic Equation

Consider the dynamic model of an 𝑛-DOF open-chain manipulator with no friction at the 
joints and no external force at the end-effector.

𝝉 = 𝑴 𝒒 ሷ𝒒 + 𝑪 𝒒, ሶ𝒒 ሶ𝒒 + 𝒈 𝒒
𝑑

𝑑𝑡

𝒒
ሶ𝒒 =

ሶ𝒒

𝑴(𝒒)−1[𝝉 − 𝑪(𝒒, ሶ𝒒) ሶ𝒒 − 𝒈(𝒒)]

In general, a position/motion Control Law (Controller) with desired joint position 
𝒒𝑑 𝑡 ∈ ℝ𝑛, velocity ሶ𝒒𝑑 𝑡 ∈ ℝ𝑛, and acceleration ሷ𝒒𝑑 𝑡 ∈ ℝ𝑛 can be expressed as 
a nonlinear function 𝝉𝑐 as

𝝉 = 𝝉𝑐 𝒒, ሶ𝒒, 𝒒𝑑 , ሶ𝒒𝑑 , ሷ𝒒𝑑 , 𝑴 𝒒 , 𝑪 𝒒, ሶ𝒒 , 𝒈 𝒒

(state-space form)

or

Note: For practical purposes, it is desirable that the controller 𝝉𝑐 does not depend on the joint 
acceleration ሷ𝒒 since computing or measuring acceleration is usually highly sensitive to noise.
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Closed-loop Dynamic Equation (cont.)

Thus, the closed-loop dynamic equation is derived as

𝑴 𝒒 ሷ𝒒 + 𝑪 𝒒, ሶ𝒒 ሶ𝒒 + 𝒈 𝒒 = 𝝉𝑐 𝒒, ሶ𝒒, 𝒒𝑑 , ሶ𝒒𝑑 , ሷ𝒒𝑑 , 𝑴 𝒒 , 𝑪 𝒒, ሶ𝒒 , 𝒈 𝒒

or in the state-space form as
𝑑

𝑑𝑡

𝒒𝑑 − 𝒒
ሶ𝒒𝑑 − ሶ𝒒 = 𝒇 𝒒, ሶ𝒒, 𝒒𝑑 , ሶ𝒒𝑑 , ሷ𝒒𝑑 , 𝑴 𝒒 , 𝑪 𝒒, ሶ𝒒 , 𝒈 𝒒

𝑑

𝑑𝑡

𝒆
ሶ𝒆

= ෨𝒇 𝑡, 𝒆, ሶ𝒆
In general, a nonautonomous 
nonlinear ODE when 𝒒𝑑 = 𝒒𝑑 𝑡 .

𝒆

ሶ𝒆

𝒆 = 𝒒𝑑 − 𝒒 ∈ ℝ𝑛,

ሶ𝒆 = ሶ𝒒𝑑 − ሶ𝒒 ∈ ℝ𝑛,

and by replacing 𝒒 with 
𝒒𝑑 𝑡 − 𝒆 and ሶ𝒒 with 

ሶ𝒒𝑑 𝑡 − ሶ𝒆 in 𝒇: 
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Actuator Saturation

In some controllers, choosing large values for the control parameters causes a large (initial) 
control torque which is beyond the robot actuators capacity which are limited by maximum 
and minimum allowable values 𝝉max, 𝝉min. Therefore, the control parameters should be 
chosen properly.

To consider the actuator saturation limits in the simulation, we add a saturation function 
as follows: 

Controller Robot

Actuator Saturation 
Function

Desired 
Behavior 𝝉controller 𝝉actual

𝝉controller

𝝉actual

𝜏max,𝑖

𝜏min,𝑖

1
1

𝝉actual = sat 𝝉controller
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Pseudocode for Controllers

Given 𝓕tip 𝑖  (𝑖 = 1, … , 𝑁)

Set 𝜽 1 = 𝜽 0 , ሶ𝜽 1 = ሶ𝜽 0 , 𝒆int = 𝟎

Set ഥ𝜽 = 𝜽 1 , ሶഥ𝜽 = ሶ𝜽 1
For 𝑖 = 1 to 𝑁 − 1

𝜽𝑑 𝑖 , ሶ𝜽𝑑 𝑖 = trajectory 𝑡 𝑖 = 𝑖 𝛿𝑡 𝜏, …

      𝝉𝑐 𝑖 = controller ഥ𝜽, ሶഥ𝜽, 𝜽𝑑 𝑖 , ሶ𝜽𝑑 𝑖 , ሷ𝜽𝑑 𝑖 , 𝒆int, …

      𝝉𝑐 𝑖 = sat 𝝉𝑐 𝑖
      For 𝑗 = 1 to 𝑛res

               ሷ𝜽 = ForwardDynamics ഥ𝜽, ሶഥ𝜽, 𝝉𝑐 𝑖 , 𝓕tip 𝑖

               ഥ𝜽 = ഥ𝜽 + ሶഥ𝜽 𝛿𝑡 ሷ𝜃

               ሶഥ𝜽 = ሶഥ𝜽 + ሷ𝜽 𝛿𝑡 ሷ𝜃

      end
𝒆int = 𝒆int + 𝛿𝑡 𝜏 𝜽𝑑 𝑖 − ഥ𝜽    % error integral
𝜽 𝑖 + 1 = ഥ𝜽

ሶ𝜽 𝑖 + 1 = ሶഥ𝜽
end

𝑖 = 1
𝑡 1 = 0

𝝉𝑐 1

𝑖 = 𝑁
𝑡 𝑁 = 𝑡𝑓 = 𝑁 𝛿𝑡 𝜏

𝝉𝑐 𝑁

𝑖
𝑡 𝑖 = 𝑖 𝛿𝑡 𝜏

𝝉𝑐 𝑖

𝑖 + 1
𝑡 𝑖 + 1

𝝉𝑐 𝑖 + 1

… …

𝛿𝑡 𝜏: timestep that 𝝉 is given

𝛿𝑡 ሷ𝜃 = 𝛿𝑡 𝜏/𝑛res: timestep 
for motion simulation and 

computing ሷ𝜽.
𝑛res: Integration resolution. 

……

𝑁: Number 
of samples

𝑡𝑡𝑓0

𝛿𝑡 𝜏, 𝛿𝑡 ሷ𝜃 ∈ ℝ+

First-order Euler Integration
(we can also use any other ODE solver like ode45 which 

is based on an explicit Runge-Kutta (4,5) formula)
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Position Control
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Position Control Objective

Given a desired constant joint position (set-point reference) 𝒒𝑑 ∈ ℝ𝑛, we wish to find joint 
torques/forces 𝝉 ∈ ℝ𝑛 such that the joint position 𝒒 𝑡 ∈ ℝ𝑛 tend to 𝒒𝑑 accurately:

lim
𝑡→∞

𝒒 𝑡 = 𝒒𝑑 lim
𝑡→∞

𝒆 𝑡 = 𝟎⇒ 𝒆 𝑡 = 𝒒𝑑 − 𝒒 𝑡 ∈ ℝ𝑛

position error

The most common position controllers:

• PD Control (or P Control Plus Velocity Feedback)
• PD Control with Gravity Compensation
• PD Control with Desired Gravity Compensation
• PID Control
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PD Control
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PD Control
(or P Control Plus Velocity Feedback)

𝝉 = 𝑲𝑝𝒆 + 𝑲𝑣 ሶ𝒆 𝝉 = 𝑲𝑝𝒆 − 𝑲𝑣 ሶ𝒒

𝑲𝑝, 𝑲𝑣 ∈ ℝ𝑛×𝑛 are symmetric positive definite matrices. If 𝑲𝑝 = diag 𝐾𝑝,𝑖 , 𝑲𝑣 = diag 𝐾𝑣,𝑖 , 

the controller is called PD Independent Joint Control.

This controller is the simplest (linear) controller that may be used to control robot 
manipulators.

Since 𝒒𝑑 = constant 

ሶ𝒒𝑑 = 0 

The PD (Proportional Derivative) control law is given by

𝒆 = 𝒒𝑑 − 𝒒
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PD Control

The closed-loop dynamic equation is derived as

𝑑

𝑑𝑡

𝒆
ሶ𝒒 =

− ሶ𝒒

𝑴(𝒒)−1 𝑲𝑝𝒆 − 𝑲𝑣 ሶ𝒒 − 𝑪 𝒒, ሶ𝒒 ሶ𝒒 − 𝒈 𝒒
= 𝒇 𝒆, ሶ𝒒

𝑴 𝒒 ሷ𝒒 + 𝑪 𝒒, ሶ𝒒 ሶ𝒒 + 𝒈 𝒒 = 𝑲𝑝𝒆 − 𝑲𝑣 ሶ𝒒

The system is autonomous because 𝒒𝑑 is constant.

𝒒 = 𝒒𝑑 − 𝒆

Note: If the manipulator model does not include the gravitational torques term 𝒈 𝒒  (e.g., 
those which move only on the horizontal plane), then the only equilibrium is the origin 
𝒆, ሶ𝒒 = 𝟎 ∈ ℝ2𝑛.

()

Note: In general, this system may have several equilibrium points, and the origin 𝒆, ሶ𝒒 =
𝟎 ∈ ℝ2𝑛 is not necessarily an equilibrium point.

𝒇 𝒆, ሶ𝒒 = 𝟎 ⇒  ሶ𝒒 = 𝟎, 𝑲𝑝𝒆 − 𝒈 𝒒𝑑 − 𝒆 = 𝟎
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PD Control
(when 𝒈 𝒒 = 𝟎)

To study the stability of the equilibrium we can use Lyapunov’s direct method and LaSalle’s 
Theorem to show asymptotic stability of the origin 𝒆, ሶ𝒒 = 𝟎.

Consider a Lyapunov function candidate as 𝑉 𝒆, ሶ𝒒 =
1

2
ሶ𝒒𝑇𝑴 𝒒 ሶ𝒒 +

1

2
𝒆𝑇𝑲𝑝𝒆 > 0

ሶ𝑉(𝒆, ሶ𝒒) = ሶ𝒒𝑇𝑴(𝒒) ሷ𝒒 +
1

2
ሶ𝒒𝑇 ሶ𝑴(𝒒) ሶ𝒒 + 𝒆𝑇𝑲𝑝 ሶ𝒆

𝑴 𝒒 ሷ𝒒 = 𝑲𝑝𝒆 − 𝑲𝑣 ሶ𝒒 − 𝑪 𝒒, ሶ𝒒 ሶ𝒒,   ሶ𝒆 = − ሶ𝒒

ሶ𝒒𝑇
1

2
ሶ𝑴 − 𝑪 ሶ𝒒 = 𝟎

()

(Property of dynamic model)

ሶ𝑉 𝒆, ሶ𝒒 = − ሶ𝒒𝑇𝑲𝑣 ሶ𝒒 ≤ 0

(PD)

(NSD)

Equilibrium Point Theorem The origin 𝒆, ሶ𝒒 = 𝟎 is (globally) stable and the solutions 𝒆 𝑡  
and ሶ𝒒 𝑡  are bounded.

Kinetic energy 
of the arm

∀𝒆, ሶ𝒒 ≠ 𝟎
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PD Control
(when 𝒈 𝒒 = 𝟎)

𝑅 = 𝒆, ሶ𝒒 ∈ ℝ2𝑛: ሶ𝑉(𝒆, ሶ𝒒) = 0

Now, we use LaSalle (invariant set) theorem to analyze the global asymptotic stability of 
the origin.

 The origin 𝒆, ሶ𝒒 = 𝟎 is globally asymptotically stable for any initial condition 
𝒒 0 , ሶ𝒒 0 ∈ ℝ𝒏:

lim
𝑡→∞

𝒆 𝑡 = 𝟎

 Thus, the control objective is achieved.

Note: Friction at the joints may also affect the position error.

lim
𝑡→∞

ሶ𝒒 𝑡 = 𝟎

𝒆, ሶ𝒒 = 𝟎 is the largest invariant set in 𝑅
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PD Control
(when 𝒈 𝒒 ≠ 𝟎)

The study of unicity of the equilibrium and boundedness of solutions for a control system 
under PD control when 𝒈 𝒒 ≠ 𝟎 is somewhat more complex than when 𝒈 𝒒 = 𝟎.

For robots with only revolute joints, we can prove that
• For any 𝑲𝑝 = 𝑲𝑝

𝑇 > 0, 𝑲𝑣 = 𝑲𝑣
𝑇 > 0, it is guaranteed that 𝒆 𝑡  and ሶ𝒒 𝑡  are bounded 

for all initial conditions. Moreover, lim
𝑡→∞

ሶ𝒒 𝑡 = 𝟎 (it does not guarantee lim
𝑡→∞

𝒒 𝑡 = 𝒒𝑑 

or even lim
𝑡→∞

𝒒 𝑡 = constant). 

• By choosing 𝑲𝑝 sufficiently large, e.g., 𝜆min(𝑲𝑝) > 𝑛 ∙ max
𝑖,𝑗,𝑞

𝜕𝑔𝑖(𝒒)

𝜕𝒒𝑗
, then the closed-

loop equation has a unique equilibrium (but not necessarily at origin).

   Thus, the control objective cannot be achieved using PD control unless the desired 
position 𝒒𝑑 is such that 𝒈 𝒒𝑑 = 𝟎 (i.e., the origin 𝒆, ሶ𝒒 = 𝟎 is an equilibrium).

Note: Friction at the joints may also affect the position error.

• The error bound decreases, as 𝐾𝑣,𝑖 become larger (in case 𝑲𝑣 = diag 𝐾𝑣,𝑖 ), however, 

large 𝐾𝑣,𝑖  can saturate the robot actuators.
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PD Control with Gravity 
Compensation
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PD Control with Gravity Compensation

𝑲𝑝, 𝑲𝑣 ∈ ℝ𝑛×𝑛 are symmetric positive definite matrices.

The PD control law with gravity compensation is given by

𝝉 = 𝑲𝑝𝒆 + 𝑲𝑣 ሶ𝒆 + 𝒈 𝒒

𝒆 = 𝒒𝑑 − 𝒒

𝝉 = 𝑲𝑝𝒆 − 𝑲𝑣 ሶ𝒒 + 𝒈 𝒒
Since 𝒒𝑑 = constant 

ሶ𝒒𝑑 = 0 
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PD Control with Gravity Compensation

The closed-loop dynamic equation is derived as

𝑑

𝑑𝑡

𝒆
ሶ𝒒 =

− ሶ𝒒

𝑴(𝒒)−1 𝑲𝑝𝒆 − 𝑲𝑣 ሶ𝒒 − 𝑪 𝒒, ሶ𝒒 ሶ𝒒
= 𝒇 𝒆, ሶ𝒒

𝑴 𝒒 ሷ𝒒 + 𝑪 𝒒, ሶ𝒒 ሶ𝒒 + 𝒈 𝒒 = 𝑲𝑝𝒆 − 𝑲𝑣 ሶ𝒒 + 𝒈 𝒒

The system is autonomous, and the origin 𝒆, ሶ𝒒 = 𝟎 ∈ ℝ2𝑛 is the only equilibrium point.

𝒒 = 𝒒𝑑 − 𝒆

Note: Using the same proof given for PD Control when 𝒈 𝒒 = 𝟎, we can show that the 
origin 𝒆, ሶ𝒒 = 𝟎 is globally asymptotically stable for any initial condition 𝒒 0 , ሶ𝒒 0 ∈ ℝ𝒏:

   Thus, the position control objective is achieved.

Note: Friction at the joints may also affect the position error.

lim
𝑡→∞

𝒆 𝑡 = 𝟎 lim
𝑡→∞

ሶ𝒒 𝑡 = 𝟎
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PD Control with Desired 
Gravity Compensation
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PD Control with Desired Gravity Compensation

Implementation of the PD control with gravity compensation requires on-line computation 
of 𝒈 𝒒 . However, since the elements of 𝒈 𝒒  involve trigonometric functions of 𝒒, its real 
time computation take a longer time than the computation of the ‘PD-part’ of the control 
law, especially in high sampling frequency applications. A solution is using PD Control with 
Desired Gravity Compensation which requires only off-line computation of 𝒈 𝒒𝑑 :

𝑲𝑝, 𝑲𝑣 ∈ ℝ𝑛×𝑛 are symmetric positive definite matrices.

𝝉 = 𝑲𝑝𝒆 + 𝑲𝑣 ሶ𝒆 + 𝒈 𝒒𝑑 𝒆 = 𝒒𝑑 − 𝒒
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PD Control with Desired Gravity Compensation

The closed-loop dynamic equation is derived as

𝑑

𝑑𝑡

𝒆
ሶ𝒒 =

− ሶ𝒒

𝑴(𝒒)−1 𝑲𝑝𝒆 − 𝑲𝑣 ሶ𝒒 − 𝑪 𝒒, ሶ𝒒 ሶ𝒒 − 𝒈 𝒒 + 𝒈 𝒒𝑑
= 𝒇 𝒆, ሶ𝒒

𝑴 𝒒 ሷ𝒒 + 𝑪 𝒒, ሶ𝒒 ሶ𝒒 + 𝒈 𝒒 = 𝑲𝑝𝒆 − 𝑲𝑣 ሶ𝒒 + 𝒈 𝒒𝑑

The system is autonomous (since 𝒒𝑑 is constant), and in general, may have multiple 
equilibria which the origin 𝒆, ሶ𝒒 = 𝟎 ∈ ℝ2𝑛 is always one of them:

𝒒 = 𝒒𝑑 − 𝒆

𝒇 𝒆, ሶ𝒒 = 𝟎 ⇒  ሶ𝒒 = 𝟎, 𝑲𝑝𝒆 − 𝒈 𝒒𝑑 − 𝒆 + 𝒈 𝒒𝑑 = 𝟎
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PD Control with Desired Gravity Compensation

For robots with only revolute joints, we can prove that
• For any 𝑲𝑝 = 𝑲𝑝

𝑇 > 0, 𝑲𝑣 = 𝑲𝑣
𝑇 > 0, it is guaranteed that 𝒆 𝑡  and ሶ𝒒 𝑡  are bounded 

for all initial conditions. Moreover, lim
𝑡→∞

ሶ𝒒 𝑡 = 𝟎 (it does not guarantee lim
𝑡→∞

𝒒 𝑡 = 𝒒𝑑 

or even lim
𝑡→∞

𝒒 𝑡 = constant).

• By choosing 𝑲𝑝 sufficiently large, e.g., 𝜆min(𝑲𝑝) > 𝑛 ∙ max
𝑖,𝑗,𝑞

𝜕𝑔𝑖(𝒒)

𝜕𝒒𝑗
, then the closed-

loop equation has a unique equilibrium at origin 𝒆, ሶ𝒒 = 𝟎 and it is globally 
asymptotically stable.

lim
𝑡→∞

𝒆 𝑡 = 𝟎 lim
𝑡→∞

ሶ𝒒 𝑡 = 𝟎

Note: Friction at the joints may also affect the position error.

   Thus, the position control objective is achieved.
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PID Control
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PID Control

𝝉 = 𝑲𝑝𝒆 + 𝑲𝑣 ሶ𝒆 + 𝑲𝑖 න
0

𝑡

𝒆(𝜏)𝑑𝜏

𝑲𝑝, 𝑲𝑣, 𝑲𝑖 ∈ ℝ𝑛×𝑛 (position, velocity, and integral gains) are symmetric positive definite 

matrices. If 𝑲𝑝 = diag 𝐾𝑝,𝑖 , 𝑲𝑣 = diag 𝐾𝑣,𝑖 , 𝑲𝑖 = diag 𝐾𝑖,𝑖 , the controller is called PID 

Independent Joint Control.

The PID (Proportional Integral Derivative) control law is given by

𝒆 = 𝒒𝑑 − 𝒒
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PID Control

The closed-loop dynamic equation is derived as

𝑑

𝑑𝑡

𝝃
𝒆
ሶ𝒒

=

𝒆
− ሶ𝒒

𝑴 𝒒 −1 𝑲𝑝𝒆 − 𝑲𝑣 ሶ𝒒 + 𝑲𝑖𝝃 − 𝑪 𝒒, ሶ𝒒 ሶ𝒒 − 𝒈 𝒒

𝑴 𝒒 ሷ𝒒 + 𝑪 𝒒, ሶ𝒒 ሶ𝒒 + 𝒈 𝒒 = 𝑲𝑝𝒆 + 𝑲𝑣 ሶ𝒆 + 𝑲𝑖 න
0

𝑡

𝒆(𝜏)𝑑𝜏

𝑴 𝒒 ሷ𝒒 + 𝑪 𝒒, ሶ𝒒 ሶ𝒒 + 𝒈 𝒒 = 𝑲𝑝𝒆 + 𝑲𝑣 ሶ𝒆 + 𝑲𝑖𝝃

ሶ𝝃 = 𝒆


𝑲𝑖
−1𝒈 𝒒𝑑

𝟎
𝟎

𝒒 = 𝒒𝑑 − 𝒆

equilibrium 
point

Translating this 
equilibrium point  
to the origin via a 
suitable change of 
variable:

𝒛 = 𝝃 − 𝑲𝑖
−1𝒈 𝒒𝑑

𝑑

𝑑𝑡

𝒛
𝒆
ሶ𝒒

=

𝒆
− ሶ𝒒

𝑴 𝒒 −1 𝑲𝑝𝒆 − 𝑲𝑣 ሶ𝒒 + 𝑲𝑖𝒛 + 𝒈 𝒒𝑑 − 𝑪 𝒒, ሶ𝒒 ሶ𝒒 − 𝒈 𝒒

The system is autonomous, and its unique equilibrium is the origin 
𝒛, 𝒆, ሶ𝒒 = 𝟎 ∈ ℝ3𝑛.
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PID Control: Tuning Method

For robots with only revolute joints, we can prove that the symmetric positive definite 
matrices 𝑲𝑝, 𝑲𝑖, 𝑲𝑣 which satisfy the following relations can only guarantee achievement 

of the position control objective by making the origin 𝒛, 𝒆, ሶ𝒒 = 𝟎 locally asymptotically 
stable (i.e., if 𝒆 𝑡 , ሶ𝒒 𝑡  are “sufficiently small”, lim

𝑡→∞
𝒆 𝑡 = 𝟎).

𝜆max 𝑲𝑖 ≥ 𝜆min 𝑲𝑖 > 0

𝜆max 𝑲𝑝 ≥ 𝜆min 𝑲𝑝 > 𝑛 ∙ 𝑘𝑔

𝜆max 𝑲𝑣 ≥ 𝜆min 𝑲𝑣 >
𝜆max 𝑲𝑖

𝜆min 𝑲𝑝 − 𝑘𝑔

⋅
𝜆max

2 𝑴(𝒒)

𝜆min 𝑴(𝒒)

Note: A system with 𝑲𝑝, 𝑲𝑖, 𝑲𝑣 parameters which satisfy these relations does not 

necessarily achieve a proper settling time. It is possible to find a set of the symmetric PD 
matrices 𝑲𝑝, 𝑲𝑖 , 𝑲𝑣 which achieve a small settling time, while violating these relations.

𝑘𝑔 = max
𝑖,𝑗,𝑞

𝜕𝑔𝑖(𝒒)

𝜕𝒒𝑗

Amin Fakhari, Spring 2024 MEC549 • Ch9: Centralized Control - Position Control P25

Introduction Position Control: PD PD with Gravity Compensation PD with Desired Gravity Compensation PID


	Contents
	Slide 1: Ch9: Centralized Control - Position Control

	Introduction
	Slide 2: Introduction
	Slide 3: Closed-loop Dynamic Equation
	Slide 4: Closed-loop Dynamic Equation (cont.)
	Slide 7: Actuator Saturation
	Slide 8: Pseudocode for Controllers

	Position Control:
	Slide 9: Position Control
	Slide 10: Position Control Objective

	PD
	Slide 11: PD Control
	Slide 12: PD Control (or P Control Plus Velocity Feedback)
	Slide 14: PD Control
	Slide 15: PD Control (when bold italic g of bold italic q , equals bold 0 )
	Slide 16: PD Control (when bold italic g of bold italic q , equals bold 0 )
	Slide 18: PD Control (when bold italic g of bold italic q , not equal bold 0 )

	PD with Gravity Compensation
	Slide 21: PD Control with Gravity Compensation
	Slide 22: PD Control with Gravity Compensation
	Slide 24: PD Control with Gravity Compensation

	PD with Desired Gravity Compensation
	Slide 26: PD Control with Desired Gravity Compensation
	Slide 27: PD Control with Desired Gravity Compensation
	Slide 28: PD Control with Desired Gravity Compensation
	Slide 29: PD Control with Desired Gravity Compensation

	PID
	Slide 31: PID Control
	Slide 32: PID Control
	Slide 33: PID Control
	Slide 34: PID Control: Tuning Method


